

ECE532 – Digital System Design

Dance Dance Revolution on FPGA

Name: Jeffrey Puk

Dharmendra Gupta

Kenny Chan

 (992297518)

 (992370206)

 (992462866)

Date: April 2, 2007

Acknowledgements

Special thanks to the following people for making this project a success.

- Mark Jarvin

- Patrick Akl

- Professor Paul Chow

And Xilinx for their generous donation of the Xilinx XUP Virtex II Pro board to the

University of Toronto.

ECE532 – Digital System Design Group Report

Table of Content

1. Overview... 1

1.1 Goals of the Project... 1

1.2 Redefined Goals of the Project ... 1

1.3 System Diagram.. 2

1.4 High Level Description... 3

2. Outcome.. 4

2.1 Future Improvements .. 5

3. Detailed Description ... 5

4. Software Control ... 10

5. Description of Design Tree ..11

6. References... 12

5.1 Online references .. 12

5.2 Datasheets ... 12

ECE532 – Digital System Design Group Report

 1

1. Overview

1.1 Goals of the Project

The goal of our project is to create a mock-up of the popular arcade game Dance Dance

Revolution (DDR). The game will have the following features:

- Custom input interface to capture user input (PlayStation dance pad)

- During game play, a few rows of arrows will instruct the player on when to step on

the dance pad. The player will score points when they step on the dance pad with

the correct timing, the score will be display on screen

- A DDR IP custom core will be developed to control the game flow (start/stop the

game and the music, tell the VGA when to draw which arrow, keep score based on

user pad pressed timing)

- Onboard AC97 codec will be used to playback music during game play

- Multiple difficulty settings

- Allow different mp3 to be loaded into memory

- Explore different ways of synchronizing arrow generation with music

1.2 Redefined Goals of the Project

After consultation with our lab TA (Mark), the goals were modified:

- DDR IP core has been replaced by software control

- Beat detection algorithm is used to generate arrows that is synchronized with any

music fed into AC97

ECE532 – Digital System Design Group Report

 2

1.3 System Diagram

PPC

DDR

UARTAC97

Block RAM Interface

Custom FIFO FFT
Beat

Detection

Interrupt

Controller

BRAM

Port A

Colour Character Mode

SVGA Controller

Port B

VGA

OPB

AUDIO

CODEC
RS232

DIPSW

(GPIO)

Push Button

(GPIO)

Custom I/O

Interface

F
P
G
A

O
N
 B
O
A
R
D

External Port

PLB

OPB – PLB

Bridge

VGA Frame

Buffer

Figure 1: Overall System Diagram

Note: Dotted lines indicate modules that are not fully functional

ECE532 – Digital System Design Group Report

 3

1.4 High Level Description

Block Description
SVGA Obtained from Xilinx’s Colour Character Mode Demo [1].

Modified to draw arrows instead of just characters.
DDR-RAM Generated from XPS project wizard, used to record and

playback music during gameplay
AC97 Controller Obtained from the Xilinx IP repository
Custom AC97 FIFO Extract audio samples from codec’s serial interface
1024 point FFT Generated through CoreGen. It takes 1024 samples of PCM

data and convert them to frequency
Beat Detection
Module

Custom module written in verilog to detect beat in streaming
music

Interrupt Controller Generated from XPS project wizard, for software to regain
control upon events such as user input.

UART RS232 Generated from XPS project wizard, used to capture user input
for gameplay

Dip Switch
(OPB-GPIO)

Generated from XPS project wizard, used to control game
difficulty settings

Push Buttons
(OPB-GPIO)

Generated from XPS project wizard, used to capture user input
for gameplay (before UART is implemented)

Custom I/O Interface (Not integrated) Custom module written in verilog to do
handshaking with a PlayStation2 controller

VGA Frame Buffer (Not integrated) Obtained from Xilinx’s SlideShow Demo [2]. For
drawing a background image on VGA monitor

ECE532 – Digital System Design Group Report

 4

2. Outcome

 The main goals of the project have been satisfied. The game is controlled

through software instead of hardware as it was easier to do. The input consists of a PS2

dance pad, which is connected to the PC, and uses the UART to send its inputs. The

char-mapped SVGA block displays static hollow arrows on top of the screen and draws

the coloured arrows from the bottom of the screen to the top of the screen. The score of

the player is displayed on the right side of the screen. If the user presses the correct

pedal on the dance pad, the score is incremented by 100. The dip switches are used to

control the speed of arrows on screen.

