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Introduction
The Nintendo Entertainment System is an 8-bit videogame system that was extremely popular during the late 1980s.  The NES consisted of three primary components: a 6502 microprocessor with an integrated audio processing unit and a graphics chip called the Picture Processing Unit (PPU).  
NES games are still popular today, but functional NES consoles are becoming increasingly hard to find.  This has led to the rise of software emulators which simulate the NES.  However, these emulators cannot work with the original cartridges or controllers and normally require a complex CPU and operating system in order to run.  In addition, these emulators may contain quirks in order to emulate hardware behavior in software.
The goal of this project is to create a functioning NES PPU that can be integrated with a 6502 microprocessor and other systems in order run native NES machine code.  For the scope of the project we plan to fully implement all NES PPU functionality and the bus interface.  The video will be output to a VGA monitor.
Project Overview
The PPU writes to the screen using background images and sprites stored in PPU specific memory.  In addition to the image data, the position and palettes of the images are stored in memory.  The CPU communicates with the PPU through eight memory-mapped registers.  The original 6502 CPU runs at 1.79 MHz and the PPU runs at three times this speed (5.4MHz).  For this project the CPU used will be a Microblaze processor running at 100MHz and communicating through an OPB bus bridge.
The architecture proposed for this project includes all features of the original NES system and is depicted in Fig. 1. The system consists of four major parts: (i) an interface between the PPU and the CPU through the OPB bus; (ii) the PPU rendering pipeline; (iii) VGA module; and (iv) software demos to show the capabilities of the PPU. Each part is therefore assigned to different group members. 
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Figure 1 - The proposed architecture for NES system to be implemented on the Xilinx multimedia board

In order to ensure the compatibility of the final components, four primary modules were specified: the VGA output subsystem (vid_out), the PPU rendering pipeline (ppu), the OPB interface (ppubridge) and the clocking scheme (NES_clks). This module generates different clocks: 1.79MHz (to resemble the 6502 processor of original NES processor), 5.4MHz (the frequency of PPU), 21MHz and 25MHz for operation of VGA controller.  The three modules vid_out, ppu and NES_clks were all instantiated in the ppubridge module during integration.
Outcome
The overall design worked well by the end of the design process and all modules are functional.  Nearly all planned features were implemented and are functioning correctly.  However, there are a number of areas where the design could have been improved, were more time available.

The design is able to display sprites and backgrounds to the screen.  It was possible to control the location and visibility of the sprites and backgrounds via the Microblaze, allowing animation of scenes.  The Microblaze processor could also write to the PPU memory.  It is also possible to scroll the background and change the scrolling by interrupting rendering.  Sprite flipping is supported.

One problem that was present in the final design is that the 1.79MHz clock domain was not used.  The original goal was to have the OPB -> NES bus bridge translate from the 100MHz OPB bus to the 1.79MHz NES bus and interface with the PPU running at 5.4MHz.  We made this implementation decision in order to ease integration with the 6502 processor, which runs at 1.79MHz in the NES.  The final design only used the 5.4MHz clock in the OPB bridge.

Another problem encountered was the inability to read from palette or sprite RAM.  However, this feature is very rarely used in practice, which was why it was not found earlier or fixed.

Areas for future improvement:

· Color emphasis bits

· The original PPU had support for 2 color emphasis bits which would shift the palette towards a particular color, for instance blue.  This would turn all colors in the palette bluer.  This feature was not commonly used, however.

· Integrate a 6502 processor

· The original NES used a modified 6502 processor running at 1/3rd of the speed of the PPU.  Our design used a soft MicroBlaze processor running at 100MHz, and used a bus translator to communicate with the PPU.  An improvement would have to use a 6502 processor and directly connect it to the same bus as the PPU.  This would allow native NES programs to be run.

· Support DMA transfers with CPU stalling

· The original NES could perform a DMA transfer to fill sprite RAM.  During these transfers the CPU would be stalled for the 512 cycles required to complete the 256 writes to sprite RAM

· Integrate the PPU/6502 with the NES sound unit

· Another group recreated the NES sound unit.  It should be possible to integrate the sound unit with the PPU and the 6502.  This would allow native NES programs to be run with sound support

· NES 5V controller/cartridge support

· Adding this feature would require external circuitry to shift the voltage levels from LVTTL to the 5V signal levels used by the NES.
PPU Bridge
Background and Motivation 
The PPU communicates with the CPU via a bus interface.  In this project the CPU is a soft MicroBlaze processor provided by Xilinx running at 100MHz, while the PPU only runs at 5.4MHz. The MicroBlaze is connected to peripherals, such as the PPU, via the OPB bus.

