
ECE532 Group Report
FPGA Implementation of the NES Audio Processing Unit

Cedomir Segulja, Bill Dai
Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto
seguljac@eecg.toronto.edu, bill.dai@utoronto.ca

March 31st, 2008

1 Introduction

In this report, we describe the work done for our ECE532 classproject. We designed and implemented the

Nintendo Entertainment System (NES) Audio Processing Unit(APU) using an FPGA platform. Further-

more, for purposes of testing the developed core and for project demonstration, we have designNSF player,

a system capable of playing NSF files using our developed core.

The remainder of this report is organized as follows. Section 2 presents our projects goals, covers back-

ground material and gives high-level overview of the architecture of our system. Section 3 discuss the

outcome of our project and presents the software architecture of the NSF Player. Section 4 provides a detail

description of used components, concentrating the most on the developed IP, the OPB APU. Section 5 ex-

plaines how we used the NES emulator to extract needed information from NSF files. Section 6 provides the

details about the software structure of our project. Finally, we include an appendix that provides additional

details about the NES APU register organization.

2 Overview

2.1 Goals of the Project

The main goal of the project is to implement the NES Audio Processing Unit on the FPGA of Xilinx XUP

VirtexTM-II Pro Development Board. By the ending phase of the project, our APU should be able to demon-

strate standalone music playing ability by using MicroBlaze as the NES CPU.

1



2.2 Project Background

The original CPU of Nintendo Entertainment System was 8-bitRicoh 2A03 microprocessor based on a MOS

Technology 6502 core [2]. This low-cost chip differed from similar product back at year 1983 in that it had

the ability to handle sound, serving as pseudo Audio Processing Unit (APU). In other words, the CPU and

APU were combined on one chip. The processing speed of this chip is around 1.79MHZ. The APU contains

in total twenty 8 bit memory mapped registers.

The NES APU is composed of five channels. These included two pulse wave channels of variable duty

cycle (12.5%, 25%, 50%, and 75%), with a volume control of sixteen levels, and hardware pitch bending

supporting frequencies ranging from 54 Hz to 28 kHz. Additional channels included one fixed-volume tri-

angle wave channel supporting frequencies from 27 Hz to 56 kHz, one sixteen-volume level white noise

channel supporting two modes (by adjusting inputs on a linear feedback shift register) at sixteen prepro-

grammed frequencies, and one delta pulse-width modulationchannel (DMC) with six bits of range, using

1-bit delta encoding at sixteen preprogrammed sample ratesfrom 4.2 kHz to 33.5 kHz. The DMC channel

used DMA to fetch previously stored samples. This final channel was also capable of playing standard pulse-

code modulation (PCM) sound by writing individual 7-bit values at timed intervals. The complete functional

description of the NES APU can be found in [6, 8, 9, 7].

2.3 System Description

The system architecture is shown in Figure 1. The OPB Audio Processing Unit (APU) represents the imple-

mentation of the the NES APU. To convert digital output to analog signals, the on-board AC97 codec is used.

MicroBlaze, runing the APU Driver simulates the NES CPU and drives the OPB APU. Memory samples for

the DMC channel are stored in the BRAM which is accessed by theOPB APU through the OPB BRAM

controller. OPB Microprocessor Debug Module (MDM) is used for debugging and download. UART Lite

was used through the developement process, it is obsolete inthe final design.

List of used IPs is shown in Table 1. We have designed and implemented the OPB APU core, which is

in detail described in section 4.3. Also, created software (APU Driver) is described in section 4.8.