The AC’97 codec stores the music in DDR memory, which is then retrieved after

a small delay for playback. The beat detection block uses the streaming FFT block to

detect beats in music and increments score by 1. The accuracy of beat detection is not

as accurate as simulated results and we suspect that it is due to beat detection

coefficient not being set correctly. The arrow generation is done in software using a

random algorithm, instead of using the interrupt signal generated by the beat detection

module on presence of a beat.

The PS2 dance-pad was not connected to the board directly due to voltage and

capacitance issues. The background image was not displayed as we were unable to

integrate the VGA-frame buffer in the time frame.

ECE532 – Digital System Design Group Report

 5

2.1 Future Improvements

- beat detection coefficient set externally for better compatibility with songs

- use more frequency bands for beat detection to allow detection beat of different

instruments

- use VGA frame buffer to implement video overlay

- get the beat interrupt signal to drive the generation of arrows (software code)

3. Detailed Description

SVGA block – The SVGA block was retrieved from the Xilinx Demo. The SVGA block

connects to a block ram on one side and drives the output VGA signals such as HSync,

VSync and pixel clock on the outside interface. The pixel clock was generated from

DCM_0 using a 4/10 ratio for CLOCK_FX to generate a 40Mhz signal. Since all block

rams are dual ported we used a BRAM interface to connect to PortA of BRAM to write

the data, and used PortB to read the data for the SVGA. The hardware mapping of

ASCII characters was stored in the CHAR_GEN_ROM.v. Special Arrows were drawn by

hand and then added to the ASCII code map from 0x80 to 0xBC. One drawback of

using this module however is that only bits 12-15 were used for color so we could only

get 16 different colors, which was sufficient for our use. For future, if more colors are

needed than they can be added to CLUT.v and COLOR_CHAR_MODE_SVGA_CTRL.v

can be modified to use more bits for color. The module available on Xilinx site is

configured to be used as a blackbox and a systhesized .edf files is provided with the

module, which is what XPS uses by default. The pcore configuration files were modified

to synthesize the verilog files to get the netlist. As a side note, if only new shapes need

ECE532 – Digital System Design Group Report

 6

to be added to the module then it is not necessary to synthesize the block again, the

ROM file parameters can be set directly in the system.ucf file.

DDR-RAM-PLB – The DDR-RAM is connected to PLB Bus. We use a plb-opb bridge to

connect it to the AC’97 core which was connected to OPB bus. We used software to

write the samples from AC’97 FIFO to the DDR-RAM. The samples were retrieved after

a short delay for playback.

OPB-AC'97 Controller - AC'97 is connected to outside DAC for playback, it is

accessed through OPB. An interrupt is generated when the FIFO is half full. In the

interrupt handler the samples are read from the FIFO and written in the DDR-Memory.

Also in the same function, samples are read from Memory and written into the AC’97 for

playback, by modifying the read pointer we can add an arbitrary delay to the playback.

The VHDL files was modified to duplicate the data signal can be propagated through to

the custom AC’97 FIFO for performing FFT.

Custom AC'97 FIFO – Since our beat detection scheme requires a continuous stream

of input audio data, we need a custom FIFO interface to get the data from AC97 codec

instead of getting data from OPB. A simple state machine is used to communicate with

the AC97’s serial interface to extract a 16bit PCM data (Left Channel) at 48kHz. The

Sync signal is also used to generate a 48kHz clock for use with our FFT module.

