iFrame Final Report

ECE532: Digital Systems Design

A description of the design of an internet-connected digital photo frame running on Monta Vista Linux implemented on the Xilinx XUPV2P development board

Chris Joe

Bryan Rogerson

David Woods

ECE532H1S

02/April/2007

Table of Contents

2Table of Contents

31. Overview

31.1 Introduction

41.2 Goals

51.3 HW Block Diagram & IP Overview

71.4 SW Block Diagram & Application Overview

92. Project Outcome

92.1 Final Result

92.2 Suggestions for Improvement

102.3 Further Work

113. Description of the Blocks

113.1 Description of Hardware

153.2 Description of Software

214. Design Tree Description

214.1 Hardware

224.2 Software

244.3 CompactFlash Card

275. Conclusion

286. References

1. Overview

1.1 Introduction

With the ever lowering cost of flash memory, digital pictures are becoming a very common way of recording memories. It is very easy to use a digital camera and take a large number of pictures and store them on your computer. These digital pictures can be easily printed and put into picture frames, to hang on a wall, but many opt to keep the pictures in digital photo albums on home computers.

To display certain memorable occasions in a picture frame in a conventional way, it’s possible to use a digital picture frame. There exists several consumer products that take a stored digital image (either from flash memory or wirelessly uploaded) and displays it on a LCD screen encased in a frame.

This project aims to improve on existing digital picture frame products by making the system connected to the Internet. Having the digital picture frame connected to the Internet opens up much more customization of what is displayed on the picture frame, which we have dubbed the “iFrame”.

1.2 Goals

The main goal of this project is to create a user-friendly system that allows a picture or group of pictures to be uploaded from any location on the Internet. Once the picture was uploaded it would be displayed on a picture-frame-like screen using a slideshow application. With multiple files, the slideshow application would cycle through the pictures after a certain time delay.

Once we had established the main goal of the project we broke the goal down into several sub-goals. To display the picture on a screen, we would require a VGA controller that could take image information and put it on a VGA monitor. We also would require an HTTP server that could support some method of uploading and serve web pages to a user. Between the two, we would require some kind of control logic that would integrate the monitor and the http server and store the images. This led us to investigate three main components:

· Base system on XUPV2P with PPC405 processor and VGA core

· Monta Vista Linux, a PowerPC Linux distribution supported by Xilinx

· Perl-less CGI and HTML

1.3 HW Block Diagram & IP Overview

Our group came up with following hardware solution to provide both VGA output and a suitable platform for running a web server.

[image: image1.jpg]Jag Debug

Brans

0PB Bus

PPC Processor

PLBBUS

RO Bus

On System Memory

Memory Iterface.

Network Interface

System ACE (CF)

UART

VGA Interface

Figure 1: Hardware Block Diagram

Figure 1 is the hardware block diagram of our project. Here we have a PowerPC microprocessor connected to a PLB bus. On the PLB bus we have a VGA interface, and a memory interface to 256 MB of DDR RAM. Also on the PLB bus there are BRAMs that can be used by the microprocessor through the PLB-BRAM interface.

There is also an OPB bus that has a Network Interface (Ethernet MAC controller), a System ACE interface and a UART for serial connection. Between the OPB and the PLB bus we put a PLB to OPB bridge.

Lastly, the VGA interface has a control mechanism that is connected to the DCR bus. To give access to this control mechanism, we connected it to the OPB bus through an OPB to DCR Bridge.

All of he Hardware IP found in Figure 1 was included in the design from the Xilinx Platform Studio (XPS). All configuration of the Hardware is done through the XPS. The only exception is the VGA controller which was obtained from a Digilent tutorial
. In addition, the VGA core was modified to change images by filtering out colors such as red, green or blue and also having the ability to invert the image color. A more detailed description of the hardware can be found in Section 3, including a description of our modified VGA controller.

1.4 SW Block Diagram & Application Overview

Our group came up with following software solution to provide an HTTP server, file upload capabilities, and access to the VGA controller.