2



Figure 1: System Block Diagram

IP Name Hardware/
Software IP

Used/Modified/
Created

Function

MicroBlaze Processor Hardware IP Used (Xilinx IP) Drives the OPB APU. See section 4.1
On-Chip Peripheral BUS (OPB) Hardware IP Used (Xilinx IP) System backbone. See section 4.2
OPB Audio Processing Unit
(APU)

Hardware IP Created/Modified NES APU implementation. See section
4.3

OPB Block RAM (BRAM) Inter-
face Controller

Hardware IP Used (Xilinx IP) Memory controller for the DMC dedi-
cated memory. See section 4.4

Block RAM (BRAM) Block Hardware IP Used (Xilinx IP) DMC dedicated memory. See section
4.4

Digital Clock Manager (DCM)
Module

Hardware IP Used (Xilinx IP) Used to derive system and NES CPU
clock. See section 4.5

OPB Microprocessor Debug Mod-
ule (MDM)

Hardware IP Used (Xilinx IP) Used for debugging and executable
download. See section 4.6

OPB UART Lite Hardware IP Used (Xilinx IP) Used for debugging. See section 4.7
APU Driver Software IP Created Simulates the NES CPU. See section

4.8

Table 1: Brief description of IPs

3



3 Outcome

We have successfuly implemented the NES Audio Processing Unit on the FPGA. The developed IP was

tested using series of microbenchmarks. Furthermore, for in-depth testing and for the purposes of the project

demo we have designed and implementedNSF player, a system which plays NSF files using our developed

IP. NES Sound Format (NSF) file is a sound data file containing instructions for the Nintendo Entertainment

System (NES) sound hardware. The overwiev of the NSF Player system is given next.

3.1 NSF Player

NSF Player is the system which utilizes the implemented system for playing NSF files. Software flow chart

of the NSF Player is displayed on Figure 2. The input is an NSF file. The file is translated in the form

plausible for interpreting by the MicroBlaze. Informationabout used NSF emulator and modification of

it are described in section 5. The generated file (music.h ) is compiled with theapu driver.c , which

implements the APU Driver. Finally, using the Xilinx Microprocessor Debugger (XMD) and the JTAG cable,

the executable is downloaded on the FPGA. MicroBlaze is running XMD Stub which allows as to download

and run the executable on the fly. The whole process is automatized by the script which as an input takes the

NSF file.

As shown in Figure 2 the NES emulator also generates theout.wav file. This is a waveform audio

file, and it is used for comparison with the music played on theboard. Our final results is that, for many

examples, the music played on the board is very similar (indentical) to the waveform file played back on the

computer.

Figure 2: NSF Player Software Flow

4



4 Description of the Blocks

This section provides detail information about used IP blocks. The created IPs, OPB Audio Processing Unit

(APU) and APU Driver are explained in detail, while for the other IPs we denote used version, system use

and provide reference to corresponding data sheets.

4.1 MicroBlaze Processor

The MicroBlaze embedded processor soft core is a reduced instruction set computer (RISC) optimized for

implementation in Xilinx FPGAs. We used version 5.00.c. More information on this IP can be found in [16].

In our design, MicroBlaze is used to simulate NES CPU and drive OPB Audio Processing Unit (APU).

4.2 On-Chip Peripheral Bus (OPB) V2.0

The On-Chip Peripheral Bus (OPB) V2.0 is designed for easy connection of on-chip peipheral devices. We

used version 1.10.c. More information on this IP can be foundin [18][3]. In our design, OPB serves as

a system backbone connecting MicroBlaze and OPB APU with memory and peripherals. We use 32-bit

address and data bus implementations.

4.3 OPB Audio Processing Unit (APU)

In this section we describe the design specification for the OPB Audio Processing Unit (APU). The OPB

APU is our custom developed IP, written using Verilog and VHDL. The used resources are reported in Table

2.

OPB APU APU Core

Slices 822 663
FFs 573 316
LUTs 1498 1188
Block RAMs 0 0

Table 2: Used resources. Column denoted with OPB APU reportsresources used for implementing the OPB
Audio Processing Unit (APU). Column denoted with APU Core reports resources needed to implement the
core functionality of the NES APU (see section 4.3.6). Each Virtex-II Pro Slice has two LUTs.

5



4.3.1 Functional Description

The OPB Audio Processing Unit (APU) implements the NES APU. The block diagram of the module is

shown in Figure 3.

Figure 3: OPB Audio Processing Unit (APU) Block Diagram

For connecting to the OPB, APU provides OPB interface with both Master and Slave signals. Masters

signals are needed to implement DMA functionality of the Delta Pulse-Width Modulation Channel (DMC).