1024 point FFT – This block was generated through Coregen. The selected block uses

ECE532 – Digital System Design Group Report

 7

the pipeline, streaming I/O implementation, with the following modes: unscaled option,

convergence rounding, and natural order output ordering with CE pin added. The input

is a 16-bit audio sample from Custom AC'97 FIFO, it performs a 1024 point FFT on the

input. The output is 1024 complex numbers that represent the frequency spectrum.

Beat Detection Module –The input is the lower sub band of the frequency spectrum

(first 32 numbers) and the output is a whether the 1024 samples that went into FFT has

a beat. [3]

 The beat detection algorithm is as follows: First, 1024 audio samples are

obtained from the AC97. Then it is sent to the 1024 FFT which outputs 1024 values of

the frequency spectrum. For each sub-band of 32 complex numbers, the summation of

power of the sub-band is computed. It is then passed to a shift register to store a history

of their values. Approximately 1 second of history is stored in these registers. The latest

sub-band power value is then compared with the average of the history. A beat is

generated when the value is greater than a certain threshold. If we plot the beats, we

would get a few peaks due to noise.

To clean up the signal, a moving average is used. The time since the last beat is

recorded and also stored in a history array. The moving average of the history is then

compared with the newly generated time value. If the beat occurs a certain time period

from the previous beat, then it is considered a valid beat. And if we plot the valid beats

on a graph, we would get clean stems of beat signals.

ECE532 – Digital System Design Group Report

 8

Figure 2: Beat detection algorithm

OPB-Interrupt Controller – The following devices in the system generate interrupts:

the OPB-AC'97 Controller, the UART RS232 Interface, the Push button OPB-GPIO

Interface and the Beat detection module. Each interrupt generated is serviced by an

interrupt service routine that is written in software.

UART RS232 Interface – This interface is used as the input for the DDR-gameplay. On

the PC side, the Playstation2 DDR dance pad is connected to USB through a PS2-USB

connecter. The dance pad is recognized as a joystick. A small script is written and used

to map the joystick inputs to keystrokes which are then transmitted through the RS232

interface. In the RS232 interface, each key press causes an interrupt. In interrupt

sample 1024
FFT

Sub-band 0
power

Sub-band 1
power

Sub-band 2
power

Sub-band 31
power

Shift reg.

Shift reg.

Shift reg.

Shift reg.

comparator

Counter with reset Shift reg.

comparator

Beat

0..31

1024

Stores power of the
signal

Stores a history of the
each sub-band values

Latest sub-
band value

Time since last beat

Stores a history of
beat occurrences

Average

Average

Valid Beat

ECE532 – Digital System Design Group Report

 9

handler, the received keystroke is checked if the key press occurred at the correct time

by comparing the value of the moving arrow with the value of the static arrow.

Dip Switch OPB-GPIO Interface – The DIP switches interface was connected to the

OPB bus. Its inputs were used to set the difficulty of the game. The value of the dip

switch is checked every iteration of the screen update.

Push Buttons OPB-GPIO Interface – The push button module is connected to the

OPB bus. The inputs for the gameplay were initially these push buttons. The push

button causes an interrupt at which time an interrupt handler checks for the position of

the moving arrow as described above (UART RS232 Interface).

Custom I/O Interface – Our original design includes this I/O Interface to connect a PS2

(PlayStation 2) controller directly to the OPB using the onboard external port. This

module handshakes with the controller, which has a serial interface, and stores the

status of the controller to a register (buttons pressed down), which can then be read by

software through OPB. However, due to electrical problems, which is potentially caused

by the board not being able to provide the current necessary to drive the controller.

Video Overlay – The VGA framebuffer is used for video overlay and is connected to

PLB. It reads data in the form of a .bmp file from DDR memory and displays the picture

on the VGA. The outputs to the block are similar to the ones in char-mode-VGA. In our

design, instead of the output to drive the VGA directly on board, the output was used as

ECE532 – Digital System Design Group Report

 10

an input to the char-mapped SVGA block. The SVGA block was modified to take these

signals as input and multiplex them with character mode to get the video overlay effect.

