

ECE532 Digital Systems Design

Project Report

WiiteBoard

Fan Zhu 993837773

Chao Qu 993909026

John Zhou 994066853

April 8, 2009

Table of Contents

Acknowledgement .. 1
1. Overview .. 1

1.1 Goal .. 1
1.2 Block Diagram ... 1
1.3 Overall System Description .. 2

2. Outcome ... 3
2.1 Results .. 3
2.2 Future Improvements.. 3

3. Block Descriptions ... 5
3.1 MicroBlaze ... 5
3.2 PLB ... 5
3.3 FSL ... 5
3.4 TFT Controller .. 5
3.5 MPMC .. 6
3.6 UART ... 6
3.7 2-D Engine ... 6

3.7.1 Engine .. 6
3.7.1.1 Engine States: ... 7
3.7.1.2 Opcode Specifications .. 8

3.7.2 PLB_ENGINE_FIFO .. 9
4. Design Tree .. 10
5. References ... 11

 1

Acknowledgement

This creative idea of using Wiimote to convert a screen/surface into a “writable” surface is
first introduced by Johnny Chung Lee [1]

1. Overview

1.1 Goal

The goal of our project is using the Xilinx XUPV2P FPGA board to implement an
interactive whiteboard. This whiteboard should contain non-trivial features, similar to
Microsoft Paint, such as drawing a line and change sizes and colors of the drawing
brush.

1.2 Block Diagram

Figure 1

 2

1.3 Overall System Description

Figure 1 will be used to describe the working flow of the system. Please refer to
Figure 1 for the connection details. The following steps outline how the system
works:
1. Calibrate the Wii remote using traditional 4 point calibration [2].
2. User moves the infrared pen within the calibrated viewing range of the Wii

remote.
3. The Wii remote captures the raw coordinates of the infrared pen.
4. Wii remote sends the coordinates to a laptop via Bluetooth.
5. A small C# program (running on a PC) is created (using open source libraries [1,

3, and 4]) to get data from Bluetooth stack, transform it to calibrated coordinates
and then send the coordinates to the FPGA board through UART.

6. Depending on the coordinate, MicroBlaze sends different instructions to the 2-D
engine through FSL interface.

7. 2-D engine decodes the instruction, for control instructions such as color change
or brush size change the 2-D engine updates its internal status registers; for
instructions that draw pixels on the screen the 2-D engine writes to the video
frame buffer via the PLB interface; for special instructions such as drawing a line
the 2-D engine performs linear interpolation between the starting and ending
points and writes that series of pixel values into the video frame buffer via the
PLB bus.

8. The video frame buffer is implemented using the 256MB DDR external memory,
the IP core TFT controller monitors the state of the video frame buffer and writes
the content into the VGA DAC which in turn drives the input signals of the LCD
monitor.

 3

2. Outcome

2.1 Results

Our final design achieved the proposed functionalities. The 2D engine was
implemented in hardware which had a visible speedup when compared to a pure
software implementation of the project. The user interface was completed with the
exception of DrawRect and DrawCircle.
Users can:

n Free draw on the display device connected to VGA port of the FPGA board.
n Change size of the brush.
n Change color of the brush.
n Erase the stuff drawn on the screen.
n Eraser size can be changed too just like brush.
n Clear the entire screen.
n Draw lines.

2.2 Future Improvements

Sky is the limit! There are literally endless possibilities to improve this project. Listed
below are a few of the important ones and are organized into performance
improvements and feature improvements.
Performance:

n The Wii remote is only able to detect 100 pixels per second. If the user draws
across the screen too fast there will be blank pixels in the trail. Getting a
higher performance Wii remote will help.

n The Xilinx board does not have a Bluetooth interface so we have to go
through a PC to send the coordinates to the board by UART. It will help if the
board had native support for Bluetooth.

n Our 2-D engine is currently running at 50MHz and it meets the timing
constraints fine. We could probably crank it up to a higher speed.

n The Xilinx TFT controller IP core only supports 640*480 resolution and 18
bits color. Higher resolution and more color depths will be good.

n Have a better mounting apparatus for the Wii remote, preferably above the
screen so there is less risk of the sensor being blocked.

Feature:
n We could improve our 2-D engine to support more shapes.
n We could make a 3-D engine!
n After we finished our project, we discovered the TFT controller API had a

 4

feature for changing the frame buffer pointer. Which means we could
implement dragging and dropping of objects.

n Multi touch whiteboard!

 5

3. Block Descriptions

3.1 MicroBlaze

IP Type IP Version

MicroBlaze 7.10.d

The MicroBlaze processor is used for the following operations:

1. Receives wiimote coordinates from the UART interrupts
2. Issues instructions to the 2D-engine through the FSL master interface
3. Implements the GUI and draws menu items using the TFT
4. Controls the parameters of the user’s brush (brush size, colour, mode etc.)

