
 

  

Group Report 

  

 

 

Real Time Color Replacement 

ECE 532 design project 2009 

Chang Liu (995416250) 

Andrei Bajenov (995478763) 

Jeffery Sham (995384310) 

 

April 9, 2009 



2 | P a g e  

 

Table of Contents  

                              PAGE 

1. Overview  .............................................................................................................. 3 

1.1    Goals   ............................................................................................ 3 

1.2    Project Background    ..................................................................... 3 

1.3    Invisibility Effect   ......................................................................... 3 

1.4    System Block Diagram   ................................................................ 5 

1.5    Brief Description of IP    ................................................................ 5 

1.6    Clock Domain     ............................................................................ 7 

 

2. Project Outcome   ................................................................................................. 7 

2.1    Review of Original Plan   ............................................................... 7 

2.2    Our Final Product    ........................................................................ 8 

2.3    Suggestions For the Future     ......................................................... 8 

 

3. Description of Blocks     ....................................................................................... 9 

3.1    MicroBlaze    .................................................................................. 9 

3.2    PLB Bus   ..................................................................................... 10 

3.3    IIC Interface     ............................................................................. 11 

3.4    TFT Controller    .......................................................................... 11 

3.5    MPMC Controller    ..................................................................... 12 

3.6    Decoder Logic     .......................................................................... 12 

3.7.1   IP_to_Mem Custom Logic    ........................................................ 12 

                        3.7.2   Color Detection Algorithm    ....................................................... 15 

3.8      Mem_to_IP Custom Logic    ........................................................ 16 

3.9      Connection between IP_to_Mem and Mem_to_IP   .................... 18 

 

4. Description of Our Design Tree    ....................................................................... 19 

 

5. Reference    ......................................................................................................... 20 

 

6. Appendix    .......................................................................................................... 21 

6.1    PLB Burst Write Timing Diagram    ............................................ 21 

6.2    PLB Burst Read Timing Diagram    ............................................. 22 

6.3    PLB Single Beat Read Timing Diagram    ................................... 23 

 



3 | P a g e  

 

OVERVIEW 

1.1 Goals  

The goal of our project was to develop a system which performs real-time color replacement of a 

video stream.  In particular, our system will detect a certain colored pixel in the video frames and 

alter it with a pixel from a different image in the video output. Using this concept, we are not 

only able to implement a simple commercial Chroma Key using only hardware, but to also 

develop a device that can make you completely invisible on camera! 

 

1.2 Project Background  

Chroma keying, more commonly known as “green screening”,  is a technique used in movie 

production to film scenes that are too difficult to achieve with props, set pieces, and other special 

effects. In Chroma keying, the actor performs a scene in front of a coloured screen and later, the 

specified colour is filtered out and replaced with the desired background.  There are a number of 

subtleties involved in perfecting Chroma keying that makes it a tedious process. This includes 

correctly defining the colour to key out in order to avoid “colour bleeding” and applying even 

lighting on the backdrop and subject to achieve the best contrast.  However, for the purposes of 

our application, we are more interested in demonstrating that the process can be done in real-time, 

and will accept the slightly lower quality result given the limitations of our lighting and backdrop 

equipment. Thus, our goal is to be able to take in video frames from the camera, detect the pixels 

with a backdrop colour, and replace them with an image that is saved in memory. In order to 

satisfy the real-time criteria, the processing should be fast enough that when the foreground 

(subject) changes, there is no detectable glitch in the video output. 

  

1.3 Invisibility Effect  

The trick behind the invisibility effect is taking a still shot of the background before the subject 

enters the set and replace the desired colour with the saved image to create the illusion that the 

subject has disappeared. This requires that the camera does not move and that the background is 

not changed. Failure to do so will cause discrepancies between the saved background and actual 

background, thus ruining the effect. In terms of the technical aspect, we first need to be able to 

save the background as a static frame somewhere in our memory. This will allow to know 

exactly what the background is at all times during the live stream even when something or 

someone is blocking it. There are key similarities in the implementation of Chroma key and the 



4 | P a g e  

 

invisibility effect that allowed us to achieve both with very little addition. In the original Chroma 

keying concept, the static image comes from non-volatile memory such as compact flash.  In the 

invisibility effect, the static frame comes from the initial frame input from the camera. In both 

cases, we would need to use memory for the frame and we must create our hardware so that it 

will read in lines of data for the pixel replacement. The slight extension in implementing the 

invisibility effect is the extra logic required in our hardware to save the initial frame into DDR 

memory. However, it should be noted that if our goal was only to replace one colour with 

another colour, we can simply modify the video stream as it streams to VGA and bypass one of 

our bigger challenges of utilizing memory in our design. The diagram below shows a high level 

layout of our system.      