[image: image2.jpg]To Xl
Harcware

Htpd

deir WebPage
X systom Linux GBI C program
Drvers (including L kamal e
Ethernet and VGA

diivers)

To VGA driver

Figure 2: Software Block Diagram

Figure 2 is the software block diagram of our project. The software blocks were designed to work on top of the hardware that was described in the previous section. We used Monta Vista Linux (MVLinux) as a Linux distribution to be run on the PowerPC
. The Xilinx System ACE controller and boot loader supplied by XPS extracts the MVLinux kernel to main memory, and from there the MVLinux kernel takes over. In particular, MVLinux mounts the root file system (RFS) held on the CompactFlash (CF) card. The RFS was a cross-compiled BusyBox build that provided much of the core Linux software functionality including the httpd HTTP server, but at a reduced size targeting embedded systems
. As MVLinux boots, it uses the Ethernet controller to request an IP address from a DHCP server. Once it receives an IP address, it starts the httpd server.

In addition to compiling the MVLinux kernel onto the XUPV2P board, we developed a custom C program that served to replace the typical Perl handling of CGI uploaded files. To program the VGA controller, we developed some low-level driver programs that mapped virtual addresses to the physical addresses used by the hardware. This enabled us to pass settings to the VGA controller, and also store the image data in the main memory in a location that the VGA controller could access.

The MVLinux source was downloaded from the Monta Vista website and compiled for the Power PC. The BusyBox software was downloaded from the busybox project website and compiled for the PowerPC. This software included the httpd server used in the final application. The team wrote all web pages and C programs. A more detailed description of the software can be found in Section 3, including a description of how we compiled the Monta Vista Linux kernel, our cross-compiler tool, how we setup BusyBox and our custom software.

2. Project Outcome

2.1 Final Result

The design of the iFrame was comprised of 3 systems. The first was the base hardware system that was centered on the PowerPC. The second system was an embedded MontaVista Linux operating system that was compile and ran on top of the base hardware system. Finally the last system comprised of the application software that controlled the final functionality of the iFrame. After integration, all the systems worked successfully and the final system was realized.

2.2 Suggestions for Improvement

There was one small error with the how the bitmaps were loaded on the VGA monitor. The image didn’t line up with the top of the monitor and it wrapped around so part of the bottom of the image was displayed at the top of the image. This is simply a problem with the VSYNC and would only require a calibration of the frame buffer for the image to be displayed properly. This unfortunately was not completed by the time of the demo of the project. Another work around would be to find the number of lines that the VSYNC is off by and shift the image in memory to compensate. Otherwise, the final product was exactly what was set out to complete.
2.3 Further Work

During the conceptualization of the iFrame a product was envisioned that was highly configurable and allowed users to upload a wide range of image file sizes and formats. Once the images were uploaded, they could be organized in elaborate slide shows and edited and change to suit the users needs. All of these options being available from a website accessible anywhere on the Internet. This project was successfully in building a base functional system that could be easily updated and to meet the envisioned product. Because a Linux system was employed, it make this design very robust and configurable and a lot of different functionalities can be extrapolated and invented.

3. Description of the Blocks

3.1 Description of Hardware

This section contains a detailed description of the various hardware blocks that were used in the hardware portion of the design. In particular, the design supported VGA output and MVLinux with Internet connectivity.

PowerPC (PPC405) Processor – (ppc405 v2.00.c) For this we used PPC405_0 connected to the PPC bus. It was run at 300Mhz which was supplied by a DCM

Memory Interface – (plb_ddr v1.11.a) This is the main DDR memory. It was generated by the wizard for 256mb with the addition of the “Supports PLB Burst and Cache Line Transactions = true” as was required by the VGA controller.

Bram Interface – (plb_bram_if_cntlr v1.00.b) This was used by the PPC for caching. The default configuration was used.

Ethernet Controller – (opb_ethernet 1.04.a)We used an Ethernet Controller provided by Xilinx that utilizes the Ethernet port on the XUPVP2 board. The default configuration was used.

UART interface – (opb_uart16550 v1.00.d) The UART interface was used to display the terminal via serial. The default configuration was used.

SystemACE – (opb_sysace 1.00.c) The system ace was used in order to both mount our image as well as store the file system. The default configuration was used.

PLB bus – (plb_v34 v1.02.a)This is the opb bus set up by default with the configuration wizard.

OPB bus – (opb_v20 v1.02.a) This is the OPB bus set up by default with the configuration wizard.

DCR bus – (dcr_v29 v1.00.b) This is a DCR bus added manually. It was connected to the appropriate reset signal. This bus was used to program the VGA module.

