ECE532 Group Report
FPGA Implementation of the NES Audio Processing Unit
Cedomir Segulja, Bill Dai
Edward S. Rogers Sr. Department of Electrical and Computgirteering

University of Toronto
seguljac@eecg.toronto.edu, bill.dai@utoronto.ca

March 3%%, 2008

1 Introduction

In this report, we describe the work done for our ECE532 gaisgect. We designed and implemented the
Nintendo Entertainment System (NES) Audio Processing (AftU) using an FPGA platform. Further-
more, for purposes of testing the developed core and foegrdiemonstration, we have desiy8F playey
a system capable of playing NSF files using our developed core

The remainder of this report is organized as follows. Saecipresents our projects goals, covers back-
ground material and gives high-level overview of the amsttilre of our system. Section 3 discuss the
outcome of our project and presents the software archiecfithe NSF Player. Section 4 provides a detail
description of used components, concentrating the most@éveloped IP, the OPB APU. Section 5 ex-
plaines how we used the NES emulator to extract needed iatommfrom NSF files. Section 6 provides the
details about the software structure of our project. Fha¥ke include an appendix that provides additional

details about the NES APU register organization.

2 Overview

2.1 Goals of the Project

The main goal of the project is to implement the NES Audio Bssing Unit on the FPGA of Xilinx XUP
VirtexTM-1l Pro Development Board. By the ending phase &f finoject, our APU should be able to demon-

strate standalone music playing ability by using Micro®lazs the NES CPU.

2.2 Project Background

The original CPU of Nintendo Entertainment System was &ibh 2A03 microprocessor based on a MOS
Technology 6502 core [2]. This low-cost chip differed froim#ar product back at year 1983 in that it had
the ability to handle sound, serving as pseudo Audio Praagssnit (APU). In other words, the CPU and
APU were combined on one chip. The processing speed of thpgschround 1.79MHZ. The APU contains
in total twenty 8 bit memory mapped registers.

The NES APU is composed of five channels. These included tige puave channels of variable duty
cycle (12.5%, 25%, 50%, and 75%), with a volume control ofesr levels, and hardware pitch bending
supporting frequencies ranging from 54 Hz to 28 kHz. Addisibchannels included one fixed-volume tri-
angle wave channel supporting frequencies from 27 Hz to 58 kide sixteen-volume level white noise
channel supporting two modes (by adjusting inputs on a fifeedback shift register) at sixteen prepro-
grammed frequencies, and one delta pulse-width modulatiamnel (DMC) with six bits of range, using
1-bit delta encoding at sixteen preprogrammed sample fiaes4.2 kHz to 33.5 kHz. The DMC channel
used DMA to fetch previously stored samples. This final clednms also capable of playing standard pulse-
code modulation (PCM) sound by writing individual 7-bitwak at timed intervals. The complete functional

description of the NES APU can be found in [6, 8, 9, 7].

2.3 System Description

The system architecture is shown in Figure 1. The OPB Audicédsing Unit (APU) represents the imple-
mentation of the the NES APU. To convert digital output tolagaignals, the on-board AC97 codec is used.
MicroBlaze, runing the APU Driver simulates the NES CPU arided the OPB APU. Memory samples for
the DMC channel are stored in the BRAM which is accessed byOtAB APU through the OPB BRAM
controller. OPB Microprocessor Debug Module (MDM) is used debugging and download. UART Lite
was used through the developement process, it is obsol#ie final design.

List of used IPs is shown in Table 1. We have designed and mmaiéed the OPB APU core, which is

in detail described in section 4.3. Also, created softwaAfel Driver) is described in section 4.8.

[] Reused Hardware IP |l Created Hardware IP [__| Created Software IP

MicroBlaze
Acer Eﬁ[q cpester
< OPB Bus >
OPB BRAM JTAG
Controller MDM UART <
RS232
@ UART > Serial 1/0
BRAM
Virtex™.-II Pro FPGA
Xilinx XUP Virtex™-Il Pro Development System
Figure 1: System Block Diagram
IP Name Hardware/ | Used/Modified/ | Function
Software IP | Created
MicroBlaze Processor Hardware IP| Used (Xilinx IP) | Drives the OPB APU. See section 4.]
On-Chip Peripheral BUS (OPB) | Hardware IP| Used (Xilinx IP) | System backbone. See section 4.2