  

 

 

 

 

 

 

 



5 | P a g e  

 

1.4 System Block Diagram   

 

1.5 Brief Description of IP   

Block Functionality  Origin 

IP block inside the FPGA 

Decoder_logic Coverts each pixel of the video frame 

coming from the vdec (composite) into data 

in RGB format.  

Modified from 

video_capture_0 from 

digilentinc.com 

IIC_interface  Sends instructions to the Vdec  Xilinx IP, replaces the 

I2C module used in 



6 | P a g e  

 

VideoCapture 

IP_To_Mem Detect the target color from the incoming 

frame, replace it with pixels from the 

Mem_to_IP module, and then stores 

altered frame into memory. 

Bus Master – uses burst write 

Custom Logic 

Mem_To_IP Read a frame from the memory and sends 

the data to the Ip_to_mem module 

Bus Master – uses burst read 

Custom Logic 

MicroBlaze_0 + dlmb + 

ilmb 

1. send commands and configs to the IIC.                   

2. used by XMD to write configuration data 

to the memory       

Xilinx IP 

MPMC_controller  It allows us to access the same piece of 

memory from multiple ports 
Xilinx IP 

PLB_bus Four PLB bus were used in this project:                          

1. Used for the microblaze to talk to the 

DDR and iic                                                                                               

2. Used between IP_To_Mem and memory               

3. Used between Mem_To_IP and memory                 

4. Used by the TFT to get data from the DDR              

Xilinx IP 

TFT_controller Reads a video frame from the memory and 

sends it to the VGA monitor to be displayed Xilinx IP 

Software block inside the MicroBlaze 

ddr_test.c This configures the iic hardware module Modified from 

video_capture_0 from 

digilentinc.com 

Devices outside the FPGA 

DDR memory The DDR stores the static image of the 

background, the incoming frame of the live 

video, and the 32-bit information that 

controls the color detection algorithm 

configuration. 

Given 

VGA monitor Display the output Given 

Video Camera  

Capture the video and streams it to vdec in 

composite format 
Self supplied 

Video Decode Chip (vdec) Reads the video from the camera through 

composite and sents the data to the 

decoder_logic   
Given 

 



7 | P a g e  

 

1.6 Clock Domain    

Component Clock Speed 

Video In 27MHz 

Custom Hardware (IP_to_mem, mem_to_IP), 

other system components 

100MHz 

DDR Memory 133MHz 

VGA 27 MHz 

 

The video in is in a clock domain of 27MHz which includes the Vdec, and decoder logic. The 

custom hardware runs at 100 MHz and this domain crossing is handled by the asynchronous 

double line buffer.  The DDR memory runs at 133 MHz, therefore the MPMC handles all clock 

domain crossing issues between system components (PLB Bus, custom hardware) which all run 

at 100 MHz.  Finally, the VGA output is running at 27 MHz and the crossing from 100 MHz to 27 

MHz is handled by the TFT. 

PROJECT OUTCOME 

2.1 Review of Original Plan 

Chroma Key has been the key application of our project since the beginning, but the invisibly 

effect was not realized until a little pass halfway point of this course. Initially in our proposal (in 

addition to the Chroma Key system), we decided to apply the video color detection concept to 

create a single player interactive game. See figure below for the game play setup.  

 



8 | P a g e  

 

The player interacts with the game system by motioning a small green mask (square) in front of 

the camera. When the player moves the mask, a square on the monitor will move 

correspondingly. The player can see himself/herself in the video output but the green mask is 

replaced by part of a background image, like a cut-through to another layer. The game begins 

when the player finds a small circle placed randomly on the screen in the background layer.  

Once detected, the circle will begin to move in random directions and the game’s objective is to 

keep the circle from leaving the scope of the green square mask on the monitor. Like all video 

games, this game system trains hand eye coordination, reflex, and the inverted aspect of the 

camera adds additional difficulty. 

 

2.2 Our Final Product  

As mentioned earlier, we decided to replace the interactive video game with an invisibility effect 

system. We decided to change system due to a number of reasons: 

- We also believe the invisibility effect is more innovative than a video game system.  

The interactive game idea has been implemented by groups in the past and is where 

we got the inspiration. In contrast, the invisibility effect has never been done before, 

which offered us more of a challenge. 

