

University of Toronto

Department of Electrical and Computer Engineering

ECE 532 – Digital Hardware
Final Project Group Report

Character Recognition using Neural Networks

Sari Onaissi 994556725
Nahi Abdul-Ghani 994553336

Hratch Mangassarian 994941391

March 31, 2008

Table of Contents

1. Introduction and Overview ... 3

Artificial Neural Networks ... 3

Goals and Specs .. 4

System Block Diagram ... 5

System Flow.. 6

Matlab Simulations ... 7

2. Outcome.. 8

Results... 8

Suggestions for future work.. 11

3. Project Blocks ... 12

MicroBlaze.. 12

FSL.. 12

UART.. 12

Neural network testing unit... 12

Neural network training unit... 14

Reduction unit... 15

C code ... 16

4. Project Design Tree... 16

1. Introduction and Overview

Character recognition is the translation of images of handwritten or printed text into editable text.

This is still an open problem and is the subject of active research due to the increasing demand

for accurate and fast recognition methods. Such methods are and will be the basis of input

devices for a wide variety of systems including handheld devices and computers. The goal of our

project was the FPGA-based implementation of a character recognition module using neural

networks. Neural networks are highly parallelizable; thus, a hardware implementation of such a

network would result in a fast method. In our case, we are trying to recognize a subset of the

characters in the English alphabet.

Artificial Neural Networks

An artificial neural network is a computational model based on biological neural networks. It

consists of an interconnected group of artificial neurons and is often used to classify and find

patterns in possibly noisy data. It is an adaptive system that changes its structure based on

external information that flows through the network during a training phase.

In this project we used a simple neural network architecture, called the perceptron model.

Figure 1 shows a perceptron neural network consisting of a single layer of S neurons. Each of

these neurons is used to recognize a different character in the English alphabet. The neural

network shown in Figure 1 contains R inputs. In this project, each of these inputs corresponds to

an input pixel. Each neuron of Figure 1 generates a weighted sum of its inputs and passes the

result through a hard-limit function known as an activation function, effectively implementing

the following equation:

⎩
⎨
⎧ >+⋅

=
otherwise

 if
0

01
)(

b
f

T xw
x

where w is a vector of weights and is the dot product (which computes a weighted sum). b

is called the bias, a constant term that does not depend on any input value.

xw ⋅T

 Figure 1. An artificial neural network

In order to obtain the weights W and the biases b, the neural network must go through a training

phase, during which inputs are applied to the network and the computed outputs are compared to

the expected outputs. As a result, the weights and the biases are adapted accordingly in an effort

to conform with the expected behavior given by the training set. For each output fi(x), the

corresponding input weight vector and the bias are updated as follows:

jiioldjinewji xfww ⋅−+=))()(()(,)(, xxtarget

))()(()()(xx iioldinewi fbb −+= target

where denotes the expected/correct value of the output of f)(xitarget i(x) given input x.

Goals and Specs

The initial goals as laid out in our project proposals were the following. The plan was to use the

perceptron neural network to recognize a subset of the characters in the English alphabet. We

planned on starting by trying to recognize seven letters and possibly increasing the number of

letters depending on our initial recognition results. Our system would take in an image of a

character, which would be mapped to a 10x10 superpixel frame. This 10x10 (100 bit) input

would then be given to the neural network, which would attempt to classify it as one of the

possible seven letters. Therefore, the perceptron neural network would have 100 inputs, 7 outputs

and 700 connections.

The eventual implemented specs of the project are the following.We used a perceptron

neural network to recognize the first ten letters of the English alphabet their capital forms, based

on our recognition results. The inputs are provided as black-and-white, 288x352 resolution

images that are mapped into 9x11 (99 bit) images to be given to the neural network, which

attempts to classify them as one of the possible ten letters. Therefore, the perceptron neural

network has 99 inputs, 10 outputs and 990 connections.

System Block Diagram

The block diagram in Figure 2 provides an overview of the major components of our system and

their interconnections. A training set of seven images for each of the ten characters are initially

stored in the BRAMs. Along with their corresponding expected target letters, they are sent to the

training unit of the neural network by the MicroBlaze. The training unit tries to recognize the

characters in the training set and adjusts the neural network weights and biases by comparing its

output to the expected targets.

A 288x352 resolution image of a character can now be input by the user through the

UART, which the MicroBlaze first sends to the reduction unit through the FSLs. The reduction

unit reduces the resolution of the image to 9x11. The MicroBlaze then sends this reduced image

to the testing unit of the neural network through FSLs. The testing unit will try to classify this

image into one of the ten first characters of the English alphabet.