OPB Audio Processing Unit Hardware IP| Created/Modified NES APU implementation. See section

(APU) 4.3

OPB Block RAM (BRAM) Inter- | Hardware IP| Used (Xilinx IP) | Memory controller for the DMC dedi

face Controller cated memory. See section 4.4

Block RAM (BRAM) Block Hardware IP| Used (Xilinx IP) | DMC dedicated memory. See section
4.4

Digital Clock Manager (DCM)| Hardware IP| Used (Xilinx IP) | Used to derive system and NES CRU

Module

clock. See section 4.5

OPB Microprocessor Debug Mod-Hardware IP| Used (Xilinx IP) | Used for debugging and executal
ule (MDM) download. See section 4.6

OPB UART Lite Hardware IP| Used (Xilinx IP) | Used for debugging. See section 4.7
APU Driver Software IP | Created Simulates the NES CPU. See secti

4.8

Table 1: Brief description of IPs

3 Outcome

We have successfuly implemented the NES Audio Processingadrithe FPGA. The developed IP was
tested using series of microbenchmarks. Furthermorenfdepth testing and for the purposes of the project
demo we have designed and implememsF player a system which plays NSF files using our developed
IP. NES Sound Format (NSF) file is a sound data file contaimistyuctions for the Nintendo Entertainment

System (NES) sound hardware. The overwiev of the NSF Plagters is given next.

3.1 NSF Player

NSF Player is the system which utilizes the implementedesysor playing NSF files. Software flow chart
of the NSF Player is displayed on Figure 2. The input is an N fThe file is translated in the form
plausible for interpreting by the MicroBlaze. Informatiabout used NSF emulator and modification of
it are described in section 5. The generated fitbeigic.h) is compiled with theapu driver.c , which
implements the APU Driver. Finally, using the Xilinx Microgressor Debugger (XMD) and the JTAG cable,
the executable is downloaded on the FPGA. MicroBlaze isinghKMD Stub which allows as to download
and run the executable on the fly. The whole process is auimaddiy the script which as an input takes the
NSF file.

As shown in Figure 2 the NES emulator also generateothavav file. This is a waveform audio
file, and it is used for comparison with the music played onltbard. Our final results is that, for many

examples, the music played on the board is very similar (itidal) to the waveform file played back on the

computer.
Modified
D |:‘> NES |:‘> D |:‘> gce |:‘> D |:“> XMD
Emulator
sample.nsf music.h executable.elf

I | J

D D MicroBlaze

out.wav apu_driver.c

XMD Stub

Virtex™-I Pro FPGA

Figure 2: NSF Player Software Flow

4 Description of the Blocks

This section provides detail information about used IP kdod he created IPs, OPB Audio Processing Unit
(APU) and APU Diriver are explained in detail, while for thdet IPs we denote used version, system use

and provide reference to corresponding data sheets.

4.1 MicroBlaze Processor

The MicroBlaze embedded processor soft core is a reducedidtisn set computer (RISC) optimized for
implementation in Xilinx FPGAs. We used version 5.00.c. Blmformation on this IP can be found in [16].

In our design, MicroBlaze is used to simulate NES CPU ancedti??B Audio Processing Unit (APU).

4.2 On-Chip Peripheral Bus (OPB) V2.0

The On-Chip Peripheral Bus (OPB) V2.0 is designed for easyection of on-chip peipheral devices. We
used version 1.10.c. More information on this IP can be found8][3]. In our design, OPB serves as
a system backbone connecting MicroBlaze and OPB APU with ongrand peripherals. We use 32-bit

address and data bus implementations.

4.3 OPB Audio Processing Unit (APU)

In this section we describe the design specification for tREB@udio Processing Unit (APU). The OPB

APU is our custom developed IP, written using Verilog and MHDhe used resources are reported in Table

2.
\ | OPB APU| APU Core |
Slices 822 663
FFs 573 316
LUTs 1498 1188
Block RAMs 0 0

Table 2: Used resources. Column denoted with OPB APU repestairces used for implementing the OPB
Audio Processing Unit (APU). Column denoted with APU Congamts resources needed to implement the
core functionality of the NES APU (see section 4.3.6). EairteX-1l Pro Slice has two LUTSs.

4.3.1 Functional Description

The OPB Audio Processing Unit (APU) implements the NES APble Dlock diagram of the module is

shown in Figure 3.