- Since this course is mainly based on hardware we did not want to commit too much 

time on developing a game, which would include a large portion of software.  

In the end, our system turned out to be successful. It performed fairly well under a reasonable 

range of lighting conditions and produced video output of acceptable quality.  In addition to the 

features specified in the proposal, we were also able to build our system so that it was easily 

configurable to use different replacement techniques and to detect different colours.  This was 

partially driven by a need to calibrate and debug quickly, but it turned out to be an excellent 

addition feature to the system.     

 

2.3 Suggestion for the future.  

In terms of hardware modification, it would be interesting to implement some of the more 

sophisticated colour replacement algorithms we came upon in our research. These algorithms 

involved using surrounding pixels in the replacement decision and we believe that may 

outperform the current algorithms employed especially in handling the edges of a replaced object. 

In our current strategy, only the current pixel being processed is taken into consideration in 

replacement, which sometimes fails at the edges since the way light reflects off these points are 

often different from the rest of the object.  The added difficult of implementing these algorithms 



9 | P a g e  

 

arise from the fact that more lines must be burst read and made available to the replacement logic 

per pixel. 

Another interesting concept worth pursuing is for the custom hardware to keep track of the 

percentage of pixels on frame that are replaced and use that to determine whether to recapture the 

background image.  For example, if less than 5% of the pixels are replaced, it would conclude 

that it is currently viewing the background and save it as a static frame.  Later when the 

replacement target comes on screen, it would not try to save background.  This notion of auto 

capture would allow for the background to change over time and even slow movement of the 

camera provided that the replacement target leaves the frame intermittently. This would 

compensate for one of the shortcomings of the current system, which only saves a background on 

initialization.  A further improvement could be to periodically recapture the regions of pixels that 

are not being replaced, which would allow the background to update even when the replacement 

object does not leave the frame. 

We can also improve the user friendliness of the system by building a menu and allow users to 

configure the device entirely through UART.  This is much easier than the current method which 

requires the user to refer to a table and input the correct configuration word into XMD and write 

to memory.  Using UART, the user can simply select the colour replacement options using 

keystrokes which is much more intuitive for a non-technical user. 

 

Description of the Blocks 

3.1 Microblaze_0 (MicroBlaze)  

The MicroBlaze is a built-in soft processor that was created for use in the FPGA. The processor 

is automatically created for us when we started the project wizard in EDK. Even though we did 

not make software applications in our system, (ie game code), we still used the Microblaze for 

two purposes:  

1. The Microblaze contains the configuration instructions that are used by the IIC 

interface. 

2. We used the XMD terminal to write the color-control word to a fixed memory 

location, and the XMD requires the existence of the Microblaze.  

 

 



10 | P a g e  

 

3.2 PLB Bus (plb_v64) 

PLB buses are obtained from the Xilinx IP catalog under the name of plb_v64. The PLB bus 

provides a connection between an optional numbers of PLB masters and slaves. It became the 

key transportation of data from one module to another. To eliminate bottleneck to the Memory, 

we used for PLB buses in our system,  

1. Used for the microblaze to communicate with the DDR and IIC  

2. Used between IP_To_Mem and memory                                                                                               

3. Used between Mem_To_IP and memory                 

4. Used by the TFT to get data from the DDR            

bandwidth calculation  

Video speed calculation 

Video Input Frame Size 858x525 pixels 

Pixel size  4 bytes / pixel  

Clock Speed  27 MHz 

Time to Process One Line 858 pixels / 27 MHz = 0.000032 s 

Bus speed calculation 

Our bus clock speed is 100 MHz 

Reading and writing burst speed  4 bytes / clock cyc 

Time to Burst one Line  640 pixels / 100 MHz = 0.0000064 s 

number of transactions  

                      - read the static frame  

                      - write the new modified frame into memory 

total number of transactions  2 

  

Burst time:  0.000013 s   

Allowed time:  0.000032 s 

  

 Although it seems that the bus has enough bandwidth to handle these two transactions, in 

practice it was not so. A word cannot be written on every clock cycle of the bus, because the 

buffers are not always ready.  Moreover it takes several cycles to setup a burst write / read.. As a 

solution, we created two separate blocks for reading (Mem_t_IP) and processing writing 

(IP_to_mem). And each block has its own PLB bus connecting to the memory. Not only did this 

give us more bandwidth, it also made our project easier to understand and debug.  See section 3.7 

and 3.8 for more detailed description of the two blocks. 