The APU Core implements the functionality of the NES APU, andoutputs 16 bits data to the AC97 Con-

troller. The AC97 Controller implements the AC Link protocol and provides register interface for AC97

Codec. AC97 Reset Logic makes sure that upon system reset AC97 codec is initialized for playback. The

OPB APU consists of three clock domains. OPB interface is clocked with the OPB system clock (25 MHz).

The APU Core module is clocked with the NES clock (1.79 MHz). The AC97 Controller is clocked with the

AC97 Bit Clock (12.288 MHz). For more information about clock generation see section 4.5.

4.3.2 OPB APU I/O Signals

The I/O signals for the OPB Audio Processing Unit (APU) are listed and described in Table 3. Detailed

information about OPB protocol and signals can be found in [3].

6



Signal Name Interface I/O Description

iOPB clk OPB I OPB clock for OPB APU interface
iOPB rst OPB I OPB reset for OPB APU interface
iOPB RNW OPB I OPB read not write
iOPB select OPB I OPB Reset for OPB APU interface
iOPB ABus OPB I OPB address bus
iOPB DBus OPB I OPB data bus
iOPB MnGrant OPB I OPB master bus grant
iOPB xferAck OPB I OPB transfer acknowledge
oMn request OPB O Master bus request
oMn ABus OPB O Master address bus
oMn DBus OPB O Master data bus. Not used (constantly set to zero).
oMn Select OPB O Master select
oMn DBusEn OPB O Master data bus enable. Not used (constantly set to

zero).
oMn RNW OPB O Master read not write
oSln xferAck OPB O Slave transfer acknowledge
oSln DBus OPB O Slave data bus
iAC97 Bit Clk AC97 I Input clock for AC97 controller. Provides a 12.288

MHz clock for the AC Link.
oAC97 Sync AC97 O Output to the LM4550 codec. Defines the bound-

aries of AC Link frames. Sync is a 48 kHz positive
pulse with a duty cycle of 6.25% (16/256).

oAC97 SDataOut AC97 O This is the output for AC Link Frames from an AC97
controller to the LM4550 codec

iAC97 SDataIn AC97 I Not used. (This is the input for AC Link Frames
from the LM4550 codec to an AC97 controller)

oAC97 Reset AC97 O This active low signal causes a hardware reset of the
LM4550 codec which returns the control registers
and all internal circuits to their default conditions.
Triggered on the OPB reset signal.

iNES clk I NES CPU clock (1.79 MHz)

Table 3: OPB APU I/O Signals

7



4.3.3 Design Parameters

Table 4 lists and describes the features that can be parameterized in the OPB Audio Processing Unit (APU).

Parameter Name Feature/Description Allowable values Default value

C BASEADDR Base address for periph-
eral on OPB bus

0x00000000 to 0xffffffff, with the
constraint that the range should be
greater or equal than 0x5c (23 8-
bits register * 4), where the range is
C HIGHADDR- C BASEADDR + 1

0xffffff00

C HIGHADDR Highest OPB address
within peripherals
address range

0x00000000 to 0xffffffff 0xffffffff

DMC MEMORY Base address of the mem-
ory designated for DMC
samples storage

0x00000000 to 0xffffffff 0x80400000

Table 4: OPB APU Design Parameters

4.3.4 OPB APU Register Description

The OPB APU registers are listed and described in Table 5. AllOPB APU registers are organized in the

same manner as the register of the NES APU, as specified in [6].For detailed information about NES APU

registers organization please refer to Appendix A.

4.3.5 Additional Constraints

The OPB Audio Processing Unit (APU) communicates with the AC97 codec. To configurate physical con-

nections between the AC97 codec and the FPGA pins some entries need to be added to the UCF file. For

more information consult the submittedsystem.ucf file and/or the board schematic [12].

4.3.6 APU Core

The APU Core implements the functionality of the NES APU, andoutputs 16 bits data to the AC97 Con-

troller. The APU Core interface is described in Table 6.