OPB APU Core
Interface
iRegister4000 oData
OPB N AC97 Controller
i> iRegister4017
) Signals g
iVW4000 AC97 Register
To OPB <#:| Master Interface
Signals iW4017 PCM Playback
e i!gﬁ‘;s ODMA_req 0AC97_Reset | —»
DMA_add
° —address iACQ?_SData_In - To AC97
iDMA_ack
- 0AC97_SData_Out | —{—p Codec
iDMA_data
B 0AC97_Sync | — | m
olRQ
iOPB_clk 4 INES_clk 4 \; IAC97_Bit_Clk

Figure 3: OPB Audio Processing Unit (APU) Block Diagram

For connecting to the OPB, APU provides OPB interface witthidaster and Slave signals. Masters
signals are needed to implement DMA functionality of thetB&ulse-Width Modulation Channel (DMC).
The APU Core implements the functionality of the NES APU, auntbuts 16 bits data to the AC97 Con-
troller. The AC97 Controller implements the AC Link protb@nd provides register interface for AC97
Codec. AC97 Reset Logic makes sure that upon system reset éafec is initialized for playback. The
OPB APU consists of three clock domains. OPB interface iskald with the OPB system clock (25 MHZz).
The APU Core module is clocked with the NES clock (1.79 MHA)eAC97 Controller is clocked with the

AC97 Bit Clock (12.288 MHz). For more information about dtageneration see section 4.5.

4.3.2 OPB APU I/O Signals

The 1/0 signals for the OPB Audio Processing Unit (APU) astelil and described in Table 3. Detailed

information about OPB protocol and signals can be foundjin [3

D).

et to

38

nd-
e

)7

S

the
br'S
S.

| Signal Name | Interface| I/0 | Description

iIOPB_clk OPB | | OPB clock for OPB APU interface

iOPB._rst OPB | | OPB reset for OPB APU interface

iIOPB_.RNW OPB | | OPB read not write

iOPB_select OPB | | OPB Reset for OPB APU interface

iOPB_ABuUs OPB | | OPB address bus

iOPB_DBus OPB | | OPB data bus

iOPB_MnGrant OPB | | OPB master bus grant

iOPB_xferAck OPB I | OPB transfer acknowledge

oMn_request OPB O | Master bus request

oMn_ABus OPB O | Master address bus

oMn_DBus OPB O | Master data bus. Not used (constantly set to zerg

oMn_Select OPB O | Master select

oMn_DBusEn OPB O | Master data bus enable. Not used (constantly s¢
Zero).

oMn_RNW OPB O | Master read not write

oSInxferAck OPB O | Slave transfer acknowledge

0SInDBus OPB O | Slave data bus

IAC97_Bit_Clk AC97 I | Input clock for AC97 controller. Provides a 12.2§
MHz clock for the AC Link.

0AC97.Sync AC97 O | Output to the LM4550 codec. Defines the bour
aries of AC Link frames. Sync is a 48 kHz positi
pulse with a duty cycle of 6.25% (16/256).

0AC97_.SDataOut | AC97 O | Thisis the output for AC Link Frames from an ACY
controller to the LM4550 codec

IAC97_SDataln AC97 I | Not used. (This is the input for AC Link Frame
from the LM4550 codec to an AC97 controller)

0AC97_Reset AC97 O | This active low signal causes a hardware reset of
LM4550 codec which returns the control registe
and all internal circuits to their default condition
Triggered on the OPB reset signal.

INES_clk I | NES CPU clock (1.79 MHz)

Table 3: OPB APU I/O Signals

4.3.3 Design Parameters

Table 4 lists and describes the features that can be pandzeete the OPB Audio Processing Unit (APU).

| Parameter Name | Feature/Description | Allowable values | Default value|
C_BASEADDR Base address for periph-0x00000000 to Oxffffffff, with the| OxffffffOO
eral on OPB bus constraint that the range should be

greater or equal than Ox5c (23 8-
bits register * 4), where the range |is
C_HIGHADDR- C_.BASEADDR + 1

C_HIGHADDR Highest OPB address0x00000000 to Oxffffffff Oxfrffffef
within peripherals
address range

DMC_MEMORY | Base address of the mem-0x00000000 to Oxffffffff 0x80400000

ory designated for DM(C
samples storage

Table 4: OPB APU Design Parameters

4.3.4 OPB APU Register Description

The OPB APU registers are listed and described in Table 5.0RIB APU registers are organized in the
same manner as the register of the NES APU, as specified ik§6ldetailed information about NES APU

registers organization please refer to Appendix A.