11 | P a g e  

 

3.3 IIC_interface and its configuration setting (ddr_test.c) 

 The IIC module (called xps_iic_0 in the edk IP catalog) is a PLB IIC Bus interface that can 

control many applications depending on its configuration settings. Our system used the IIC 

module to configure the Digilent VDEC1 Video Decoder board. Because the IIC IP core is a 

slave, it requires configuration instructions sent from the MicroBlaze in order to operates the 

VDEC1. That’s why we have added a ddr_test.c file to our system that does the configuration.  

We learned how to use this module by looking at the ‘video_capture_rev_1_1.zip’ example that 

was posted on the Digilent website (http://www.digilentinc.com/Products/ 

Detail.cfm?NavTop=2&NavSub=453&Prod=XUPV2P). We cannot simply copy all the 

connections and the configuration code from this example project due to a number of reasons. 

See table below. 

Video_capture_1 example What we need in our system  

• It uses  a PPC processor 

• We want to use the MicroBlaze 

processor  

• It uses  OPB bus • PLB bus instead of OPB 

• It uses the I2C module (outdated 

for  v10.1) 

• Because we are using the edk v10.1, it 

has the IIC interface instead of the I2C 

 

These modifications can be fixed by replacing the PPC, OPB and I2C in the video_capture to 

MicroBlaze, PLB and IIC, and also a few modifications in the ddr_test.c to configure the new 

IIC interface. (see ddr_test.c for more detail) 

Also, the example from ‘video_capture_rev_1_1.zip’ sends the video stream straight from the 

IIC interface to the VGA display, where in our system, we need to intercept that video stream 

from the IIC and be able to write each frame to memory. The interception of the video is done 

within our IP_to_mem custom module, so see section 3.6 and 3.7.1 for more detail.   

 

3.4 TFT controller (xps_tft_0) 

The XPS TFT controller is also an IP core from the EDK library. It connects to the PLB V4.6 

bus and act as a PLB master. Its job is to read the video pixel data from the PLB attached video 

memory, and in our case, it starts from memory address 0x90000000.  It handles a clock domain 

crossing and feeds the RGB data to a VGA monitor running at 27MHz.  

 



12 | P a g e  

 

3.5 MPMC & DDR Memory 

MPMC v4.03 (multi-port memory controller) is new to the Xilinx IP library starting in version 

10.1. It allows multiple buses to be connected to the same piece of memory through different 

ports, and the ports are able to access the memory in parallel of each other. From the block 

diagram and section 3.2, you can see that we opened up 4 out the 8 ports supported by MPMC. 

This feature was crucial to the success of our design since we found bottlenecks in transferring 

frames to and from memory which was solved by opening more ports and using additional buses. 

 

3.6 Decoder Logic  

The logic used for the decoder was mostly carried over from the videoCapture module and 

integrated into the IP_to_mem module. The components that were included for decoding were 

lf_decode.v, line_buffer.v, neg_edge_detect.v, pipe_line_delay.v, 

special_svga_timing_generation.v, svga_defines.v, vp422_444_dup.v, ycrcb2rgb.v. 

These modules performed the task of converting the data from composite format to RGB and 

also kept track of the VSynch and HSynch to determine new frame and new line.  

 

3.7.1 IP_to_Mem Custom Logic 

IP_to_mem operates as a finite state machine that saves a static frame in one memory region and 

them proceeds to save the live stream frames in another memory region.  Please refer to the state 

diagram below for visualization of the process.  The timing diagrams for the read and write 

operations are attach in the appendix for reference. 

Note: most signal driven were active low with the except of the requests which were active high.  

States Description 

Str_init, Set_init, Ack_init, 

Cmp_init 

These states are responsible for reading the configuration 

word.   

Str_init This is the first state upon reset. It waits until pixel_count=0 

to synchronize the finite state machine with the input for the 

write operation that takes place in later states. Bus address is 

set to the memory location of the configuration word. 

Set_init  Prepares for single beat read:  

1.set master type to single beat (IP2Bus_Mst_Type = 0) 

2. Raise master read request 



13 | P a g e  

 

3.Iindicate that the master is ready to read 

(IP2Bus_MstRd_dst_rdy_n= 0) 

Ack_init Our FSM then waits of a Bus2IP_Mst_rd_sof_n signal which 

signifies that the data is ready to be read. 

Cmp_init Signifies that the read has been completed. Transitions to the 

write operation (str state) 

Str,set,ack,cmp,st1 These states are responsible for the burst write. 

Note: the switching from static frame memory region to live 

frame memory region is handled by a separate piece of logic 

but the write operation is identical. 