Reused IPs: MicroBlaze, UART, BRAM, FSL.

Custom IPs: Neural network (training and testing unit), Reduction unit

Figure 2. System block diagram

System Flow

Figure 3 describes the necessary steps for the system to recognize a noisy ‘A’ character.1 Each

288x352 image of ‘A’ in its training set of seven images is reduced into a 9x11 image in

software (using Matlab) and then stored in memory. These images are then passed to the training

unit of the neural network in order to adjust the weights W and biases b used for character

recognition. Once the weights and biases are set, the neural network testing unit can be used to

recognize characters. In the testing phase in Figure 3, a noisy 288x352 image of ‘A’ is passed

through the hardware reduction unit, which yields a 9x11 image of ‘A’. This image is input to

the testing unit of the neural network, which will hopefully classify it as an ‘A’ by setting the

output of the neuron corresponding to ‘A’ to 1, and all other neuron outputs to 0.

1 The described flow is done for all ten considered characters.

Figure 3. System flow

Training module

…

…

…

W, b

Target: A

ANN

1) Training

2) Testing

Result: A!

Reduction unit

Reduction unit
Hardware

Hardware

Software

Hardware

Matlab Simulations

Before implementing our system in hardware, we implemented the new modules using Matlab.

The motivation for doing so was threefold:

• To make sure that single-layer perceptron networks are good enough for character

recognition. Also, to decide on the number of iterations (epochs) for the training set

(1,000).

• To decide how many characters to consider (ten) and a reasonable input resolution of the

neural network (11x9 pixels) and the reduction unit (288x352).

• To have a golden model to compare our hardware implementation to.

Each of the training unit, testing unit and reduction unit were implemented using Matlab

and were tweaked and tuned to produce reasonably good results before tackling the hardware

implementation. The Matlab files are included in our design tree files described in the last

section of this report.

2. Outcome

Results

Neural Network

 Used Available Percent

Slices 13969 13696 101%

Slice Flip Flops 9834 27392 35%

4 input LUTs 21863 27392 79%

Reduction Unit

 Used Available Percent

Slices 421 13696 3%

Slice Flip Flops 744 27392 2%

4 input LUTs 621 27392 2%

The outcome of our character recognition project obviously depends on the intricateness of the

input images that are fed to it. Therefore coming up with some sort of percentage of correct

classification is a subjective endeavor. Instead, we believe that it would be of greater interest to

show a few instances of recognized and non-recognized characters in order to give a sense of the

limits of our project to the reader. Keeping in mind that character recognition is by no means an

easy task and is actually still an area of active research, our results were better than expected. We

were occasionally surprised by the recognition of very noisy character images, which initially

raised our expectations to a point where we were getting disappointed when other character

images were not recognized correctly.

 The characters shown in Figure 4 are the training sets for the first ten letters of the

English alphabet. As can be seen, we tried to diversify the training set as much as possible in an

effort to recognize a large number of character variations.

Figure 4. Training set

Figure 4. Training set (continuation)

The following are four examples of recognized characters. They are taken from the list of

training and testing character images provided in the project design tree zip file sent to the

professor.

The following are two examples of unrecognized characters along with the corresponding

results given by our character recognition module. Again, they are taken from the list of training

and testing character images provided in the project design tree zip file given to the professor.

The first ‘A’ was not detected, while the ‘E’ was detected incorrectly as a ‘C’.

Suggestions for future work

An important assumption of our character recognition module is that in the input character

image, the letter is more-or-less bounded by or touches the image borders. In other words, it is

should not be drawn too small in the given space. This caused some problems during the project

demo and made the accuracy of our character recognition module seem less than what it really is.

There are a number of ways to deal with this issue, the simplest and probably most effective of

which is to crop the picture, either in software or preferably in hardware such that the character

touches the image bounding box. If the aspect ratio turns out to be different than that of the

training set, the image could be stretched in either direction. Such a module would just be at a

pre-processing stage before the resulting cropped image is given to our existing character

recognition module.

Other obvious areas of possible improvements are the accuracy of our module and the

number of handled characters. The training set can be expanded and tuned more thoroughly to

try to achieve better recognition accuracy. However, one should be careful not to over-train the

neural network because that could lead to a degradation of recognition accuracy. As the accuracy

improves, the neural network will be able to handle more characters in an acceptable manner. A

possible way to increase the number of handled characters is to use more complex neural

network models with multiple layers. Training such neural networks might require a significantly

larger character training set. Another possible extension is the handling of lowercase letters.