When we tried to integrate the VGA framebuffer and tried to test it by making those pins

external, the display did not change when the VGA was driven directly. Due to limited

time-frame we shifted our attention to other tasks and the video overlay is not present in

the final design.

4. Software Control

The dynamic arrows on the screen are drawn using a loop. For each column of

arrows, a link list is declared and the arrows are stored as a struct in it. A function called

generate_arrows is used to randomly generate a row containing 1 to 4 arrows. The

arrows generated are added to the link list. At the end of each iteration of SVGA loop,

the screen is updated with the contents of the link list. A sleep function is used at the

end of each iteration to control the speed of arrow. Dip-switches are used to modify the

interval of sleep and thus change the difficulty of the game.

The dance pad, connected to PC, is used to cause an interrupt through UART

when a button is pressed. In its interrupt handler, the position of tail arrow of the

corresponding link list is checked. If the height of the tail arrow of the linked list is near

the top of the screen then the score is incremented by 100. The beat detection module

is used to detect the beats in the audio samples input and would cause an interrupt

when a beat occurs. The score is incremented by 1 for every beat.

ECE532 – Digital System Design Group Report

 11

5. Description of Design Tree

Directory/File Description
./__xps Option files for bitinit, libgen, simgen and platgen
./blkdiagram Block diagram generated by XPS
./bootloops PPC boot file
./code/main The main software control program
./code/svga The arrow drawing functions
./data/system.ucf System Constraints files
./doc Documentation files
./etc Option files for bitgen and downloading
./lib Xilinx Processor IP library
./pcores Custom core directory containing the SVGA character

mode IP, the FFT core, the framebuffer core, the beat
detection IP and custom AC97 FIFO IP

./ppc405_0 PPC405_0 processor and device drivers

./ppc405_1 PPC405_1 processor and device drivers

./simulation Simulations containing matlab simulation of the beat
detection algorithm and FFT core simulation

./system.xmp XPS project file

./system.mhs System Hardware Specification file

./system.mss System Software Specification file

ECE532 – Digital System Design Group Report

 12

6. References

5.1 Online references

[1] Colour Character Mode SVGA Demo (XUPV2P Demonstration Design)

http://www.xilinx.com/univ/xupv2p_demo_ref_designs.html

[2] Xilinx’s SlideShow Demo

http://www.xilinx.com/univ/xupv2p_demo_ref_designs.html

[3] Beat detection algorithm

http://www.yov408.com/html/articles.php?p=1

5.2 Datasheets

1. FFT Core Datasheet:

%Xilinx%\coregen\ip\xilinx\dsp\com\xilinx\ip\xfft_v4_0\doc\xfft_ds260.pdf

2. DCM Datasheet:

%EDK%\hw\XilinxProcessorIPLib\pcores\dcm_module_v1_00_a\doc\dcm_module.pdf

3. GPIO Datasheet:

%EDK%\hw\XilinxProcessorIPLib\pcores\opb_gpio_v3_01_a\doc\opb_gpio.pdf

4. Interrupt Controller Datasheet:

%EDK%\hw\XilinxProcessorIPLib\pcores\opb_intc_v1_00_c\doc\opb_intc.pdf

5. Block Ram Datasheet:

% EDK%\hw\XilinxProcessorIPLib\pcores\bram_block_v1_00_a\doc\bram_block.pdf

6. DDR PLB Datasheet:

% EDK%\hw\XilinxProcessorIPLib\pcores\plb_ddr_v2_00_a\doc\plb_ddr.pdf

7. OPB UartLite Datasheet:

ECE532 – Digital System Design Group Report

 13

% EDK%\hw\XilinxProcessorIPLib\pcores\opb_uartlite_v1_00_b\doc\opb_uartlite.pdf

8. SVGA IP datasheet:

pcores\COLOR_CHAR_MODE_SVGA_CTRL_v1_00_b\doc\ASCII_code_map.pdf