4.3.5 Additional Constraints

The OPB Audio Processing Unit (APU) communicates with the@ACodec. To configurate physical con-
nections between the AC97 codec and the FPGA pins somesnt&d to be added to the UCF file. For

more information consult the submittsgistem.ucf file and/or the board schematic [12].

4.3.6 APU Core

The APU Core implements the functionality of the NES APU, antpbuts 16 bits data to the AC97 Con-
troller. The APU Core interface is described in Table 6.

The architecture of the APU Core is displayed in Figure 4. osists of five channels: Rectangle
Channel 1 and 2, Triangle Channel, Noise Channel and the DR&h@I. The Frame Sequencer module
generates clock needed by the channels. The Channel Miiemnderes the final output of the APU Core

module. In the rest of this section we provide block diagramd short description of each module of the

Register Namg Size | Address Offsef Initial State| Description

Register4000 | 8 0 0x10 Rectangle channel 1 register 1
Register4001 | 8 4 0x00 Rectangle channel 1 register 2
Register4002 | 8 8 0x00 Rectangle channel 1 register 3
Register4003 | 8 12 0x00 Rectangle channel 1 register 4
Register4004 | 8 16 0x10 Rectangle channel 2 register 1
Register4005 | 8 20 0x00 Rectangle channel 2 register 2
Register4006 | 8 24 0x00 Rectangle channel 2 register 3
Register4007 | 8 28 0x00 Rectangle channel 2 register 4
Register4008 | 8 32 0x10 Triangle channel register 1
Register400A | 8 40 0x00 Triangle channel register 2
Register400B | 8 44 0x00 Tirangle channel register 3
Register400C | 8 48 0x10 Noise channel register 1
Register400E | 8 56 0x00 Noise channel register 2
Register400F | 8 60 0x00 Noise channel register 3
Register4010 | 8 64 0x10 DMC channel register 1
Register4011 | 8 68 0x00 DMC channel register 2
Register4012 | 8 72 0x00 DMC channel register 3
Register4013 | 8 76 0x00 DMC channel register 4
Register4015 | 8 84 0xOf Status register

Register4017 | 8 92 0x00 Frame register

Table 5: OPB APU Registers

| Signal Name | I/O | Description |
iRegister40xx | | 8 bit register. Asynchronous signal. See Table 5 for regdgscription.
iWx I Asynchronous signal raised upon write to the corresponcigister.
oDMA _req O | DMA request signal.
OoDMA _address| O | DMA address (16 bits)
iDMA _ack I DMA acknowledgement signal
iDMA _data I DMA input data (8 bits)
0IRQ O | Interrupt signal. Currently not implemented.
oData O | APU Core output derived by mixing the outputs of all chann&&bits.

Table 6: APU Core Interface

APU Core. Full specification of the APU channels can be founj@, 8, 9, 7]. Register organization can be

find in the Appendix A.

Channel
Mixer
iRectangle1 oData
iRectangle2
iTriangle

| iNoise
iDMC

DMC
Channel
Rectangle Rectangle Triangle Noise iReset oData

Channel 1 Channel 2 Channel Channel iEnable
oDMA_req

iReset oDatal— |iReset oData|—1 iReset oData|—] iReset oData |
{Enable iEnable iEnable {Enable oDMA_addr
iClocks iClocks —iClocks | iClocks iDMA_ack
iRegisters iRegisters iRegisters iRegisters IDMA_data
iWs iWs iWs iWs iRegisters
iWs

A A A A A

Frame
sequencer

iReset oClock
iMode

A

Figure 4: Audio Processing Unit (APU) Core Block Diagram

Frame Sequencer Frame Sequencer generates needed frequencies for Voluneea®w®, Length Counter,
Frequency Generator and Linear Counter. These are thargibdocks of the APU Core channels. Fre-
guencies are derived using counters and the NES clock apandlock. Generated frequencies are denoted

in Table 7.

Output signal name Frequency |

oLengthclk 120 Hz (mode == 0) or 96 Hz (mode == 1)

oEnvelopeclk 240 Hz (mode == 0) or 192 Hz (mode == 1)

oLinearclk 240 Hz (mode == 0) or 192 Hz (mode == 1)

oSweepclk 120 Hz (mode == 0) or 96 Hz (mode == 1)

IRQ_clk 60 Hz (mode == 0). For mode == 1 this output is constantly 0.