The architecture of the APU Core is displayed in Figure 4. It consists of five channels: Rectangle

Channel 1 and 2, Triangle Channel, Noise Channel and the DMC Channel. The Frame Sequencer module

generates clock needed by the channels. The Channel Mixer determines the final output of the APU Core

module. In the rest of this section we provide block diagramsand short description of each module of the

8



Register Name Size Address Offset Initial State Description

Register4000 8 0 0x10 Rectangle channel 1 register 1
Register4001 8 4 0x00 Rectangle channel 1 register 2
Register4002 8 8 0x00 Rectangle channel 1 register 3
Register4003 8 12 0x00 Rectangle channel 1 register 4
Register4004 8 16 0x10 Rectangle channel 2 register 1
Register4005 8 20 0x00 Rectangle channel 2 register 2
Register4006 8 24 0x00 Rectangle channel 2 register 3
Register4007 8 28 0x00 Rectangle channel 2 register 4
Register4008 8 32 0x10 Triangle channel register 1
Register400A 8 40 0x00 Triangle channel register 2
Register400B 8 44 0x00 Tirangle channel register 3
Register400C 8 48 0x10 Noise channel register 1
Register400E 8 56 0x00 Noise channel register 2
Register400F 8 60 0x00 Noise channel register 3
Register4010 8 64 0x10 DMC channel register 1
Register4011 8 68 0x00 DMC channel register 2
Register4012 8 72 0x00 DMC channel register 3
Register4013 8 76 0x00 DMC channel register 4
Register4015 8 84 0x0f Status register
Register4017 8 92 0x00 Frame register

Table 5: OPB APU Registers

Signal Name I/O Description

iRegister40xx I 8 bit register. Asynchronous signal. See Table 5 for register description.
iWx I Asynchronous signal raised upon write to the correspondingregister.
oDMA req O DMA request signal.
oDMA address O DMA address (16 bits)
iDMA ack I DMA acknowledgement signal
iDMA data I DMA input data (8 bits)
oIRQ O Interrupt signal. Currently not implemented.
oData O APU Core output derived by mixing the outputs of all channels. 16 bits.

Table 6: APU Core Interface

9



APU Core. Full specification of the APU channels can be found in [6, 8, 9, 7]. Register organization can be

find in the Appendix A.

Figure 4: Audio Processing Unit (APU) Core Block Diagram

Frame Sequencer Frame Sequencer generates needed frequencies for Volume Generator, Length Counter,

Frequency Generator and Linear Counter. These are the building blocks of the APU Core channels. Fre-

quencies are derived using counters and the NES clock as an input clock. Generated frequencies are denoted

in Table 7.

Output signal name Frequency

oLengthclk 120 Hz (mode == 0) or 96 Hz (mode == 1)
oEnvelopeclk 240 Hz (mode == 0) or 192 Hz (mode == 1)
oLinear clk 240 Hz (mode == 0) or 192 Hz (mode == 1)
oSweepclk 120 Hz (mode == 0) or 96 Hz (mode == 1)
IRQ clk 60 Hz (mode == 0). For mode == 1 this output is constantly 0.

Table 7: Frequencies generated by the Frame Sequencer. Frequencies depend on the input signalmode

Rectangle Channel The Rectangle Channel generates rectangle waveforms. The block diagram of the

Rectangle Channel is shown in the Figure 5.

The Frequency Generator generates the frequency of the output wave and implements the frequency

sweep. If theiSweep enable is set to 0, the frequency is determined byNES clock freq.
iP eriod+1

. Otherwise the

10



frequency is constantly updated with the frequencySweep clock freq.
iSweep refresh rate+1

. Period is updated as shown in

Table 8.

The Length counter is used to set the total duration of the waveform. Duration (8 bit) is defined by

encoding the valueiDuration. The enconding table is implemented using LUTs. When the Length Counter

reaches zero, the channel is muted.

The Volume Generator determines the volume (4 bits) of the waveform. If iEnable is set to 1 the volume

is determined by theiV olume. Otherwise, the volume is constantly decreased by 1 with thefrequency

Envelope clock freq.
iDecay rate+1

. When it reaches zero it will (1) stop (channel muted) or (2) wrap-around, depending on

the value ofiEnable loop signal.

iSweepmode New period

0 current period + (current period >> iSweep shift)

1 current period − (current period >> iSweep shift)

Table 8: Calculation of the new period for the frequency sweep. Documentation [6] reports that term−1
should be added for Rectangle Channel 1 when iSweepmode is 1. This is not currently implemented.