PLB to OPB interface – (plb2opb_bridge v1.01.a) A bridge used to access the OPB bus from the PLB bus.

OPB to DCR interface – (opb2dcr_bridge v1.00.a) A bridge used to access the DCR bus from the OPB bus

Chipscope PLB interface – (chipscope_plb_iba v1.01a) The chipscope PLB interface was used to probe the PLB bus

Chipscope controller – (chipscope_icon v1.01.a) The chipscope controller was attached to the chipscope PLB interface, and provided control signals for the controller.

VGA controller – (modified version of plb_tft_cntrl_ref v1.00.d) This is a modified version of the VGA controller provided by Digilent. To it we modified the MPD file so that the DCR clock was not connected to the DCR bus by default. As well we added new DCR registers after the control registers that would allow red green and blue to be filter as well as the colour inverted. This step was then performed after the data was read from memory be before it was stored internally.

To install MontaVista we followed a tutorial
. We used the project generation wizard to generate the project containing all described modules. In order to debug the hardware we made two copies of the project. One had the software set up to run MontaVista properly. This is set in the software (software platform settings in XMD. The other had identical hardware but was set up to run standard programs. This was required as you cannot compile simple programs when you have compiled your software libraries to work with MontaVista.

When the hardware was initially compiled it did not work. The display showed stuff but it was garbled. After many hours of debugging we found it was because we did not have the “Include burst and cacheline transactions support = TRUE” option set, which is apparently required by the VGA interface. Once this was included the display worked correctly.

Initially when we tried to access the DDCR interface on the VGA module it didn't work. We eventually figured out it was a clock problem. By default the clock used by the DCR interface is connected to DCR bus, but the DCR bus is asynchronous so it has no clock. To solve this we first modified the MPD file of the VGA module so that the DCR interface clock was not connected to the DCR bus. Then we went into the GUI and connected the DCR clock from the VGA's DCR interface to the system clock.

At this stage we also began working with the DCR registers used to program them and found some issues. The problem is that the register stores only the top 11 bits of the pointer to the address in memory. This divides the memory space into 2mb chunks. If you try to write a pointer via DCR that is between one of the 2mb boundaries, then all that is stored is the top 11 bits. In other words it will round down to the next lowest 2mb boundaries. As well when configuring from the GUI you can program the initial value for this register, however rather the supply the full address you must only write the top 11 bits. So for example if you wanted to make your pointer point to 0x07600000, then you would initialize your register to 0b00000111011.

As well, the project required some custom hardware. Rather than building our own hardware from scratch we decided that we would learn how the VGA module works then modify its hardware to do the tasks required. In the end we added several new registers to the VGA module which allowed for colour inversion, and colour filtering. We then implemented a small block of coded to modify the incoming data stream based on the register values. These were verified by implementing and inspecting the results, as well as by chipscope probes.

3.2 Description of Software

This section contains a detailed description of the various software blocks that were used in the software portion of the design. In particular, the design supported MontaVista Linux with a BusyBox RFS which was cross-compiled with Crosstool along with our custom applications.

CentOS - The most important aspect of preparing the MontaVista Linux for the PowerPC is creating a working tool chain that is used to compile the kernel and root file system. Xilinx provides a downloadable CentOS environment with a preloaded tool chain capable of compiling MontaVista. The tutorial A Portable uClinux Development Environment on a Windows PC was followed
. Originally this was designed for uClinux but it was converted into a tool chain for MontaVista. Crosstool 0.42 was installed on the CentOS that provided most of the functionality for compiling the operating system for a target PowerPC architecture using an i686 machine
. Once these tools were installed, the MontaVista Linux and the BusyBox binaries are the only additional files to be downloaded.

MontaVista Linux - MontaVista Linux is a real-time operating system designed for embedded systems. It is a well-known distribution of Linux with a many instances of commercial uses. For example, Motorola uses it many of their Linux-based camera phones. MontaVista Embedded Linux 3.1 running the Linux Kernel 2.4.26 was used in this application because it supports specific Xilinx hardware such as the Xilinx SystemACE controller and the Ethernet MAC .

