

ECE532: Digital System Design

Audio Visualization Device

Individual Report

Jennifer Mo
 (992476762)

April 2, 2007

Table of Contents

1. Introduction... 1

2. Project Partitioning ... 1

3. Design Flow and Methodology... 1

4. Project Contributions .. 2

4.1 Rendering module pcore ... 2

4.2 Software .. 4

5. Problems encountered... 4

6. Tools Used .. 5

7. Community Contribution.. 5

8. Feedback to Xilinx.. 5

9. Course Feedback... 5

ECE532 Audio Visualization Device Individual Report

 1

1. Introduction

The goal of this project is to create an audio visualization device that is similar to those
commonly found in audio players such as WinAmp and Windows Media Player. Our
final product is displayed output on a VGA monitor with 24-bit colour at a resolution of
640x480.

I was responsible for the rendering module of this project as shown in Figure 1 of the
Group Report. The design methodology that my team took and the problems that I
encountered during the course of this project are documented in this report.

2. Project Partitioning

The project workload was divided up into blocks according to the system block diagram
found in Figure 1 of the group report. These well-defined blocks made it fairly easy for
our parts to interoperate. Furthermore, the amount of system-level design that we did
together before coding meant that we all had a very clear idea of what was required of
each module.

Most of the interaction between our modules is through FIFOs and buses such as the
OPB and FSL. The use of these well-defined interfaces simplified our integration efforts
immensely. It was helpful that there was never any uncertainty on how a given interface
functioned because these were already well documented. When connecting up our
components, we only needed to make sure that we all understood what format the data
was expected to be in.

In fact, we only had one custom interface – the ZBT RAM memory interface used by the
render module to write to the frame buffers. Even though Jason wrote this interface, I
had no trouble in using it. This is in large part thanks to the simulation testbench created
by Jason. In addition to testing for functional correctness, I also discovered that the
simulation waveforms are a clear and concise way of demonstrating how signals are to be
asserted in order to use a given interface.

My primary contribution to this project was the render module. More details will be
provided in Section 4 of this report.

3. Design Flow and Methodology

A major factor of our success in working together has been the Subversion version
control system used by our group for source code control. This tool allowed us to
efficiently review changes made by other group members.

ECE532 Audio Visualization Device Individual Report

 2

The last point mentioned above is especially crucial to the way we divided up work in
this project. Often, we only had one person adding features to the project at a time. We
found that passing the multimedia board amongst the group members allowed each
member to test their code immediately after simulating their newest feature. If any
problems were found, they could be fixed with minimal turn-around time.

By adding only a few features at a time, we were able to ensure that we would have no
integration pains later. Whenever it was my turn with the multimedia board, the source
code control system allowed me to review the most recent changes. This review process
allowed us to be well-versed in each other’s code. It also meant that no time was wasted
trying to debug problems caused by misunderstandings of how each other’s modules
worked.

The last step I performed before adding new code was to recompile my version of the
code base and test it to see if all the newest files were checked in. From experience, this
last step can save a lot of anguish caused when other group members forget to check in
some crucial part of their code.

When it comes to adding a new feature, I would first design the hardware by drawing the
appropriate datapath and the corresponding control logic’s state diagram. After
implementation, I would perform some rudimentary test cases using do scripts in
ModelSim. I typically would not resort to the more involving test benches unless there
are complex interfaces to consider. One place where I found a test bench to be helpful is
when simulating writes and reads to memory. It was much easier to use the behavioural
ZBT RAM model rather than try to assert the signals manually in a do script.

After simulation, I would test the hardware on the actual FPGA. If the test were
unsuccessful, I would look at my code again and see how the observed behaviour could
be produced by the code. When I think that I have found the problem, I would verify that
a certain set of simulation input vectors would trigger the unwanted behaviour. Only
then will I actually fix the code and re-simulate it to check that the problem has been
fixed. This process will be iterated until the code works as expected when programmed
on the FPGA.

4. Project Contributions

The following sections describe the contributions that I have made to this project.

4.1 Rendering module pcore

The rendering module was my main responsibility for this project. Without this module,
the Microblaze processor would need to individually set each pixel when it wishes to
clear and draw to the back buffer. Setting each 32-bit pixel requires the processor to
perform a write to the memory through the OPB bus. The reliance on the OPB bus

ECE532 Audio Visualization Device Individual Report

 3

severely limits the memory bandwidth available to the processor and becomes a
performance bottleneck.

The rendering module alleviates this problem by hardware accelerating the rendering
process. I have designed this module to be divided into four separate sub-modules, each
designed for a specific task. There is the top-level rendering module, the clear_buffer
module, the draw_fft_bin module, and the fade_buffer module. This subdivision of the
rendering module allowed me to independently test each new operation as support for it
was added to the rendering module.

The top-level rendering module contains the FSL interface through which the Microblaze
processor would write its commands. This module would then read from the FSL,
decode the requested operation, and then tell the corresponding sub-module to perform
the operation. The FSL makes the control module exceedingly elegant. Had an OPB
interface been used instead, we would have needed to store the incoming commands into
our own FIFO. We would also need to worry about the command FIFO filling up. With
the FSL, the FIFO buffering is done for us, and if we use the blocking FSL write, the
processor will simply block until there is space in the FSL for its command.