Str Intermediate state before the burst write operation. 

Bus address switches to that of the live stream memory 

region. 

Set Prepares for burst write:  

1.set write type to burst (IP2Bus_Mst_Type = 1) 

2. Raise master write request 

3. indicate that data is ready (IP2Bus_MstWr_src_rdy_n = 0) 

4.Indicate beginning of burst write 

(REG_IP2Bus_MstWr_sof_n = 0) 

Ack Transition to ack occurs when the bus responds with an 

acknowledge and destination ready. 

The state returns to ack for 680 writes (MyCounter counts 

the number of writes) 

Cmp The burst write has completed. 

1.  Indicate end of burst write (REG_IP2Bus_MstWr_eof_n = 

0) 

St1 Intermediate state before returning to configuration word 

read operation.  

 



14 | P a g e  

 

 

Set_init

IP2Bus_MstWr_sof_n = 1;

IP2Bus_MstWr_eof_n = 1;

IP2Bus_MstWr_Req = 0;

IP2Bus_Mst_Type = 0;

IP2Bus_Mst_Reset = 0;

IP2Bus_MstRd_Req = 1;

IP2Bus_MstRd_dest_dsc_n = 1;

IP2Bus_MstRd_dest_rdy_n = 0;

IP2Bus_MstWr_dest_dsc_n = 1;

IP2Bus_MstWr_dest_rdy_n = 1;

Ack_init

IP2Bus_MstWr_sof_n = 1;

IP2Bus_MstWr_eof_n = 1;

IP2Bus_MstWr_Req = 0;

IP2Bus_Mst_Type = 0;

IP2Bus_Mst_Reset = 0;

IP2Bus_MstRd_Req = 0;

IP2Bus_MstRd_dest_dsc_n = 1;

IP2Bus_MstRd_dest_rdy_n = 0;

IP2Bus_MstWr_dest_dsc_n = 1;

IP2Bus_MstWr_dest_rdy_n = 1;

Cmp_init

IP2Bus_MstWr_sof_n = 1;

IP2Bus_MstWr_eof_n = 1;

IP2Bus_MstWr_Req = 0;

IP2Bus_Mst_Type = 0;

IP2Bus_Mst_Reset = 1;

IP2Bus_MstRd_Req = 0;

IP2Bus_MstRd_dest_dsc_n = 1;

IP2Bus_MstRd_dest_rdy_n = 1;

IP2Bus_MstWr_dest_dsc_n = 1;

IP2Bus_MstWr_dest_rdy_n = 1;

Str

IP2Bus_MstWr_sof_n = 1;

IP2Bus_MstWr_eof_n = 1;

IP2Bus_MstWr_Req = 0;

IP2Bus_Mst_Type = 0;

IP2Bus_Mst_Reset = 0;

IP2Bus_MstRd_Req = 0;

IP2Bus_MstRd_dest_dsc_n = 1;

IP2Bus_MstRd_dest_rdy_n = 1;

IP2Bus_MstWr_dest_dsc_n = 1;

IP2Bus_MstWr_dest_rdy_n = 1;

Str_init

IP2Bus_MstWr_sof_n = 1;

IP2Bus_MstWr_eof_n = 1;

IP2Bus_MstWr_Req = 0;

IP2Bus_Mst_Type = 0;

IP2Bus_Mst_Reset = 0;

IP2Bus_MstRd_Req = 0;

IP2Bus_MstRd_dest_dsc_n = 1;

IP2Bus_MstRd_dest_rdy_n = 1;

IP2Bus_MstWr_dest_dsc_n = 1;

IP2Bus_MstWr_dest_rdy_n = 1;

Set

IP2Bus_MstWr_sof_n = 0;

IP2Bus_MstWr_eof_n = 1;

IP2Bus_MstWr_Req = 1;

IP2Bus_Mst_Type = 1;

IP2Bus_Mst_Reset = 0;

IP2Bus_MstRd_Req = 0;

IP2Bus_MstRd_dest_dsc_n = 1;

IP2Bus_MstRd_dest_rdy_n = 1;

IP2Bus_MstWr_dest_dsc_n = 1;

IP2Bus_MstWr_dest_rdy_n = 0;

Ack

IP2Bus_MstWr_sof_n = 1;

IP2Bus_MstWr_eof_n = 1;

IP2Bus_MstWr_Req = 1;

IP2Bus_Mst_Type = 1;

IP2Bus_Mst_Reset = 0;

IP2Bus_MstRd_Req = 0;

IP2Bus_MstRd_dest_dsc_n = 1;

