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Project Description 
The goal of our project is to implement Nintendo Audio Processing Unit in the FPGA. The three

1
 major processing units 

of the original NES hardware are Central Processing Unit (CPU), Picture Processing Unit (PPU) and the Audio 

Processing Unit (APU). The original CPU was modified 8-bit MOS 6502 microprocessor which used memory mapped 

I/O to communicate with the other components. 

NES Audio Processing Unit 

 

Figure 1: APU Core  

The original APU (shown on Figure 1) has 5 internal channels (components).  Each channel is configured with memory-

mapped registers (typically three or four 8-bit registers per channel), and connected to a Digital-Analog Converter (DAC) 

which generates the final, analog signal. The four of them generate simple waveforms: rectangle, triangle and the noise 

wave forms. The fifth channel is the Delta-Modulation Channel (DMC) which is able to play samples. The DCM has two 

modes of operation. With the first, DMA mode, samples are fetched directly from the memory (without CPU’s 

intervention). In this case the modulation used is delta-modulation: each bit in 8-bit sample represents the increase or 

decrease of the current output. With the second mode, samples are fed directly to the DCM in 7-bit PCM form.  

                                                      
1
 The original NES CPU, the 2A03, incorporated the APU. However, we will be looking at it like two separate components. 



The APU has two sound outputs. One carries the two square wave channels and the other one carries the triangle wave 

channel, the noise channel and the DCM channel. However, in the original NES the final output is mono sound as both 

intermediate outputs are mixed together.  

For detailed channel information, please refer to Appendix A. 

System Design 
Proposed system design is shown in Figure 1. We will be using the Xilinx XUP Virtex™-II Pro Development System. 

MicroBlaze soft-processor will play the role of NES CPU, driving the APU. The APU is designed as peripheral unit that 

communicates with the CPU through the OPB bus. CPU writes and reads the APU internal registers using memory-

mapped interface. Using OPB bus offers modularity of the system; in that way other components (primary the PPU) will 

be easily added. Although using the bus could potentially cause bandwidth issues, this is not the case in this system as the 

original NES CPU operates on 1.7 MHz’s.  

 

Figure 2: System Block Diagram 

The game data and instruction will be stored in the on-chip block RAM (BRAM). The original game sizes are 16KB so 

this will definitely fit (the XC2VP30 has 2,448Kb BRAM). Although there is a possibility that the final NES system will 

use the original cartridges that will be connected to the board, for simplicity and testing purposes we have chosen the 

former design option. The BRAM will be accessed through the OPB BRAM Interface controller. The choice of this 

design option (instead of using faster LMB to connect the CPU and the BRAM) is described next. Again, there are no 

bandwidth issues for the reason stated earlier. 



Both APU and the PPU should be able to directly access the memory; that is, operate in Direct Memory Access Mode 

(DMA).  Using the OPB bus allows us to (easily) support this operation mode, as OPB bus (as opposite to the LMB bus) 

allows multiple masters. Having that said, the APU will be connected to the OPB as a master and will be acting as a 

master only when communicating with the memory.  

For digital to analog conversion, we will be using the AC97 codec which is the device placed on the Xilinx XUP 

Virtex™-II Pro Development System. Codec is controlled with the AC97 controller. The APU communicates with the 

AC97 controller through the FSL. For configuration and debugging purposes, the AC97 controller is also connected to the 

OPB bus, which allows communicating with the CPU. Furthermore, for the debugging purposes we will use serial port to 

display messages on the monitor. The RS232 is controlled by the UART.  

The only software component is the Test_APU, which is the simple application for testing the APU. 

IP Cores 

The following cores will be reused: 

 MicroBlaze (Xilinx IP) 

 OPB Bus (Xilinx IP) 

 AC97 Controller (Xilinx IP, but also using documentation (and maybe code) of past projects) 

 OPB BRAM Interface Controller (Xilinx IP) 

 BRAM (Xilinx IP) 

 UART (Xilinx IP) 

We will build the APU as our custom IP core. Each channel will be implemented as separate component, and the outputs 

from the all channels will be “added” together in mixer component (see Figure 3.). Functionality of each channel is 

described in Appendix A.  