Fig. 2 shows a block diagram which contains the PPU, OPB bus, and MicroBlaze processor. The OPB bus is a master/slave bus that manages the communication between the MicroBlaze and PPU. In order to prohibit metastability issues while the CPU (i.e., MicroBlaze) communicates with the PPU, interface logic exists between these two units in order to facilitate the communication between the 100MHz clock domain and the 5.4MHz clock domain. 
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Figure 2 Interfacing between the MicroBlaze and PPU.
OPB Bus Data Transfer Protocol

The OPB bus works as a hub for data transfers. OPB bus sends and receives data on a 32-bit data bus and has a 32-bit address bus. The PPU is addressed at location 0x80000000 to 0x80000007 on the OPB bus.  Each memory location corresponds to one of the eight control registers that on the PPU. The PPU registers are a byte long, so the upper 3 bytes of the 32-bit word (32-bit) are all zeros.
A simplified procedure showing how the CPU reads a byte from a peripheral device is shown in Fig. 3 and described in the following consecutive steps:
1. OPB asserts the OPB_Select signal, this inform all peripheral devices that a read or write is going to happen.

2. Each peripheral should check the PPU address in order to see that the address is in its range of addressing or not. 
3. OPB also provides another signal OPB_RNW that shows the CPU is either going to read or write.

4. OPB also provides a signal OPB_BE that is not used in our PPU Bridge. This set of signals consists of 4 other signals each indicating the validity of the byte put on the 32-bit data bus.

5.  If the transfer of data by the peripheral is going to take more than 8 OPB clock cycles the peripheral must assert tout_ack (Timeout Acknowledge) signal in order to halt the OPB bus until it finalizes the job. 
6. Finally, when the peripheral device is finished and ready to transfer data to OPB it puts the Data (if OPB has requested a read) on the Data bus and asserts the X_ferAck signal only for one cycle. 

   Caution: The data bus should only contain the data during the data transfer and after that the data should become zero, because the OPB bus ors all the Data busses from its peripheral to send it to CPU.
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Figure 3 The protocol of read from a peripheral by OPB
The write procedure is similar to read procedure. The only difference is that the signal OPB_RNW is zero, and no data should be put on the data bus by the peripheral device while asserting the Xfer_Ack for 1 cycle.
Interfacing between two clock domains

The communication between two clock domains is a crucial task. The common procedure to achieve it is either using: (i) double registering or (ii) using FIFO. Here, the PPU is designed such that it needs to receive data and addresses simultaneously; therefore a FIFO is selected as the first option to facilitate a proper data transfer between the OPB bus and PPU.
Fig. 4 shows a simplified diagram of the implementation of the PPU Bridge.  The diagram shows how two FIFOs are incorporated into the PPU Bridge to overcome the interfacing issue. 
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Figure 4 FIFOs used for facilitating the interfacing problem between 100MHz and 5.4MHz domain clocks
The PPU Bridge contains two always blocks; one working at 100MHz and the other at 5.4MHz. The 100MHz always block is responsible for reads and writes from the OPB bus using the previously specified OPB protocols.   All data and addresses (lowest three address bits only) and a bit (OPB_RNW bit) are wrapped into a single data word and sent to the sending FIFO. The 5.4MHz always block checks the FIFO’s empty signal to check if there is available data. If there is data available, it is read from the FIFO and sent to the PPU.  For read requests the PPU provides the data to PPU bridge and consequently PPU bridge wraps the data and address and sends it to the receiving FIFO. The other always block (100MHz) checks the empty signal of the receiving FIFO and reads the data from it. Finally, the 100MHz always block finishes the data transfer by asserting the Xfer_Ack signal for 1 cycle and zeroing the tout_ack signal.  
Each FIFO is built using the Xilinx core generator. The designed FIFOs have the following signals: (i) empty signal that shows no data is in the FIFO; (ii) two different clock inputs which are used for read and write data into the FIFO; and (iii) read_enable and write_enable signals to prompt the FIFO for a read or write.
Picture Processing Unit (PPU)
The PPU is a piece of custom logic that performs all drawing operations to the VGA framebuffer, under the command of a host microprocessor. Its main capabilities are to draw bitmaps (sprites) on top of a tiled background consisting of similar tiled bitmaps.