The version of Linux was downloaded from the Monta Vista website and compiled for the XUP Virtex-II board. For the compiler to have knowledge of the specific board being used the Board Support Packages (BSPs) from the Xilinx project were included in the Kernel tree. The BSPs hold information about hardware specific settings and the specific cores used in the design. For example, it defines how big the RAM is, how fast the UART and much more information on the other cores implemented in the design. In addition to the hardware settings, it also included any hardware drivers that would be needed by the operating system during compilation.

The Porting MontaVista Linux to the XUP Virtex-II Pro Development Board tutorial document was followed to get the right configuration of the compiler
. One major change made to the hardware in the XPS is the size of the RAM. On the XUPV2P there is 256 MB of RAM. However, in the software settings of the XPS only 244 MB of RAM was defined and not the whole 256. Once the BSPs are generated in the XPS software, the 244 MB change is reflected in the BSPs. During the compilation process another command was required to make sure that the compiler knew the size of the RAM. The line:

General Setup --->

 [*] Default bootloader kernel arguments

"console=ttyS0,9600 root=/dev/xsysace/disc0/part3 rw"

Was changed to:

 "console=ttyS0,9600 root=/dev/xsysace/disc0/part3 rw mem=244M"

Here we added the mem option. This option specifies to the kernel the highest memory address to use
. Therefore, the Linux Kernel was compiled with knowledge of only 244 MB of RAM.

There is a very specific reason that the Kernel uses only 244 MB of RAM. First it must be understood that the PowerPC has a built in memory management unit (MMU). The MMU is used for Virtual Memory and it does the physical swap between Virtual and Physical space. The OS programs the MMU with the required mapping and then the MMU performs the mapping at a hardware level so it’s very fast. As a result, any given process will have its memory mapped to physical address range.

For this particular application, it was required that an image be loaded from the RFS and stored in a specific address location in the physical memory. Once the image was loaded into the location a pointer is passed to the VGA controller. However, the Operating system did not allow direct manipulation of physical address in its known physical RAM space. To work around this operating system limitation, the image was loaded into a RAM location between 244 MB and 256 MB.
Because the last 12 MB was not included in the compilation process, they were not affected by the MMU and therefore a contiguous block of memory was available to store the image.

 After the above changes were made, the kernel was compiled into an ELF file and added to a SystemACE file. The SystemACE file was put onto a Compact Flash (CF) card and once the card is put into the CF slot it will be booted during power on. This will load the Kernel. However, there is no root file system installed.

BusyBox - The minimal kernel used was MontaVista Linux described in the previous section. However, a root file system and some basic functionality are not included such as shell and normal shell commands. To solve this problem BusyBox was used
. BusyBox is known as the swiss army nife of embedded linux. It contains most of the utilities found in GNU fileutils and shellutils but its minimalized and put in a small executable ideal for embedded systems.

To compile BusyBox for the PowerPC/MontaVista system the Porting MontaVista Linux to the XUP Virtex-II Pro Development Board tutorial was once again referenced
. Once the BusyBox was compiled using the Crosstool environment a whole file structure is created and all binaries installed in this file structure have been compiled to run on the PowerPC/MontaVista system. The last step is to copy the whole files structure to Linux file partition on the CF card.

The last step is to reconfigure the Kernel to load the file system and the same tutorial outlines how this is done.

One of the programs included with BusyBox is an httpd server. This is a minimalist web server that does support CGI scripting. Once the Operating System boots, this web server is already running and hosting web pages. All that was required was copying web pages and CGI scripts to the file directory that is hosted.

Custom Web Pages - The httpd web server hosts web pages that provide a GUI for the user. A user can connect to the webpage and is prompted with form that allows the user to select an image from their file directory and upload it to the server. In addition the user is prompted to select any filter qualities such as filtering out red, green or blue or even inverting the colours of the image. Once the user selects “submit” all the information is uploaded to the server. The user is then greeted with a confirmation and is displayed with the image that was just uploaded.

These pages were simply designed using HTML and the key part is the Forms that handle POSTing the information to the server. The server passes the CGI information to a background program that handles it. This is a custom program discussed in the next section.

Custom C programs (user space drivers, kernel drivers) - For the IFrame application only one C program was written (upload.exe cross-compiled from uploadmv.c) and a single library (fb.h) associated with the C program. The functionality of the C program was two fold; the first was to handle web server related work. The second was to send the information received by the server to the VGA controller.