An extension suggested by Alex Kaganov was the handling of variable image sizes. This

would fall into the functionality of a cropping and resizing/stretching module mentioned in the

first paragraph of this section, where a larger or smaller image is appropriately stretched to the

required aspect ratio and size.

3. Project Blocks

MicroBlaze

The Microblaze is the main controller of the overall system. It runs the C code which coordinates

the flow of data between various units.

FSL

This IP can be found in XPS. The Fast Simplex Link Data sheet, again found in XPS, was

consulted to determine the required signals during read and write operations. There are 2 FSL

links between the MicroBlaze and each of the neural network and reduction units.

The neural network module takes a 99-bit input image with some additional control

signals to function properly. Therefore, the FSL state machine has to accept four 32-bit words

from the FSL FIFO. With the arrival of the fourth word, a go signal is set high for the neural

network to do the required operation while the FSL state machine is in wait mode. When the

neural network results are ready, the FSL state machine writes a 32-bit result on the FSL FIFO.

Only the ten least significant bits of the word are used to indicate which character was detected.

The reduction unit takes a nine 32x32 blocks in parallel and reduces them into nine pixels.

Therefore, the FSL state machine for the reduction unit accepts 288 32-bit words in groups of

nine words. The details of the FSLs are described in the appropriate individual reports.

UART

An interface module with the outside world.

Neural network testing unit

The neural network testing unit is the hardware implementation of the artificial neural network

shown in Figure 1. This module takes in a 9x11 reduced image, as a 99-bit input vector, where a

black pixel is represented by a 0 and a white pixel by a 1. The weights and biases are already set

at this point, and each neuron must be able to add all the weighted inputs along with a bias.

Finally, the output of the neuron must be 1 if this sum is positive and 0 if the sum is negative. In

other terms, the output of neuron j, yj, must satisfy the following equation:

)(
99

1
, i

i
ijjj xwbMSBy ∑

=

+¬=

where MSB denotes the most significant bit and it must be inverted in order for yj to be 1 if its

argument is positive and 0 if it is negative.2 yj=1 means that the jth character is recognized.

 Figure 5 shows each neuron of the testing unit, which calculates the above equation in

hardware. Note that there are ten of these modules, one for each neuron and used to recognize a

different character. The weights wj,1 to wj,99 along with the bias bj are stored in a weight bank

register with 100 entries of 8-bits each. Note that the weights and the bias can be negative.

 Next, each weight wj,i must be multiplied with the corresponding input xi. We avoided

building full-fledged multiplication units and instead used multiplexers as shown in Figure 5,

using the fact that the inputs xi can only be either 0 or 1. If xi=1, the weight wj,i is selected. If

xi=0, an 8-bit zero vector is passed. The bias bj is always passed.

 Next, we need to sum all these passed signals (i.e, wj,i’s for which xi=1 along with the bj).

One way to do so was to use a tree of adders and do this summation combinationally. We opted

for a more space-efficient sequential summation, using an 8-bit 100-to-1 multiplexer and a

counter at its select lines to count from 0 to 99, thus selecting one of these lines at a time. An

accumulator3 is put at the output in order to keep adding, or “accumulating”, the selected input

values to the current running sum. By the time all the inputs to the 100-to-1 multiplexer are

added, the output of the accumulator will be equal to

i
i

ijj xwb ∑
=

+
99

1
,

and it suffices to look at the MSB of this number and invert it to get yj.

2 This is true because we used 2’s complement arithmetic.
3 An accumulator consists of an adder followed by a register, whose output is connected to one of the inputs of the
adder.

Figure 5. Testing unit for yj

Neural network training unit

The neural network training unit is used to set up the weights W and biases b of the neural

network according to the given training set. The updating equations for the weights and biases

are the following:

ijjoldijnewij xyww ⋅−+=))(()(,)(, xtarget

))(()()(jjoldjnewj ybb −+= xtarget

where and y)(xjtarget j respectively denote the expected and actual output of neuron j given the

input x. If the produced output differs from the target, the corresponding weights and bias must

be increased or decreased accordingly.

 The diagram in Figure 6 shows the hardware to do this for a single weight wj,i. The first

adder produces -yj by inverting the produced output of the testing unit yj and adding 1 to it

(negation using 2’s complement). The following adder adds to -y)(xjtarget j. The MSB of this

number is then extended to create an 8-bit number equal to jj y−)(xtarget .

 Next, in order to multiply the result with the Boolean bit xi, an 8-bit 2-to-1 multiplexer is

used, which passes if xjj y−)(xtarget i=1, and 8-bit zero vector if xi=0. Finally, this value is

added to the old value in wj,i using another 8-bit adder.