IP2Bus_MstRd_dest_rdy_n = 1;

IP2Bus_MstWr_dest_dsc_n = 1;

IP2Bus_MstWr_dest_rdy_n = 0;

Cmp

IP2Bus_MstWr_sof_n = 1;

IP2Bus_MstWr_eof_n = 0;

IP2Bus_MstWr_Req = 0;

IP2Bus_Mst_Type = 0;

IP2Bus_Mst_Reset = 1;

IP2Bus_MstRd_Req = 0;

IP2Bus_MstRd_dest_dsc_n = 1;

IP2Bus_MstRd_dest_rdy_n = 1;

IP2Bus_MstWr_dest_dsc_n = 1;

IP2Bus_MstWr_dest_rdy_n = 0;

Bus2IP_Mst_CmdAck = 1

Bus2IP_MstRd_sof_n = 1

P
ix
e
l_
c
o
u
n
t =
 0

Bus2IP_

MstRd_s

of_n = 0

P
ix
e
l_
c
o
u
n
t =
 1

Bus2Ip_Mst_

CndAck = 0

Bus2IP_Mst_CmdAck = 1

Bus2IP_MstRd_sof_n = 0

Bus2IP_MstRd_s

of_n = 1

Bus2IP_

MstWr_d

st_rdy_n 

= 0
Mycounter >= 680

(mycounter counts the 

number of lines writen)

Mycounter < 680

Read the color_control 

word from the DDR 

using single-beat read

Writes the processed 

frame into memory using 

burst write 

St1

IP2Bus_MstWr_sof_n = 1;

IP2Bus_MstWr_eof_n = 1;

IP2Bus_MstWr_Req = 0;

IP2Bus_Mst_Type = 0;

IP2Bus_Mst_Reset = 0;

IP2Bus_MstRd_Req = 0;

IP2Bus_MstRd_dest_dsc_n = 1;

IP2Bus_MstRd_dest_rdy_n = 1;

IP2Bus_MstWr_dest_dsc_n = 1;

IP2Bus_MstWr_dest_rdy_n = 1;

Bus2IP_MstWr_dst_rdy_

n = 1



15 | P a g e  

 

3.7.2 Color Detection Algorithm 

From the block diagram you will notice that the IP_to_Mem module also read a color control 

word from the memory. This 32 bit word contains the color detection parameters and method 

used in our detection algorithm.    

07152331

Intensity for 

Green / 

coefficient for 

Green

Intensity for 

Blue /    

coefficient for 

Blue

Intensity for 

Red / 

coefficient for 

Red

Color Detection 

method

Color control word

 

Our system is capable of detect 5 major types of colors: red, green, blue, white and black. We 

implanted two different methods for detecting our target color.   

Method 1 -  Specifying Threshold: 

 

- This method is more effective when you want to detect a very dark (black) or a very 

bright (white) color. 

- To detect a dark color you have to compare the pixel data from the line buffer with 

intensity threshold value stored in the color control word. If all three of the color 

signal (R, G , B) are greater than the required threshold values, then we say the 

condition is satisfied and that pixel will be replaced. 

- To detect a light color, you do the same thing, expect you want the RGB signal to be 

less than the required threshold value.   

- You can simply adjust how bright or how dark of a color that you want to replace by 

adjusting the intensity value in the color control word.  

 

     G > Gthreshold intensity, B > Bthreshold intensity, R > Rthreshold intensity   � to detect a dark color 

     G < Gthreshold intensity, B < Bthreshold intensity, R < Rthreshold intensity  � to detect a bright color 

 

Method 2 -  Specifying coefficients: 

 

- This method is more effective when you want to detect Green, Red or Blue.  

- In this method, you compare the intensity of that color that you want to detect with the 

sum of the other two colors.  



16 | P a g e  

 

- For example, if you want to detect green, all you have to do is make sure that the 

Green signal is more intensified than the sum of the Red and Blue signals.  

- We also multiplied the signal to an adjustable coefficient value for better result.  

- The coefficient value can also be easily adjusted from the color control word.  

 

      Gcoef * G > Bcoef * B + Rcoef * R  � to detect Green 

      Rcoef * R > Bcoef * B + Gcoef * G  � to detect Red 

      Bcoef * B > Gcoef * G + Rcoef * R  � to detect Blue 

As you can see, there are a total of 5 different sets of comparisons that we can do in our color 

detection logic (two for the specifying threshold method and three for the specifying coefficients 

method). The method that our color replacement logic decides to use is determined by bit 0 to 7 

of the color control word.  