Table 7: Frequencies generated by the Frame SequenceunehRées depend on the input signabde

Rectangle Channel The Rectangle Channel generates rectangle waveforms. ldble diagram of the
Rectangle Channel is shown in the Figure 5.
The Frequency Generator generates the frequency of thetowgve and implements the frequency

sweep. If theiSweep_enable is set to 0, the frequency is determined Bdock-lres: - Otherwise the

10

frequency is constantly updated with the frequengyece-dectlicd - period is updated as shown in
Table 8.

The Length counter is used to set the total duration of theeWwamn. Duration (8 bit) is defined by
encoding the valuéDuration. The enconding table is implemented using LUTs. When thgtte@ounter
reaches zero, the channel is muted.

The Volume Generator determines the volume (4 bits) of theefeam. Ifi Enable is set to 1 the volume
is determined by théVolume. Otherwise, the volume is constantly decreased by 1 withfréguency

E"Z’gff;y%‘;’;ﬁeq When it reaches zero it will (1) stop (channel muted) or (Bapvaround, depending on

the value ofi Enable_loop signal.

| iISweepmode | New period \
0 current_period + (current_period >> iSweep_shift)
1 current_period — (current_period >> iSweep_shift)

Table 8: Calculation of the new period for the frequency sveeocumentation [6] reports that terml
should be added for Rectangle Channel 1 when iSweege is 1. This is not currently implemented.

Rectangle
generator enable ﬁ
iReset oData J
Frequency iEnable
t
generawr iDuty_cycle_type
iSweep_clk oData A ’m .
iSweep_reset g oData
iSweep_enable Length !Reset oData
iSweep_refresh_rate counter iEnable
i : iEnvelope_clk
iSweep_mode iReset oData || |
iSweep_shift iEnable iVolume
iPeriod_reset iLength_clk iDecay_rate
N .) iEnable_loop
iPeriod iDuration

Figure 5: Rectangle Channel Block Diagram

Triangle Channel The Triangle Channel generates triangle wave forms withba resolution. The block
diagram of the triangle channel is shown in the Figure 6. keaqy of a generated waveform is determined
by the Clock Divider which divided the NES clock frequency ddyivider. The Length Counter and the

Linear Counter determine the duration of the output wave.

11

Noise Channel The main component of the noise channel is Random Genevdimh as output produces
pseudo-random binary sequences. The block diagram of tise othannel is shown in the Figure 7. It is
capable of producing 93-bit (short) and 32,767-bit (lorgguences. The type of sequence is defined by the

1M ode signal.

Delta Pulse-Width Modulation Channel The Delta Pulse-Width Modulation Channel (DMC) as an out-
put provides PCM sample. For generating PCM samples chaises| Delta Pulse-Width modulation and
Direct Memory Access (DMA). The block diagram of the DMC chahis shown in the Figure 8.

Using direct memory access, the DMC channel fetches oneabyte time from dedicated DMC mem-

ory. The DMA Sample Counter register defines the number aédthiat needs to be fetched. The DMA

C_)Ic_)ck Triangle
divider generator 0
i oData
IReset oClk iReset oData
IEnable J iEnable
iDivider A
Linear bl |
Length counter enable
counter iReset oData
iReset oData iEnable
iEnable iLinear_clk
iLength_clk iControl_flag
iDuration iDuration
Figure 6: Triangle Channel Block Diagram
Random
generator enable ﬂ
iReset oData J
dC'IC')de iEnable
— J Mode Volume
iReset oClk
iEnable A generator | 0 oData
iDivider Length ?Reset oData
A counter iEnable
iReset oData || iEnvelope_clk
iEnable IVolume
iLength_clk iDecay_rate
iDuratio; iEnable_loop

Figure 7: Noise Channel Block Diagram

12

Sample Address register contains the address from whichetkiebyte should be fetched. When the DMA
Buffer is empty,oDM A_req signal is raised, and theD M A_addr is set. When DM A_ack signal is
raised, the valuéD M A_data is valid, and is stored into DMA Buffer.