 

 

Figure 3: APU IP Core 



Milestones 
The main things that we have to do/learn: 

 Detail knowledge of behavior of each APU channel (this is already covered to some extent) 

 Implementing each APU channel functionality 

 Understanding AC97 Controller 

 Developing a user-design peripheral 

We propose the following implementation plan: 

February 13 Model and simulate one channel (for example rectangular wave channel) of the 

APU. Use Xilinx demos (or past projects) to design a MicroBlaze system which 

uses AC97 controller to play (any) sound. 

February 27 Develop user-design OPB peripheral (APU) and connect it to the proposed 

system 

March 5 Implement other channels. The DMC channel is potentially the trickiest as it 

request communication with memory. 

March 12 Testing. Building OPB-6502 Bridge
2
 

March 19 Testing. 

March 26 Final demo 
Table 1: Milestones 

References 
1. Patrick Diskin, Nintendo Entertainment System Documentation 

2. Brad Taylor, 2A03 technical reference 

3. Brad Taylor, NES APU Sound Hardware Reference  

4. Brad Taylor, Delta modulation channel tutorial 1.0 

5. Brad Taylor, The NES sound channel guide 1.8 
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 OPB-6502 Bridge will be provided so that developed APU can be integrated into final NES design, which will be using 6502 bus. 



Appendix A 

Rectangle Channel 

Registers 

7 6 5 4 3 2 1 0

volume / envelope 

decay rate

envelope decay 

disable

length counter clock 

disable / envelope 

decay looping enable

duty cycle 

type

REGISTER 1

 

 

 
7 6 5 4 3 2 1 0

right shift 

amount

enable

REGISTER 2

update rate

mode
 

7 6 5 4 3 2 1 0

REGISTER 3

LSB of period

 

7 6 5 4 3 2 1 0

REGISTER 4

MSB of periodlength counter
 

Basic Operation 

Rectangle wave channel generates rectangle wave forms. Frequency of a generated waveform is defined by 

, where period is defined in REGISTER 3[7:0] and REGISTER 4[2:0]. Duty cycle of the waveform is 

defined by duty cycle type (REGISTER 1[7:6]) as shown in Table 2. Volume of positive level is defined by Envelope 

Decay Unit. Negative is zero. 

Duty cycle type Output (positive/negative) 

0 2/14 

1 4/12 

2 8/8 

3 12/4 
Table 2: Duty cycle types 

Length Counter 

Length counter is used to set the total duration of the waveform. Duration (8 bit value) is defined by encoding the value 

from REGISTER 4[7:3]. This relation is shown in Table 3. When the length counter arrives at a count of 0, the counter 

will be stopped, and the channel is silenced. By writing 1 to REGISTER 1[5] counting is paused. It operates on the 

frequency of 60Hz. 

Envelope Decay 

Has effect only if the bit REGISTER 1[4] is 0. If this is the case, the output volume is determined by internal register 

(ENVELOPE_REGISTER), which is decreased by 1 with the frequency , where the DECAY_RATE is 

defined in REGISTER 1[3:0]. When it reaches zero it will (1) stop (channel muted) or (2) wrap-around, depending on the 

bit REGISTER 1[5]. It is always counting, no mater of the REGISTER 1[4]! 

Frequency Sweep  

Has effect only if the bit REGISTER 2[7] is 1. In this case, the frequency is changed in real-time. It can be both 

incremented and decremented, depending on the value REGISTER 2[3]. This relation is shown in Table 4. Refresh rate is 

defined by , where REFRESH_RATE is defined in REGISTER 2[6:4].  

 



 

REGISTER 4[7:3] Duration (Hex) REGISTER 4[7:3] Duration (Hex) 

00000 05 10000 06 

00001 7F 10001 08 

00010 0A 10010 0C 

00011 01 10011 09 

00100 14 10100 18 

00101 02 10101 0A 

00110 28 10110 30 

00111 03 10111 0B 

01000 50 11000 60 

01001 04 11001 0C 

01010 1E 11010 24 

01011 05 11011 0D 

01100 07 11100 08 

01101 06 11101 0E 

01110 03 11110 10 

01111 07 11111 0F 
Table 3: Duration of rectangle wave form. 

REGISTER 2[3] New period 

0  

1 – – * 
Table 4: Frequency sweep, calculating new period. *-1 is added only for Channel 1. 