 

3.8 Mem_to_IP Custom Logic  

 

Mem_to_IP is responsible for fetching lines from the static memory region and making it 

available to IP_to_mem to perform colour replacements.  The finite state machine used for burst 

reading from memory is as illustrated below. Timing diagrams are included as an appendix for 

reference. 

 

States Description 

Str_Read This is the first state upon reset. It waits until 

Buf_pixel_count=0 to synchronize the finite state machine 

with the IP_to_mem module. 

Set_Read Prepares for burst read: 

1.Set master type to bursting (IP2Bus_Mst_Type = 1) 

2. Raise master read request 

3.Indicate that the master is ready to read 

(IP2Bus_MstRd_dst_rdy_n= 0) 

Ack_Read Transition to ack_read occurs when the bus responds with an 

acknowledge. In this state, we can drop the read request.  It 

waits for Bus2IP_MstRd_sof_n to be asserted to begin 

reading in cmp_read. 

Cmp_Read This state reads one word per cycle (while 

(Bus2IP_MstRd_src_rdy_n= 0) and continues until 



17 | P a g e  

 

Bus2IP_MstRd_eof_n to be asserted.  

St1 Intermediate state before transitioning back to str_read to 

begin reading again. 

 

 

 

 

Str_read

IP2Bus_MstWr_sof_n = 1;

IP2Bus_MstWr_eof_n = 1;

IP2Bus_MstWr_Req = 0;

IP2Bus_Mst_Type = 0;

IP2Bus_Mst_Reset = 0;

IP2Bus_MstRd_Req = 0;

IP2Bus_MstRd_dest_dsc_n = 1;

IP2Bus_MstRd_dest_rdy_n = 1;

IP2Bus_MstWr_dest_dsc_n = 1;

IP2Bus_MstWr_dest_rdy_n = 1;

Set_read

IP2Bus_MstWr_sof_n = 1;

IP2Bus_MstWr_eof_n = 1;

IP2Bus_MstWr_Req = 0;

IP2Bus_Mst_Type = 1;

IP2Bus_Mst_Reset = 0;

IP2Bus_MstRd_Req = 1;

IP2Bus_MstRd_dest_dsc_n = 1;

IP2Bus_MstRd_dest_rdy_n = 0;

IP2Bus_MstWr_dest_dsc_n = 1;

IP2Bus_MstWr_dest_rdy_n = 1;

Ack_read

IP2Bus_MstWr_sof_n = 1;

IP2Bus_MstWr_eof_n = 1;

IP2Bus_MstWr_Req = 0;

IP2Bus_Mst_Type = 1;

IP2Bus_Mst_Reset = 0;

IP2Bus_MstRd_Req = 0;

IP2Bus_MstRd_dest_dsc_n = 1;

IP2Bus_MstRd_dest_rdy_n = 0;

IP2Bus_MstWr_dest_dsc_n = 1;

IP2Bus_MstWr_dest_rdy_n = 1;

Cmp_read

IP2Bus_MstWr_sof_n = 1;

IP2Bus_MstWr_eof_n = 1;

IP2Bus_MstWr_Req = 0;

IP2Bus_Mst_Type = 1;

IP2Bus_Mst_Reset = 0;

IP2Bus_MstRd_Req = 0;

IP2Bus_MstRd_dest_dsc_n = 1;

IP2Bus_MstRd_dest_rdy_n = 0;

IP2Bus_MstWr_dest_dsc_n = 1;

IP2Bus_MstWr_dest_rdy_n = 1;

Buf_pixel_cou

nt = 0

Bus2IP_Mst_CmdAck = 1

Bus2IP_MstRd_sof_n = 0

Bus2IP_Mst_CmdAck = 1

Bus2IP_MstRd_sof_n = 1

Bus2IP_Mst_CmdAck 

= 0

Bus2IP_MstRd_sof_n = 0

Bus2IP_MstRd_sof_n = 1

Reads a line of a frame 

from the memory using 

burst read 

Buf_pixel_count = 1

St1_read

IP2Bus_MstWr_sof_n = 1;

IP2Bus_MstWr_eof_n = 1;

IP2Bus_MstWr_Req = 0;

IP2Bus_Mst_Type = 0;

IP2Bus_Mst_Reset = 0;

IP2Bus_MstRd_Req = 0;

IP2Bus_MstRd_dest_dsc_n = 1;

IP2Bus_MstRd_dest_rdy_n = 1;

IP2Bus_MstWr_dest_dsc_n = 1;

IP2Bus_MstWr_dest_rdy_n = 1;

Bus2IP_MstR

d_eof_n = 1

Bus2IP_MstRd_eof_n = 0



18 | P a g e  

 

3.9 Connection between IP_to_Mem and Mem_to_IP  

The two custom modules are connected using internal connections inside the EDK system 

builder.  