Clock Dividers produce two clocks, tliéycle_clock and theShi ft_clock, whereShi ft_clock is clocked
at 8x of theCycle_clock. If, on the positive edge of th€'ycle_clock DMA Buffer is empty, the cycle is
declared as silence cycle, and during that period the ch@naited. Otherwise, the output is determined
by the DMC Shift Register and the DMC Delta Counter. Theséstegs are clocked at th&hi ft_clock.
The bits shifted from the DMC Delta Counter are used as antiopthe DMC Sample Counter which is

up-down counter with clipping behaviour.

Clock ngse
Dividers Counter
. N DMA
iDMA_ack
- <:| Sample
iDMA_data DMA Stat Address
oDMA_req tate
oDMA_addr — Machine

A

DMC Shift DMC Delta

DMA Buffer > Register > Counter

A

Figure 8: Delta Pulse-Width Modulation Channel Block Deagr

Channel Mixer Channel mixer implements non-linear function which defitmesfinal 16 bit output of the

APU Core. As stated in [6], the output is defined with equation

95.88 159.79

output =
p 8128 1 7100

+ 100 . :
rectanglei+rectangle triangle | noise | dmc
gre1 grez 8227 T 12241 T 22638

whererectangley, rectangles, noise, triangle represent 4 bit outputs from the corresponding channel, and
dmc represents 7 bit output from the DMC channel. For efficientlementation in the FPGA we use an

approximation proposed in [6]. This is accomplished usiheeBtry table for two rectangle channels and a

13

203-entry table for the triangle, noise and the DMC channel.

95.52

rectangle_table[n] = | M R ———
BI280 1 100

]

163.67

tnd_table[n] = | M x B0, 100

]

M represents scaling factor to get 16 bit result. We lse= 2°. Based on these equation, the initialization

code for tables is automatically generated. The final ougptlten calculated using equation

output = rectangle_table[rectangle; + rectangles] + tnd_table[3 x triangle 4+ 2 * noise + dmc]

4.3.7 AC97 Controller

The audio system on the XUP Virtex-Il Pro Development Systemsists of a National Semiconductor
LM4550 AC97 audio CODEC [5] paired with a stereo power amgilifiTPA6111A) made by Texas Instru-
ments. The LM4550 DACs have 18-bit resolution, and sampeirethe range 4 kHz - 48 kHz.

The AC97 Controller implements the AC Link protocol for commnicating with the LM4550 chip. We
have modified AC97 Controller, version 2.00.a, developedviike Wirthlin which comes with the EDK
XUPV2P Pack. More information on this IP can be found in [1@riginally, this AC97 controller is
a standalone OPB peripheral, providing slave OPB interéaw asynchronous FIFO for crossing OPB-
AC97 clock domains. As we have incorporated this logic into APU OPB we do not use original AC97
Controller OPB interface. Furthermore, as output of the APRB is continous signal which yet needs to
be sampled, we do not use asynchronous FIFO. Good desorigtihe AC97 Controller and the AC Link

Protocol can be found in [4].

4.4 OPB Block RAM (BRAM) Interface Controller and Block RAM (BRAM) Block

The BRAM Block is a configurable memory module that attacleea wvariety of BRAM Interface Con-
trollers. We used verion 1.00.a. More Information on this#® be found in [15].

The OPB BRAM Interface Controller is the interface betwdan®PB and the BRAM block peripheral.
We used verion 1.00.a. More Information on this IP can bedanri14].

In our design, these components are used to store and essagivples for Delta Pulse-Width Modulation

14

Channel. For that reason, theBASEADDR parameter of the OPB BRAM Interface Controller slaobe

set to the same value as the DMMEMORY parameter of the OPB Audio Processing Unit (APU).

4.5 Digital Clock Manager (DCM) Module

The Digital Clock Manager (DCM) primitive in Xilinx FPGA ptr is used to implement delay locked loop,
digital frequency synthesizer, digital phase shifter, afigital spread spectrum. We used version 1.00.a.
More information on this IP can be found in [13]. In our desige use two instances of this module. The
first one,dem_0 is used to generate OPB system clock (25 MHz) by dividing irghack by 4. The second
one,decm_nes_cpu is used to generate frequency of 1.79 Mhz, which is the frequef the original NES

CPU. This is derived by dividing the output clock of the firsE® by 14.