The httpd server is capable of supporting CGI however, the most popular language used for CGI scripting is Perl and a Perl interpreter is not installed on the MontaVista system. To overcome this problem, it was best to write a C program to handle the CGI information. When a POST is made in a FORM, the information is dumped onto the STDIN of the server. The C program then copies the STDIN buffer into a char array. The char array is then parsed to extract all the information. The first part of the char array contains the bitmap information. It is extracted and saved to a location in the web site sub directory as a bitmap. Afterwards, the C program searches for the filter information in the char array and sets certain variables. Afterwards the C program prints an HTML file that greets the user with the exact image they uploaded.

The second part of the C program handled sending the information to the VGA controller. In MontaVista linux, each process has its own address space. However, this poses a problem because the frame buffer of the VGA controller requires a pointer to the beginning of an entire bitmap image in physical memory. To overcome this problem, the mmap() function in the sys/mman.h library was used. Since the entire memory is loaded as a file in linux, the file was mapped to the user space using the mmap() function. This allowed a write to a memory location in user space to correspond to a real memory location in the physical memory. Now the 12 MB allocated between 244 MB and 256MB was mapped and a simple program copied the bitmap file and loaded it into the memory.

The last thing that was required is that the C program send the pointer to the frame buffer as well as to set the address locations associated with filter red, green or blue and inverting the picture. How this works is that a there exists a control register, and each bit of the control register corresponds to a filtering a colour. The C program compiles all the information received by CGI and sets the control register accordingly. In the same manner as mapping the 12 MB at the end of RAM is mapped to the user process, the address to the frame buffer pointer register and the control register are also mapped to the user space using mmap() as well. This is performed by driver functions in fb.h (fb.c is used to test fb.h). Once these registers are mapped to the user space, it sets the registers accordingly based on the information gathered in the other part of the C file explained above.

4. Design Tree Description

This section describes the layout of both the hardware and software files as submitted on DVD.

4.1 Hardware

/montavista/

This folder is the root hardware folder. All folders and files were generated by the Xilinx XMD Base System Builder except for the few additional folders described below.

/montavista/montaVista_mkdosfs/

Contains the mkdosfs program for formating the CF card
.

/montavista/montaVista_GenACE/

Contains the script used for generating the System ACE file.

/montavista/montaVista_ELF/

Contains the MontaVista kernel ELF file. The ELF file is to be manually copied here after it has been compiled.

/montavista/montaVista_ACE/

Contains the generated system ace file to be copied to the FAT16 (“XLNX_ACE”) partition of the CF card.

4.2 Software

Note: These folders should be extracted inside the CentOS VM /home/devel/ folder (i.e. a proper directory would be /home/devel/<name of tar.gz extracted as a folder>).

/montavista_sw/

Root folder of files that should be transferred to the CentOS VM

/montavista_sw/BSP/

BSP’s generated by XPS that should be copied into the MVLinux devel directory.

/montavista_sw/busybox-1.2.0.tar.gz

Note: This file should be extracted as the folder /home/devel/busybox-1.2.0.tar.gz so it will be referred to as that path. Only those files that were written or changed by us are described below.

/home/devel/busybox-1.2.0/fb.h

Low-level VGA controller driver program that uses mmap() to map virtual address space to the physical address space.

/home/devel/busybox-1.2.0/fb.c

Test program for the fb.h driver.

/home/devel/busybox-1.2.0/mkcustom.sh

A modified version of mkrootfs.sh used to cross-compile these custom applications listed here.

/home/devel/busybox-1.2.0/uploadmv.c

The C program that handles the CGI upload stream, writes data to a BMP file and configuration text file, copies memory to the VGA controller and applies appropriate settings and also forms the webpage to show the actual uploaded image to the user.

/home/devel/busybox-1.2.0/mem_search.c

An undocumented test program used to search through all pages of memory to see (on the VGA screen) what is stored in memory.

4.3 CompactFlash Card

The CF card must be formatted as described in the tutorial or in the XUPV2P user guide
.
Partition 1 /media/sdc1: FAT16, 32 MB, "XLNX_ACE"
/system.ace

This is the system.ace file generated by the scripts described earlier.
/<any other files you wish to access by mounting this

 partition in MVLinux separately>
Since this partition is accessible by Windows/Linux/MVLinux, any additional files the end user wants to access can also be included here.