The original NES PPU, as well as our implementation of it, is a slave device meant to be controlled via memory-mapped access from a host microprocessor. In the original, it was the MOS 6502 processor, but in our implementation, it’s the MicroBlaze. It also generates interrupts, the purpose of which will be explained later.

Our PPU design attempts to maintain compatibility with the 6502 bus interface, and as such, needs to be wrapped with extra logic to interface to the OPB Bus and the Microblaze. The top-level pcore module (ppubridge.v) contains all of our custom logic including the PPU proper. Fig. 5 illustrates the PPU in the context of its surroundings inside the pcore wrapper:
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Figure 5 PPU context
Interface

The memory-mapped interface to the PPU consists of eight 8-bit memory-mapped ports, exposed to the OPB Bus through the wrapper. The functionality and semantics of these ports is identical to the NES PPU specification. The interrupt signal shown in the diagram is a rising-edge interrupt generated 60 times per second. It is used by the host CPU to synchronize drawing operations to the PPU’s internal state machine.

The internals of the PPU module (ppu.v) are shown below:
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Figure 6 PPU Modules
Here is a short description of what all the modules do:

nes_iface.v: Decodes reads/writes from the CPU into read/write requests for the PPU. When interfacing with the PPU bus via asynchronous FIFOs in the top-level ppubridge.v, this module is not strictly required. It acts mostly as a pass-through now.

regs.v: Many functions are implemented here. All of the address decoding for the eight memory-mapped registers is done here, and the ones that correspond to physical flip-flops are instantiated here. All access from the CPU is thus handled here, including reads and writes to VRAM. Since VRAM is shared by the CPU and the rendering modules, arbitration is also done in this module. The two rendering modules that share the VRAM (bg_fetch and sprite_fetch) request an address to read, and that address is forwarded to VRAM from regs.v.  Finally, the counters for drawing background tiles are also stored here, since they are tightly coupled to the VRAM address. When bg_fetch makes a request to read VRAM, these internal address counters are incremented.

vidmem.v: Two block RAMs are instantiated here: one for the NES Pattern Tables, and one for the Name and Attribute tables. Address decoding is done here to choose the proper block RAM according to the address. Pattern tables store the actual bitmaps used for rendering both sprites and backgrounds. Name Tables (and Attribute Tables, which are just 64-byte appendices to the end of each Name Table) store an index (a pointer) into the Pattern Tables for each of the 32x30 background tiles on the screen, and are thus only relevant for background drawing. Since in the original NES, the Pattern Tables are actually ROM, the contents of that memory are pre-initialized with a .hex file.

The memory map is as follows:  Pattern Tables 0 and 1 take up addresses 0x0000-0x1FFF and Name Tables 1-4 take up addresses 0x2000-0x2FFF.  There is only enough physical memory for two name tables, so the two other name tables are simply mirrors of the first two. All memory is 8-bits wide.

spr_ram.v: Stores the X,Y, Tile Number, and Special Attributes (4 bytes total) for each of the up to 64 sprites drawable by the PPU. These values are filled by the host CPU through regs.v.

in_range_evalulate.v: Contains a counter to iterate through all 64 possible sprites and access their contents from Sprite Ram. This process happens once per scanline, in order to determine which sprites are visible for drawing during the NEXT scanline.

spr_evaluator.v: For each sprite iterated by the in_range_evaluator, this compares the y coordinate of that sprite to the current y-coordinate to see if it should be draw during the next scanline. Up to eight such sprites can be recognized, and ther 4 values from Sprite Ram are dumped into Sprite Temporary Memory:

spr_tempmem.v: This is just a block of distributed ram to store the up-to-eight sprites found by the sprite evaluation process each scanline. The results (sprite x, sprite y, attributes, tile number) are compacted into 25-bit words.

spr_fetcher.v: During each scanline, this will read the contents of sprite temporary memory (filled during the PREVIOUS scanline) and fetch all of the bitmap data for up to eight sprites, and store them in the Sprite Buffers.

spr_buffers.v: There are eight buffers instantiated here. Each buffer is a shift register 4-bits wide and 16-bits deep, containing 4-bit pixels to be shifted out. When the current X position on the screen reaches the sprite’s starting X position, the bits are shifted out one at a time. A counter inside each buffer counts down until this time passes. Since the eight sprites might overlap, there is a priority mux inside to prioritize one shift register’s output over the other (this is done on the basis of sprite index 0-63 as originally laid out in Sprite RAM).