4.6 OPB Microprocessor Debug Module (MDM)

The Microprocessor Debug Module (MDM) enables JTAG-basellidging of one or more MicroBlaze
processors and/or PowerPC 405 processors. We used ver8iba.2More information on this IP can be
found in [17]. We do not use this IP for hardware debuggingitsmh; instead we use only its JTAG UART

module to communicate with the XMDStub running on the Midiant2.

4.7 OPB UART Lite

The OPB UART Lite (v1.00b) module connects the OPB bus to énialsport of the board. This allows the
user to interact with the MicroBlaze by sending and recgiéharacters over the RS232 port via the OPB.
More information on this IP can be found in [11]. It was usedinly development process for debugging

purpose. It is obsolete in the final design.

4.8 APU Driver

The APU Driver is a simple C program executing on the Micra@larocessor and driving the OPB Audio
Processing Unit (APU). Its main is shown in Figure 9. The tafskie APU Driver is two -fold: to initialized
DMC dedicated memory and to simulate NES CPU instructiongializtion of the DMC memory is done
using arraysicm_address anddcm_data . For simulating the NES CPU, APU Driver uses arregtay ,

address ,data and parameteBLOWFACTORDelays between instructions are simulated using a simple

15

loop with variable number of iteration. Details about constion of used parameters and arrays can be

found in Section 4.

//Memory initialization for DMC
for (i = 0; i < DCM MEM SIZE; i++)
{
XTIo Out8 (XPAR OPB BRAM IF CNTLR O BASEADDR + dcm address[i], dcm datalil]);
}

for (i = 0; 1 < NUM_OF_INSTRUCTIONS; i++)

{
//Simulate delay between NES CPU instructions
for (j = 0; j < SLOW_FACTOR * delayl[i]l; J++);

//Write to APU registers
XTIo Out32 (XPAR APU OPB 0 BASEADDR + 4*address[i], datalil);
}

//Silence all channels
XTo Out32 (XPAR APU OPB 0 BASEADDR + 84, 0);

Figure 9: APU Driver Source Code

5 NSF Translation

During the NSF Translation procedure, input NSF file is tiatiesl into C header file which will be added to
the APU Driver and executed on the MicroBlaze. For implenmgnthe NSF Translation, open source C++
NES emulator is used. More information about used emulatoroe found in [1].

The following modifications are done with the used NES enaulaEirst, new classi PU _Analyze is
created. This class implements methods for capturing svtdeAPU registers, initialization of the DMC
dedicated memory and generating output C header file. Thwresponding calls to the methods of this
class have been inserted. All the calls are coupled with cemiidSF TRANSLATIONso they can be
easily tracked.

Delay between NES CPU instruction is calculated as a funafdhe NES CPU clock cycles. We used

a small training set of several NSF files, and determineddélaty can be represented with equations:

SLOW _FACTOR =T % 10° x (

10 * total_number_of _cycles)—0.96345
NUM_OF_SECONDS

16

delay(i) = SLOW_FACTOR % (cycle(i) — cycle(i — 1))

, Where cycle(i) denotes the current cycle number of the NES CPU when execuistruction .
NUM_OF_SECON DS represents the duration of the song, i.e. only the fit6tA/_OF_SECONDS
seconds of the song will be translated (and consequentje@)a This constraint is addedd due to the finite
amount of the available memory for storage6@KB).

Sample file generated during the NSF Translation is showrigaré 10. At the begining of the file,
information about used channels is displayed. Addressed@MC samples are relative to the base address
of the DMC dedicated memory. Addresses of the APU registerelative to the base address of the OPB
APU core and divided by 4. Generated information is used byNRU Driver as explained in the previous

section.

//Auto-generated file
//STATISTICS

//Used Channels:
//Rectangle 1
//Noise

#idefine NUM OF INSTRUCTIONS 2403
#idefine SLOW_FACTOR 23
#define DCM MEM SIZE 589

static const unsigned int dcm address[DCM MEM SIZE] = {..};

static const unsigned char dcm data[DCM MEM SIZE] = {...};

static const unsigned char address[NUM OF INSTRUCTIONS] = {...

static

static

const

const

unsigned

unsigned

char data[NUM OF INSTRUCTIONS] = {...

short int delay[NUM OF INSTRUCTIONS] = {...