 Note that 99x10=990 of these modules are needed, one for each weight wj,i. A similar

module is needed for each of the 10 biases. It is described in the appropriate individual report.

Figure 6. Training unit for wj,i

Reduction unit

The goal of the reduction unit is to reduce the resolution of the 288x352 image into a 9x11 image

by transforming each 32x32 pixels into a single “superpixel”. We decided to color a superpixel

white if at least 99% (i.e. 1014) of its corresponding original pixels are white.

Figure 7. 32x32 pixels to be transformed to a single superpixel

In order to do this, we used a 32-bit shift register, which stored each row of the 32x32 pixels at a

time. The output of the shift register is connected to an accumulator. The control circuitry loads

the shift register with the next row of the 32x32 pixels until all 32x32 pixels are input to the

accumulator, after which the control resets. At this point, the output of the accumulator is

compared to 1014 using a comparator, which is basically subtracts one from the other and checks

the MSB. The reduction unit shown in Figure 8 is instantiated 9 times. And the control circuitry

uses every one of these units 11 times. This way all 9x11 superpixels are produced.

 Figure 8. Reduction unit

C code

The C code is the main controller of the overall system including the MicroBlaze, the UART, the

neural network and the reduction unit.

The first function that gets called is the training function. This function sends 70 images

of size 9x11 to the neural network to train itself. With each image, a flag is sent to indicate the

character. The data for each image is packed in four 32-bit words. After training, the program

waits in an open loop for a 288x352 image to be sent via the UART. The C code receives the

data serially one byte at a time. Once it receives 288 32-bit words it sends them to the reduction

unit and waits for the 9-bit result. This is repeated 11 times until all the 99-bits are available from

the reduction unit. These bits are later combined into 4 32-bit words using simple bitwise

operations and sent to the neural network to be detected. The result of the neural network is read

back and processed to know which character was detected and the result is sent to the UART.

4. Project Design Tree

The zip file characterRecognition.zip containing our design directory was given to the professor.

It includes the following components:

• Our Matlab implementation of the three main character recognition modules, namely the

training, testing and image reduction units.

• The Verilog code of each of these three units.

• ModelSim simulation .do files for all three units as well as some of the sub-modules

used in these three units.

• The C code used to download the images to the FPGA.

• A list of training and testing character images.

The directory contains the following README file which shows the main subdirectories, folders
and files that might be of interest to the user.

ISE_version

* Contains the ISE projects for the reduction unit and the *
* neural network *
* *
* Subdirectories *
* ann_char_recog: the neural network folder *
* *
* Subsubdirectory *
* do_files: all required files for *
* the unit simulation *
* *
* reduction unit: the reduction unit folder *
* containing verilog files *
* Subsubdirectory *
* do_files: all required files for *
* the unit simulation *

XPS_version

* Contains the complete XPS project which has the reduction unit and the *
* neural network as to IP blocks *
* *
* Main Subdirectories *
* pcores: the cores for the project *
* *
* Subsubdirectories *
* xil_interface_v1_00_a: the folder for the artifical *
* neural network the operates *
* on the 11x9 image *
* *
* xil_reduction_unit_v1_00_a: the folder for the *
* reduction unit that reduces *
* that reduces the image from *
* 352x288 pixels to 11x9 pixels*
* *
* code: contains the C code (lab1.c) that performs the initial *
* training for the *
* neural network, then waits for an image to be sent via *
* the UART and then *

matlab

* Contains the matlab m-files for generating the ''C-code'' for each *
* character to be trained, and for generating the a compatible binary form *
* of the image to be sent over the UART *
* *
* *
* Subdirectories *
* training: has all the images used in the training. *
* They exist in their 352x288 *
* size as well as in their 11x9 size *
* *
* *
* user m-files: *
* reduce_image.m: reduces image 'xx.bmp' from the *
* original size to the 11x9 size. The result is *
* stored in 'small.xx.bmp'. *
* *
* convert_image_C.m: takes the reduced image and *
* generates its 'equivalent' C_code used *
* for training. *
* *
* *
* testing: transforms the 352x288 image into a binary form *
* compatible with our system *
* *
* user m-files: *
* big_convert_image_binary.m: takes an 352x288 image *
* 'xx.bmp' and generates 'xx.bmp.code.binary' *
* *

	1. Introduction and Overview
	Artificial Neural Networks
	Goals and Specs
	System Block Diagram
	System Flow
	Matlab Simulations

	2. Outcome
	Results
	Suggestions for future work

	3. Project Blocks
	MicroBlaze
	FSL
	UART
	Neural network testing unit
	Neural network training unit
	Reduction unit
	C code

	4. Project Design Tree