bg_fetch.v: Analogous to spr_fetcher.v, but this fetches background tile bitmaps. To determine which sprite bitmaps to fetch, it first makes a read to the Name Table, and uses the returned value as a pointer into a Pattern Table to look up the sprite. The sprite contents are dumped into the BG Buffer.

bg_buffer.v: Like the sprite buffers, this contains 4-bit-wide shift registers to shift out each 4-bit pixel as the screen is being updated horizontally.

composite_mux.v: The current background pixel being drawn and the current sprite pixel being drawn are prioritize over one another here based on a flag for each sprite that says whether it should be drawn in front of or behind the background. Its output is a 4-bit value that is “the” pixel to be drawing during this cycle.

palette.v: The 4-bit pixel generated by the rendering pipeline is converted to a 6-bit index into the NTSC television color palette (which will be resolved into actual RGB values inside the top-level VGA Vid-Out module). Each palette thus contains 16 entries, which are programmable by the user to point to specific 6-bit NTSC colors by writes from the CPU (again done through regs.v). 

main.v: This contains two counters, one for X and one for Y, that are constantly counting and denote the current pixel being drawn on the screen. These counters are used to generate an address into the framebuffer for writing a pixel (the pixel’s colour value comes out of the palette during the same cycle). Also, certain values/ranges of X and Y will activate control signals to start/stop/reset the various parts of the rendering pipeline for both sprites and background. In essence, this is a state machine with a very large amount of states. The vertical retrace interrupt signal is held high during the last 20 scanlines of the screen.
Basic Operation

The PPU is constantly drawing and updating all 256x240 pixels on the screen, and the X/Y counters in main.v are always counting. Different values of these X and Y will trigger the various stages of the rendering process to start, and the sprite and background pipelines will fetch their data from video memory and eventually output pixel colour values to the framebuffer (along with the X and Y coordinates from main.v, that form the address to access the framebuffer with). During the last 20 lines of the screen, a vertical retrace interrupt is sent to the host CPU (the MicroBlaze). During this time, it may update the contents of VRAM (pattern and name tables, and the palette since it shares certain registers in regs.v). It may ONLY update the contents of VRAM during this interrupt because this is the only time during which the rendering pipeline is inactive and not drawing anything. Otherwise, contention would occur.

VGA Output Module
The VGA output module was created entirely by hand.  This module was coded from scratch for three reasons.  The first was to allow a palette lookup table to be used as the NES produces 6-bit color data with a custom palette and these values must be translated to RGB values.  The second reason was to allow a custom resolution (4x the NES resolution, 512x480) to be used as well as a custom clock frequency.  The final reason was that the original goal was to emulate the NES PPU behavior more closely.  We planned to avoid the use of a frame buffer and to control the video timing with the PPU.    However this goal was eventually dropped due to design problems, which will be discussed later.  

The module is fed by two clock signals generated by DCMs: the 5.4MHz video clock and the 25MHz VGA clock.  

The module uses two RAM modules.  One ram IP module was used as a palette look up table.  It had one read port.  The 6-bit NES pixel data was input as the address and the output was a corresponding 24-bit RGB value.  This RAM was initialized with NES palette RGB values.  The palette information was obtained online, and was originally produced by the colors coming from an original NES.

The framebuffer was created as an inferred two port memory array that was 6 bits wide and 61,440 elements long.  One port only allowed reads and the other only allowed writes.  The write port was fed by the NES, which would write the video output.  The read port was read by the VGA controller and fed to the palette lookup RAM.


[image: image7]
Figure 7 VGA output module block diagram

The module functions as follows:

The PPU writes 6-bit pixel data to the framebuffer, using the current pixel location as the address.  The VGA control logic performs reads as necessary and feeds the result to the palette lookup table.  The PPU write port uses the 5.4MHz clocks while the VGA read port uses a 25MHz clock.  In this way the 

The VGA controller reads each 256 pixel scanline from the framebuffer twice, outputting each pixel and scanline twice.  This results in an output resolution of 512x480, 4x larger than the original NES resolution of 256x240.

Before being sent to the VGA DAC and monitor, the pixel data is translated by the palette lookup table into RGB values.