Figure 10: Sample file generated during the NSF Translatioogalure

17

6 Description of the Design Tree
The submitted directory has the following structure:
e readme.txt
Describes the structure of the design directory

e \demo

The lab demo. Includes

— \nsf - Sample NSF files
— \sample files - scripts called from the ppt presentation
e \doc

Documentation files. These include:

Draft Project Proposal

Project Proposal

Presentation

Group Report

e \emulator

Used emulator, Blargg’s NES APU. Includes:

— \apu - standalone software NES APU

— \player - modified NSF emulator

— \Debug - contains the player.exe, emulator executable which asgart takes NSF file
— \vanilla _versions - original sources codes

— nes.sln - Visual C++ 2008 Express Edition solution
e \scripts

— download.bat - automatizes the proces of the bitstream download

18

— nsf _player.bat - automatizes the process of translating the NSF file, doadhig and run-

ning executable

— synthesis.bat - automatizes the synthesis process (warning make cleabengialled first)

e \system

Contains the XPS project. APU OPB HDLs, and data files can tiedidn \pcores directory.

NOTE: All links are hardcoded. Original path of this diregtevasd/ece532/project . So, in order

to use scripts you should adjust the links to point to yourentrdirectory.

References

[1] Blargg’s Audio Libraries (http://www.slack.net/"ant/libs/audio.html)

[2] Patrick Diskin.Nintendo Entertainment System Documentation

[3] IBM. On-Chip Peripheral Bus, Architecture Specification, Mans?.1 April 2001.
[4] Wendy Cheung Leonard Sid/oice Over IR 2004. ECE532 Group Report.

[5] National Semiconductot.M4550: AC 97 Rev 2.1 Multi-Channel Audio Codec with Stereadiphone
Amplifier, Sample Rate Conversion and National 3D Spa004.

[6] Brad Taylor.2A03 Technical Reference
[7] Brad Taylor. Delta Modulation Channel Tutorial 1.0
[8] Brad Taylor.NES APU Sound Hardware Reference
[9] Brad Taylor. The NES Sound Channel Guide.1.8
[10] Mike Wirthlin. OPB AC97 Controller Brigham Young University.
[11] Xilinx. OPB UART Lite (v1.00hYuly 2004. Datasheet.
[12] Xilinx. XUP Virtex-1l Pro Development System Board Schematavember 2004.
[13] Xilinx. Digital Clock Manager (DCM) Module (v1.00aDecember 2005. Datasheet.
[14] Xilinx. OPB Block RAM (BRAM) Interface Controllddecember 2005. Datasheet.
[15] Xilinx. Block RAM (BRAM) Block (v1.00ahugust 2006. Datasheet.
[16] Xilinx. MicroBlaze Processor Reference Guide, Embedded DeveldpfiteEDK 8.2i, August 2006.
[17] Xilinx. Microprocessor Debug Module (MDM) (v2.0Qdebruary 2006. Datasheet.
[18] Xilinx. On-Chip Peripheral Bus V2.0 with OPB Arbiter (v1.108ugust 2006. Datasheet.

19

7 Appendix A: NES APU Register Map

This appendix describes the NES APU registers organizalibe register of the implemented OBP APU IP
are organized in the same manner.

length counter
disable / envelope
decay looping enable

7 6 E% 3 2 1 0 7 6 5 4 3 2 1 0

REGISTER 1 REGISTER 2
H_/ %/—/
duty cycle volume / envelope / sweep sweep
type decay rate sweep refresh shift
envelope decay enable rate sn\;vsde:
disable
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
REGISTER 3 REGISTER 4
LSB of period length counter MSB of period
initial value

Figure 11: Rectangle Channels registers organization

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
REGISTER 1 REGISTER 2
length counter linear counter LSB of period
disable / linear initial value
counter start

REGISTER 3

length counter MSB of period
initial value

Figure 12: Triangle Channel registers organization

20

length counter
disable / envelope
decay looping enable

765/43210 7 6 5 4 3 2 1

REGISTER 1 REGISTER 2
NOT ‘ volume / envelope LII\ISOE-II-D period
USED decay rate random index
envelope decay generator mode
disable

REGISTER 3
length counter NOT USED
initial value
Figure 13: Noise Channel registers organization
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1
REGISTER 1 REGISTER 2
/ —
IRQ NOTUSED ,eriod index DMC Delta Counter
enable NOT initial value
loop USED
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1
REGISTER 3 REGISTER 4
DMC Sample Address DMC Sample Counter
initial value initial value

Figure 14: DMC Channel registers organization

21