 

The ip_to_mem controls the mem_to_ip block through the signals shown in the above figure. 

Buf_pixel_count and Buf_line_count are the video input synchronization signals sent from the 

synch modules in the ip_to_mem block. These signals tell the mem_to_ip block which line and 

pixel is currently being streamed from the input. They are used to decide which line is currently 

being read from memory by mem_to_ip.  

The Buf_read_enable and Buf_write_enable signals are used to decide which of the two line 

buffer in mem_to_ip is being written to, and which one is being read from. Since the buffer 

alternation is the same as in the ip_to_mem block, there was no reason to recreate this logic in 

mem_to_ip.  

The Buf_address signal is used to tell mem_to_ip which pixel to read from one of the buffers. 

When reading, it is always true that one line buffer is filled up with valid data. It is thus up to the 

ip_to_mem block to request which pixel it wants to read from this buffer. When it requests the 

pixel, the data corresponding to that pixel is placed on the Buf_read_data line.  

 
 

 

 

 



19 | P a g e  

 

DESCRIPTION OF OUR DESIGN TREE 
 

The following table illustrates the content of every folder that we have submitted regarding to 

our project. A README file has also been included at the top level of our directory for the same 

purpose.  

Folder Name Description 

System This contains the XPS project. 

The code for our custom pcore and its data files can be found in the \pcore dir 

 

key files include: 

1. user_logic.v (for ip_to_mem) --> 

\System\pcores\ip_to_mem_v1_00_a\hdl\verilog\user_logic.v 

   

2. user_logic.v (for mem_to_ip) --> 

\System\pcores\mem_to_ip_v1_00_a\hdl\verilog\user_logic.v 

 

3. ddr_test.c --> \System\DDR_in_10_1_02_v1\code\ddr_test.c 

 

Both user_logic.v is the main code for our custom hardware, and they have 

been neatly commented for further review. 

 

Doc This includes all the documentation file for our project: 

 

Project Proposal: Project_proposal.doc 

 

Power point of our Presentation: Final_Presentation.pptx 

 

Group Report: Group_report.pdf 

 

Individual Report: Individual_report.pdf 

 

Demo_video  A video showing our working project 

 

video_capture_rev_1_1 This is a copy of the example project that we metioned in section 3.3 of our final 

report.  it is obtained from http://www.digilentinc.com/Products/ 

Detail.cfm?NavTop=2&NavSub=453&Prod=XUPV2P 

 

  

 
 



20 | P a g e  

 

REFERENCES 
 

1. 2005 Past Projects (Interactive Video Game), 

<http://www.eecg.toronto.edu/~pc/courses/532/2009/pastprojectsnode2.html> 

 

2. Advanced Digital Systems Design (DDR memory reference), ENSC 452/894, 

<http://www.ensc.sfu.ca/~lshannon/courses/ensc452/labinfo.html> 

 

3. How Chroma Keying Works, Schnarr, Bill, Sign Video Ltd. 

<http://www.signvideo.com/chrom-ky-wks.htm> 

 

4. Question regarding the TFT – VGA Controller and MPMC, Xilinx User Forum, 

<http://forums.xilinx.com/xlnx/board/message?board.id=EDK&thread.id=7339> 

 

5. VideoCapture (With Vdec 1), Digilent Inc, 

<http://www.digilentinc.com/Products/Detail.cfm?Prod=XUPV2P> 

 

6. Video Capture example on XC2VP30 (XUP), Xilinx User Forum, 

<http://forums.xilinx.com/xlnx/board/message?board.id=EDK&thread.id=7375 > 

 

 

 

 

 

 

 

 

 

 



21 | P a g e  

 

APPENDIX  

5.1PLB Burst Write Timing Diagram  

 



22 | P a g e  

 

5.2 PLB Burst Read Timing Diagram   

 

 



23 | P a g e  

 

5.3 PLB Single Beat Read Timing Diagram   

 

All three timing diagrams are taking from the decimation inside the Xilinx hardware library: 

Xilinx\10.1\EDK\hw\XilinxProcessorIPLib\pcores\plbv46_master_burst_v1_01_a\doc\plbv46_

master_burst.pdf  

 