Figure 5: Rectangle Channel Block Diagram

Triangle Channel The Triangle Channel generates triangle wave forms with a 4-bit resolution. The block

diagram of the triangle channel is shown in the Figure 6. Frequency of a generated waveform is determined

by the Clock Divider which divided the NES clock frequency byiDivider. The Length Counter and the

Linear Counter determine the duration of the output wave.

11



Noise Channel The main component of the noise channel is Random Generator,which as output produces

pseudo-random binary sequences. The block diagram of the noise channel is shown in the Figure 7. It is

capable of producing 93-bit (short) and 32,767-bit (long) sequences. The type of sequence is defined by the

iMode signal.

Delta Pulse-Width Modulation Channel The Delta Pulse-Width Modulation Channel (DMC) as an out-

put provides PCM sample. For generating PCM samples channeluses Delta Pulse-Width modulation and

Direct Memory Access (DMA). The block diagram of the DMC channel is shown in the Figure 8.

Using direct memory access, the DMC channel fetches one byteat the time from dedicated DMC mem-

ory. The DMA Sample Counter register defines the number of bytes that needs to be fetched. The DMA

Figure 6: Triangle Channel Block Diagram

Figure 7: Noise Channel Block Diagram

12



Sample Address register contains the address from which thenext byte should be fetched. When the DMA

Buffer is empty,oDMA req signal is raised, and theoDMA addr is set. WheniDMA ack signal is

raised, the valueiDMA data is valid, and is stored into DMA Buffer.

Clock Dividers produce two clocks, theCycle clock and theShift clock, whereShift clock is clocked

at 8x of theCycle clock. If, on the positive edge of theCycle clock DMA Buffer is empty, the cycle is

declared as silence cycle, and during that period the channel is muted. Otherwise, the output is determined

by the DMC Shift Register and the DMC Delta Counter. These registers are clocked at theShift clock.

The bits shifted from the DMC Delta Counter are used as an input of the DMC Sample Counter which is

up-down counter with clipping behaviour.

Figure 8: Delta Pulse-Width Modulation Channel Block Diagram

Channel Mixer Channel mixer implements non-linear function which definesthe final 16 bit output of the

APU Core. As stated in [6], the output is defined with equation:

output =
95.88

8128

rectangle1+rectangle2
+ 100

+
159.79
1

triangle

8227
+

noise
12241

+
dmc
22638

+ 100

whererectangle1, rectangle2, noise, triangle represent 4 bit outputs from the corresponding channel, and

dmc represents 7 bit output from the DMC channel. For efficient implementation in the FPGA we use an

approximation proposed in [6]. This is accomplished using 31-entry table for two rectangle channels and a

13



203-entry table for the triangle, noise and the DMC channel.

rectangle table[n] = ⌊M ∗
95.52

8128.0
n

+ 100
⌋

tnd table[n] = ⌊M ∗
163.67

24329.0
n

+ 100
⌋

M represents scaling factor to get 16 bit result. We useM = 29. Based on these equation, the initialization

code for tables is automatically generated. The final outputis then calculated using equation

output = rectangle table[rectangle1 + rectangle2] + tnd table[3 ∗ triangle + 2 ∗ noise + dmc]

4.3.7 AC97 Controller

The audio system on the XUP Virtex-II Pro Development Systemconsists of a National Semiconductor

LM4550 AC97 audio CODEC [5] paired with a stereo power amplifier (TPA6111A) made by Texas Instru-

ments. The LM4550 DACs have 18-bit resolution, and sample rate in the range 4 kHz - 48 kHz.