Part of the reason why I chose to isolate the control module from the sub-modules was
for scalability. When we initially planned out our project, we did not know how many
visualization operations we would need the rendering module to support. We did not
know how much time it would take us to get as far as we did. Thus, the rendering
module was designed to be easily extensible and flexible.

Before starting the rendering module, I looked at the existing software code to see which
parts I could most gainfully accelerate in hardware. From my initial analysis, I came up
with the clear_buffer module and the draw_fft_bin module described below.

The clear_buffer module provides the most significant gain in the hardware
implementation over the software implementation. In software, this is essentially an I/O-
bound operation with the processor spinning inside a loop to write a single value to every
pixel location. In hardware, we can do much better because the OPB bus overhead is
avoided completely and four consecutive writes can be performed in a burst.

The draw_fft_bin module is another improvement from the software implementation.
Instead of having the processor write every pixel in a column for every FFT bin, the
processor now only needs to use the FSL interface to write the opcode for draw_fft_bin,
the height, the colour and the FFT bin number of the column it wishes to draw. This
reduces the potential 480 writes per column down to 4 writes per column.

With the basic hardware acceleration in place, my efforts turned towards implementing
more interesting-looking visualizations. The simplest improvement that I could think of
was to add fading effects. The way that this effect works is as follows: when the frame
buffers are flipped, instead of clearing the back buffer with a single colour, the back
buffer is “cleared” by copying the current front buffer into it. The newly copied buffer is

ECE532 Audio Visualization Device Individual Report

 4

faded by subtracting its colour values so that it will approach black, which has a colour
value of 0.

4.2 Software

When I added new hardware features to the rendering module, I also had to update the
software to take advantage of it. It was fairly straightforward to replace the software
rendering code with the hardware rendering code as only a small fraction of the code was
actually responsible for drawing the screen. As a test, I made verified that both the
hardware and the software implementations produced the same output when the same
song was played. My initial rendering software was fairly simple and was done more to
show that the hardware worked rather than to maximize the final aesthetic qualities.

5. Problems encountered

By design, the rendering module was quite detached from the rest of the system. It
receives commands from the FSL and it communicates with the outside world using the
ZBT RAM controller. As such, I did not have to worry about all the external timing
problems that plagued my team members.

The most troublesome problem I came across was from the implementation of fading
effects. Initially, with fading the back buffer, the plan was to read directly from the front
buffer and write the resulting faded value into the back buffer. I reasoned that the VGA
ran at nearly half the speed of the memory interface and that with sufficient buffering, the
VGA controller and the render module should both be able to access the same RAM
module without being bandwidth limited.

Unfortunately, I was wrong. With my first implementation, the fading worked but was
incredibly slow. It would appear that the arbitration overhead of the ZBT RAM module
multiplexing between the VGA controller and the RAM module was immense. It was
never designed for a high-contention environment.

After much thought, I decided that the best solution would be to instantiate another ZBT
RAM controller to serve as a “mirror” of the front buffer. Being a separate RAM chip,
there would be no issues with memory contention. Whenever a write was made to the
back buffer, the render module would make the same write to the mirror buffer. Thus,
when the back buffer is flipped to the front buffer, the mirror buffer would contain the
same contents as the front buffer. When it came time fade the front buffer into the new
back buffer, the render module could have exclusive access to the mirror buffer while the
VGA controller has exclusive access to the actual front buffer.

Thankfully, this solution worked and we arrived at the fading implementation that is used
in the final project.

ECE532 Audio Visualization Device Individual Report

 5

6. Tools Used

In this project, I have mainly used the Xilinx Platform Studio tools and ModelSim. With
XPS compilations taking upwards of 20 minutes to complete, ModelSim functional
simulations must have saved me countless hours of debugging. With a good simulation, I
was mostly confident that the design I program onto the FPGA would be working or at
least very close to working.

The other tool that I found useful was the Xilinx Microprocessor Debugger (XMD).
With the ability to read from the OPB bus using XMD, I found it useful to create a
debugging OPB interface in the render module and map some signals to be output on the
OPB bus. This is extremely helpful in debugging situations when you really have no idea
what is wrong. I find this solution also a lot simpler, albeit more primitive, than using the
Xilinx ChipScope tool which could be cumbersome when all you need to see are a few
signals.

7. Community Contribution

I have not contributed to the bulletin board.

8. Feedback to Xilinx

I felt that the compilations took rather long to finish, even for the smallest changes. It
would save a lot more time if there were some incremental compilation function where
only changed portions of the design were recompiled.

9. Course Feedback

I enjoyed learning about the functionality of ModelSim. This project made me realize
that it is a much more powerful simulation tool than the other simulation tools I have
used in the past; namely, Quartus’ simulation tool.

Finally, this design project made me realize that a lot of the time in hardware design was
spent in debugging. Without a good simulation tool such as ModelSim, debugging would
have taken longer than it did. I learned that if you simulate, the code may work; however,
if you do not simulate it, the code probably will not work.