Triangle Channel 

Registers 

7 6 5 4 3 2 1 0

REGISTER 1

linear counter load 

register

length counter clock 

disable / linear counter 

start

 

7 6 5 4 3 2 1 0

REGISTER 2

LSB of period

 

7 6 5 4 3 2 1 0

REGISTER 3

MSB of periodlength counter
 

 

Basic Operation 

Triangle wave channel generates triangle wave forms with a 4-bit resolution (16 steps). Frequency of a generated 

waveform is defined by , where period is defined in REGISTER 3[7:0] and REGISTER 4[2:0].  It uses the 

length counter in the same way as the rectangle channels. 

Linear Counter 

Performs same task as the length counter (muting the channel after certain time period) but just more precise. It operates 

on 240Hz. The value is stored in REGISTER 1[6:0]. 



Noise Channel 

Registers 

7 6 5 4 3 2 1 0

volume / envelope 

decay rate

envelope decay 

disable

length counter clock 

disable / envelope 

decay looping enable

NOT USED

REGISTER 1

 

 

 
7 6 5 4 3 2 1 0

period index

random 

mode

REGISTER 2

NOT USED

 

7 6 5 4 3 2 1 0

REGISTER 3

length counter NOT USED

 

 

Basic Operation 

The main component of the noise channel is random number generator, which as output produces pseudo-random binary 

sequences. It is capable of producing 93-bit (short) and 32,767-bit (long) sequences. The type of sequence is defined in 

REGISTER 2[7]. The random number generator is implemented as a 15-bit shift register. The frequency is determined by 

, where period depends on REGISTER 2[3:0] as shown in Table 5. The output of random number generator is 

used an input for Envelope Decay Unit (same as for rectangle channels), where final volume level is determined. 

REGISTER 2[3:0] period (Hex) 

0000 002 

0001 004 

0010 008 

0011 010 

0100 020 

0101 030 

0110 040 

0111 050 

1000 065 

1001 07F 

1010 0BE 

1011 0FE 

1100 17D 

1101 1FC 

1110 3F9 

1111 7F2 
Table 5: Determining period parameter for the noise channel 



DMC channel 

Registers 

7 6 5 4 3 2 1 0

period index
NOT USED

IRQ enable

REGISTER 1

loop

 

7 6 5 4 3 2 1 0

NOT USED

REGISTER 2

PCM sample

 

7 6 5 4 3 2 1 0

REGISTER 3

sample address

 

7 6 5 4 3 2 1 0

REGISTER 4

sample length
 

Basic Operation 

DMC channel as an output provides 7-bit PCM sample. For generating PCM samples channel uses delta-modulation and 

DMA. REGISTER 3 defines starting address for fetching bytes that will be used for generating samples. REGISTER 4 

defines how many bytes should be transferred from the memory. DMA frequency is , were period is dependent 

on the REGISTER 1[3:0] as shown in Table 6. 

REGISTER 1[3:0] period (Hex) 

0000 D60 

0001 BE0 

0010 AA0 

0011 A00 

0100 8F0 

0101 7F0 

0110 710 

0111 6B0 

1000 5F0 

1001 500 

1010 470 

1011 400 

1100 350 

1101 2A0 

1110 24) 

1111 1B0 
Table 6: Determining period parameter for DMC channel 

When a byte is fetched, it is stored in internal 8-bit shift register. The shift register is clocked at 8x the DMA frequency. 

The bits shifted out are then used as an input of the 6-bit internal delta counter (with clipping behavior). The counter 

works on the same frequency as shifter. The final output is defined as OUTPUT [7:0]={DELTA_COUNTER[6:0], 

REGISTER 2[0]}. Writing to REGISTER 2 has effect of loading that value in the internal delta counter. This can be used 

for playing PCM samples directly, in which case programmer has to take care of the output frequency.  

REGISTER 1[7:6] defines what happens when all samples are played. If REGISTER 1[6] is set then DCM works in loop 

mode, constantly playing the same samples. If REGISTER 1[6] is 0, then when all samples all played DCM causes 

interrupt if and only if REGISTER 1[7] is set. 



Channel mixing 
The final output is determined as: 

 

 

 

 

 

 

,where rectangle1, rectangle2, triangle, noise and dmc are the outputs from corresponding channels. 