The AC97 Controller implements the AC Link protocol for communicating with the LM4550 chip. We

have modified AC97 Controller, version 2.00.a, developed byMike Wirthlin which comes with the EDK

XUPV2P Pack. More information on this IP can be found in [10].Originally, this AC97 controller is

a standalone OPB peripheral, providing slave OPB interfaceand asynchronous FIFO for crossing OPB-

AC97 clock domains. As we have incorporated this logic into our APU OPB we do not use original AC97

Controller OPB interface. Furthermore, as output of the APUOPB is continous signal which yet needs to

be sampled, we do not use asynchronous FIFO. Good description of the AC97 Controller and the AC Link

Protocol can be found in [4].

4.4 OPB Block RAM (BRAM) Interface Controller and Block RAM ( BRAM) Block

The BRAM Block is a configurable memory module that attaches to a variety of BRAM Interface Con-

trollers. We used verion 1.00.a. More Information on this IPcan be found in [15].

The OPB BRAM Interface Controller is the interface between the OPB and the BRAM block peripheral.

We used verion 1.00.a. More Information on this IP can be found in [14].

In our design, these components are used to store and retreive samples for Delta Pulse-Width Modulation

14



Channel. For that reason, the CBASEADDR parameter of the OPB BRAM Interface Controller should be

set to the same value as the DMCMEMORY parameter of the OPB Audio Processing Unit (APU).

4.5 Digital Clock Manager (DCM) Module

The Digital Clock Manager (DCM) primitive in Xilinx FPGA parts is used to implement delay locked loop,

digital frequency synthesizer, digital phase shifter, or adigital spread spectrum. We used version 1.00.a.

More information on this IP can be found in [13]. In our designwe use two instances of this module. The

first one,dcm 0 is used to generate OPB system clock (25 MHz) by dividing input clock by 4. The second

one,dcm nes cpu is used to generate frequency of 1.79 Mhz, which is the frequency of the original NES

CPU. This is derived by dividing the output clock of the first DCM by 14.

4.6 OPB Microprocessor Debug Module (MDM)

The Microprocessor Debug Module (MDM) enables JTAG-based debugging of one or more MicroBlaze

processors and/or PowerPC 405 processors. We used version 2.00.a. More information on this IP can be

found in [17]. We do not use this IP for hardware debugging solution; instead we use only its JTAG UART

module to communicate with the XMDStub running on the MicroBlaze.

4.7 OPB UART Lite

The OPB UART Lite (v1.00b) module connects the OPB bus to the serial port of the board. This allows the

user to interact with the MicroBlaze by sending and receiving characters over the RS232 port via the OPB.

More information on this IP can be found in [11]. It was used during development process for debugging

purpose. It is obsolete in the final design.

4.8 APU Driver

The APU Driver is a simple C program executing on the MicroBlaze processor and driving the OPB Audio

Processing Unit (APU). Its main is shown in Figure 9. The taskof the APU Driver is two -fold: to initialized

DMC dedicated memory and to simulate NES CPU instructions. Initializtion of the DMC memory is done

using arraysdcm address anddcm data . For simulating the NES CPU, APU Driver uses arraysdelay ,

address , data and parameterSLOWFACTOR. Delays between instructions are simulated using a simple

15



loop with variable number of iteration. Details about construction of used parameters and arrays can be

found in Section 4.

Figure 9: APU Driver Source Code

5 NSF Translation

During the NSF Translation procedure, input NSF file is translated into C header file which will be added to

the APU Driver and executed on the MicroBlaze. For implementing the NSF Translation, open source C++

NES emulator is used. More information about used emulator can be found in [1].

The following modifications are done with the used NES emulator. First, new classAPU Analyze is

created. This class implements methods for capturing writes to APU registers, initialization of the DMC

dedicated memory and generating output C header file. Then, corresponding calls to the methods of this

class have been inserted. All the calls are coupled with comment NSF TRANSLATIONso they can be

easily tracked.

Delay between NES CPU instruction is calculated as a function of the NES CPU clock cycles. We used

a small training set of several NSF files, and determined thatdelay can be represented with equations:

SLOW FACTOR = 7 ∗ 106 ∗ (
10 ∗ total number of cycles

NUM OF SECONDS
)−0.96345

16



delay(i) = SLOW FACTOR ∗ (cycle(i) − cycle(i − 1))

, wherecycle(i) denotes the current cycle number of the NES CPU when executing instruction i.