The VGA timing signals were computed using the VGA General Timing Formula (GTF).  This formula defines how the VGA clock, Vsync, Hsync, blank times and resolution interrelate.  The Vsync, Hsync and Blank Z signals were computed from the resolution and clock timings using a program that implements the GTF.

X position and Y position counters are used to control what is being written to the screen.  These counters extend past the onscreen 512 horizontal pixels and the 480 vertical lines in order to keep track of the VGA timing information.  After the X counter passes 512 or the Y counter passes 480, the Blank Z signal is asserted.  Before these counters reset, the Vsync or Hsync signals are asserted for a number of cycles defined by the GTF.

The control signals are delayed two cycles before being output to the monitor, in order to make up for the delays from memory and the VGA DAC.
Software

 Background and motivation

The purpose of the software portion of the NES project is to show the capabilities of the PPU. The goal was to create software that does the following jobs: (i) modify the PPU memory only when interrupts are received from the PPU (i.e., VBlank interrupt) in order to have a smooth picture on the screen; (ii) move sprites on the screen according to the input it receives from the buttons on the development board; and (iii) scroll the screen to show two name tables connectively. 
The NES screen is divided into 32-by-30 tiles, each 8-by-8 pixels. The tile numbers to be drawn on the screen are stored in one to four nametables. Each nametable consists of 32*30 ( i.e., 960) tiles. 
The onscreen image consists of the two independent sets of objects: (i) background tiles and (ii) Sprite tiles. Sprite tiles have a priority over background tiles and every time the PPU only shows up to a maximum of 64 sprites onscreen; however, the total number of sprites is higher. The PPU has two different RAMs with the following jobs: (i) contain the background tiles with the data of each tile and (ii) contain the sprites which are going to be shown on the screen. The simplified schemes for both of these two RAMs are shown in Figs. 8 and 9.  
The first memory space can be through the PPU registers. The PPU RAM is accessed by register 6 (i.e., 0x80000006) and register 7 (i.e., 0x80000007), where the address is initially loaded into register 6 by writing twice into it (first write is considered to be the upper 6-bit address and the second write is considered to be lower 8-bits of addresses) then the data is loaded into register 7 to be written to the specified location.
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Figure 8 Structure of the PPU-RAM
The sprite RAM is accessed by registers 3 and 4 (i.e., 0x80000003 and 0x80000004).  Each sprite consists of four bytes of data which are stored sequentially. Fig. 9 shows the detailed structure of each sprite in the sprite RAM. 
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Figure 9 - Structure of the Sprite RAM
Scrolling is provided by the PPU in order to free up the processor.  Fig. 5 shows how scrolling works. The part of screen that is shown is set by writing to the control register at address $2005 (address 0x80000005 on the OPB bus) of the PPU. The first write specifies the horizontal scrolling offset and the second write specifies the vertical scrolling. The scrolling sweeps across the four nametables (i.e., Nametable0…Nametable3) which are stored in the consecutive addresses of $2000 up to $3F00 in the PPU RAM. 
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Figure 10 - Scrolling between two consecutive Nametables (horizontal scrolling)
The objects shown on screen are a collection of different tiles put together in order to make a whole object.  For example, fig. 11 shows an example of how an object is stored in a data structure (e.g., ObjectMotorcycle). There are also four more similar objects in the fig. 11 which make up the obstacles. 
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Figure 11 - Different Objects representations inside software
Another important feature of the program is that it stops scrolling of some parts of the screen during rendering. This feature is included because the score or time shown on the screen is should not be scrolled. This is done by stopping the scrolling at the time rendering is sweeping those specified rows of the nametable. Therefore, the program waits using a delay loop until rendering has reached the target and turns off scrolling by writing zero to register 5 (i.e., ox80000005). 
Description of Design Tree

	File path or Filename
	Description

	code
	Demo software

	
lab3.c
	Demo program – scrolls part of the screen, allows sprites to be moved using buttons on the board.

	
block.c
	Demo program – shows writes to nametable, sprite memory and shows sprite rendering features.

	
	

	pcores/ppubridge_v1_00_a
	The PPU including the OPB bridge.

	
	


Conclusions

In this project we succeeded at our goal of recreating the PPU found in an original NES.  The system created provides a simple graphics controller that can be integrated with other components to recreate an NES, or used with other systems to provide video output.  The PPU implements all of the commonly used graphical features used by NES games.  This project can be easily extended to create a full NES system.
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