Partition 2 /media/sdc2: Linux Swap, 256 MB
Note: This is a Linux swap partition and is not accessible by the end-user

Partition 3 /media/sdc3: Linux, 736 MB, "XLNX_RFS"
Note: Copy the RFS to this partition using "sudo"
Note: This is a full MVLinux Root File System, so we have only described the changed files/directories
/home/
This folder contains some test files we had cross compiled in CentOS to MVLinux. The source files will be described in greater detail below. It is safe to assume that nothing in this directory 100% works.

/var/www/localhost/htdocs/
This folder holds all of the files associated with the web server portion of the iFrame (HTML, CGI, C and any other supporting files).
/var/www/localhost/htdocs/cgi-bin/
This folder holds all of the files related to the CGI web server and any related files.
/var/www/localhost/htdocs/cgi-bin/upload.exe
This file is the uploadmv.c file that has been cross-compiled for MVLinux and re-named upload.exe to be compatible with the form upload form in index.html. /var/www/localhost/htdocs/cgi-bin/*
Anything else in this folder was for testing purposes and can be safely deleted.
/var/www/localhost/htdocs/conf.txt
This file was used as a proof of concept. It is a text file that is written by cgi-bin/upload.exe to store any settings. At the moment this functionality is not used, but it is still generated.
/var/www/localhost/htdocs/ECE532 Demo FINAL.htm
/var/www/localhost/htdocs/ECE532 Demo FINAL_Files/
This HTML file (and associated directory of files) was generated by Microsoft Powerpoint 2003 from our Final Demo presentation. It demonstrates the full HTML server capabilities of MVLinux on the XUPV2P.
/var/www/localhost/htdocs/image01.bmp
When a user uploads a file, upload.exe writes the appropriate parts of the stream data to this BMP file. At the moment, upload.exe only supports a single image at a time, so each uploaded image will overwrite image01.bmp
/var/www/localhost/htdocs/index.html
This is the main homepage of the iFrame. It presents an upload field for a BMP image and checkboxes for the additional colour filters/inversion options. It passes the form data as a stream to cgi-bin/upload.exe which parses it as described above into image01.bmp and conf.txt, as well as using the driver functions to program the VGA controller.
/var/www/localhost/htdocs/torlogo.gif
The University of Toronto logo displayed on index.html
/var/www/localhost/htdocs/xlogo.gif
The Xilinx logo displayed on index.html

5. Conclusion

The main goal of this project was to create a user-friendly system that allowed a user to connect to a web site and upload pictures that would be displayed on a VGA screen. As mentioned in this document, first a hardware base system was centered on the PowerPC utilizing the RAM and Ethernet port. On top of that system, a MontaVista Linux Real-Time embedded operating system was compiled and installed. It used a Compact Flash card as a root file system. The last system was a group of C programs, web pages and a web server that consisted of all the application software that was run on top of the MontaVista operating system. All of these systems were successfully integrated together to create a working iFrame product.

The main goals of this project were met. However, the design of this system conducted in such a way that it could easily upgraded to support many more new features without much further effort. Since the system utilizes an embedded operating system, it has a lot of functionality and configuration that can be taken advantage of.

The emphasis of this document is to provide enough information that one can recreate the iFrame design. All the source files are available with the accompanying archive.

6. References

Please see footnotes distributed throughout the document.
� http://www.digilentinc.com/Data/Products/XUPV2P/slideshow_256mb.zip

� http://www.mvista.com/

� http://www.busybox.net/

� The final tutorial we used (and found to be the best) was �https://rm-rfroot.net/files/courses/xupv2p/docs/carithers/report_html/report.htm

� http://direct.xilinx.com/bvdocs/appnotes/xapp934.pdf

� http://kegel.com/crosstool/current/doc/crosstool-howto.html

� https://rm-rfroot.net/files/courses/xupv2p/docs/carithers/report_html/report.htm

� http://www.linuxjournal.com/article/2866

� http://www.busybox.net/about.html

� https://rm-rfroot.net/files/courses/xupv2p/docs/carithers/report_html/report.htm

� http://www1.mager.org/mkdosfs/

� https://rm-rfroot.net/files/courses/xupv2p/docs/carithers/report_html/report.htm