NUM OF SECONDS represents the duration of the song, i.e. only the firstNUM OF SECONDS

seconds of the song will be translated (and consequently played). This constraint is addedd due to the finite

amount of the available memory for storage (<64KB).

Sample file generated during the NSF Translation is shown in Figure 10. At the begining of the file,

information about used channels is displayed. Addresses ofthe DMC samples are relative to the base address

of the DMC dedicated memory. Addresses of the APU register are relative to the base address of the OPB

APU core and divided by 4. Generated information is used by the APU Driver as explained in the previous

section.

Figure 10: Sample file generated during the NSF Translation procedure

17



6 Description of the Design Tree

The submitted directory has the following structure:

• readme.txt

Describes the structure of the design directory

• \demo

The lab demo. Includes

– \nsf - Sample NSF files

– \sample files - scripts called from the ppt presentation

• \doc

Documentation files. These include:

– Draft Project Proposal

– Project Proposal

– Presentation

– Group Report

• \emulator

Used emulator, Blargg’s NES APU. Includes:

– \apu - standalone software NES APU

– \player - modified NSF emulator

– \Debug - contains the player.exe, emulator executable which as an input takes NSF file

– \vanilla versions - original sources codes

– nes.sln - Visual C++ 2008 Express Edition solution

• \scripts

– download.bat - automatizes the proces of the bitstream download

18



– nsf player.bat - automatizes the process of translating the NSF file, downloading and run-

ning executable

– synthesis.bat - automatizes the synthesis process (warning make clean will be called first)

• \system

Contains the XPS project. APU OPB HDLs, and data files can be found in\pcores directory.

NOTE: All links are hardcoded. Original path of this directory wasd/ece532/project . So, in order

to use scripts you should adjust the links to point to your current directory.

References

[1] Blargg’s Audio Libraries. (http://www.slack.net/˜ant/libs/audio.html) .

[2] Patrick Diskin.Nintendo Entertainment System Documentation.

[3] IBM. On-Chip Peripheral Bus, Architecture Specification, Version 2.1, April 2001.

[4] Wendy Cheung Leonard Sio.Voice Over IP, 2004. ECE532 Group Report.

[5] National Semiconductor.LM4550: AC 97 Rev 2.1 Multi-Channel Audio Codec with Stereo Headphone
Amplifier, Sample Rate Conversion and National 3D Sound, 2004.

[6] Brad Taylor.2A03 Technical Reference.

[7] Brad Taylor.Delta Modulation Channel Tutorial 1.0.

[8] Brad Taylor.NES APU Sound Hardware Reference.

[9] Brad Taylor.The NES Sound Channel Guide 1.8.

[10] Mike Wirthlin. OPB AC97 Controller. Brigham Young University.

[11] Xilinx. OPB UART Lite (v1.00b), July 2004. Datasheet.

[12] Xilinx. XUP Virtex-II Pro Development System Board Schematic, November 2004.

[13] Xilinx. Digital Clock Manager (DCM) Module (v1.00a), December 2005. Datasheet.

[14] Xilinx. OPB Block RAM (BRAM) Interface Controller, December 2005. Datasheet.

[15] Xilinx. Block RAM (BRAM) Block (v1.00a), August 2006. Datasheet.

[16] Xilinx. MicroBlaze Processor Reference Guide, Embedded Development Kit EDK 8.2i, August 2006.

[17] Xilinx. Microprocessor Debug Module (MDM) (v2.00a), February 2006. Datasheet.

[18] Xilinx. On-Chip Peripheral Bus V2.0 with OPB Arbiter (v1.10c), August 2006. Datasheet.

19



7 Appendix A: NES APU Register Map

This appendix describes the NES APU registers organization. The register of the implemented OBP APU IP
are organized in the same manner.

Figure 11: Rectangle Channels registers organization

Figure 12: Triangle Channel registers organization

20



Figure 13: Noise Channel registers organization

Figure 14: DMC Channel registers organization

21