3.2 PLB

IP Type IP Version

plb_v46 1.03.a

3.3 FSL

IP Type IP Version

fsl_v20 2.11.a

3.4 TFT Controller

IP Type IP Version

xps_tft 1.00.a

The TFT controller writes 6-bit rgb values into memory locations corresponding to coordinates on
the screen. The formula for the conversion between screen coordinates and memory addresses is:

Addr = BASE_MEM_ADDR + 4096 * ROW + 4 * COL

 6

3.5 MPMC

IP Type IP Version

mpmc 4.03.a

3.6 UART

IP Type IP Version

xps_uartlite 1.00.a

3.7 2-D Engine

Figure 2

3.7.1 Engine

IP Type IP Version Comment

Engine 1.00.a Custom hardware coded in verilog. Takes in instructions
from the FSL and outputs memory addresses and RGB
values to be written into memory.

- DrawPixel

N/A Translates coordinates in screen space to addresses in
memory space.

PLB

Master

Single

Fifo_
PLB
FSM

FIFO

DrawLine

BrushSize

DrawPixel
Engine
Control
Logic

PLB FSL

plb_engine_fifo_v1_00_a
 (plb_engine_fifo.vhd) engine_v1_00_a

 (engine.v)

user_logic.v

line.v

 7

- DrawLine Flip-Flop
version

Bresenham’s line algorithm [5] is used to created line
module. A version using latches was first made that
intended to optimize for performance (5 cycles to output
first pixel, following pixels are ready in every two cycle,
max clock period ~ 9 ns). As the latch version did not
work in hardware, a flip-flop version is created. Though
requires more cycles to output data, the shortened clock
period enables the module to run at a higher speed (7
cycles to output first pixel, consecutive pixels are ready in
every 4 cycles, max clock period ~ 5 ns). Verilog source
code and simulation results for both versions are available
in design tree.

3.7.1.1 Engine States:

Wait
Default state. Performs reset of several variables. Waits for FSL_Exists signal to rise, indicating
data is present. Engine enters this state on reset.

Instruction Fetch
Stores opcode and data from the FSL bus, initializes values needed in later states.

Instruction Decode
Depending on opcode, different variables are set. e.g. brush size.

Data Fetch
Currently only in use if opcode is DrawLine. Reads in the endpoints coordinates of the line.

Execution (Pre)
Currently only in use if opcode is DrawLine. Stall until line module’s busy signal drops low.

Execution2
Currently only in use if opcode is DrawLine. Starts the line drawing module and starts reading its
output to the main output registers.

Calculation
Calculates the output coordinates for brush sizes larger than a single pixel.

Send
Sends data in the output registers out to PLB FIFO. Waits for acknowledgement signal.

PLB Full

 8

Waits for FIFO’s full signal to drop.

Cooldown
Stalls for a predetermined number of cycles to allow PLB FIFO to have more room to process
later data.

3.7.1.2 Opcode Specifications

Input from the FSL bus has a width of 32 bits. The instruction fields are arranged as
follows:

31:29 27:16 15:4 3:0
Unused Data 2 Data 1 OpCode

The opcode length is 4 bits to allow for future development. Currently the instructions
are:

Reset

31:29 27:16 15:4 3:0
Unused X X 0000

Resets the engine to Wait state. Resets all variables.

DrawPixel

31:29 27:16 15:4 3:0
Unused Y coordinate X Coordinate 0001

Draws a pixel to the (x, y) coordinate on the screen

DrawLine

31:29 27:16 15:4 3:0
Unused Y1 coordinate X1 coordinate 0010

31:29 27:16 15:4 3:0
Unused Y2 coordinate X2 coordinate X

Draws a line from (x1, y1) to (x2, y2). After receiving the first 32 bits, the engine
enters the data fetch state upon decoding the DrawLine opcode and stores the
endpoint coordinates.

 9

DrawRect (Not implemented)

SetSize

31:29 27:8 7:4 3:0
Unused Unused Size 0100

Sets the size of the brush to be N. The output of later DrawPixel commands will be a
square block of side length 2N + 1 centered at its (x, y) coordinate.

SelectColour

31:29 28:22 21:16 15:10 9:4 3:0
Unused Unused Red Green Blue 0010

Changes the brush colour to the specified RGB value.

3.7.2 PLB_ENGINE_FIFO

IP Type IP Version Comment

Plb_engine_fifo 1.00.a Custom made logic, including two Xilinx IPs listed below
and one FSM to glue the two modules. The FSM is
running at PLB Clk (100MHz).

 - plbv46_master_single 1.00.a Xilinx IP.

- Asynchronize FIFO FIFO

GENERATOR

V4.4

CoreGen generated FIFO. DATA_IN works at
engine_clk(50MHz), DATA_OUT works at PLB_clk
(100MHz). This fifo provides a buffer between our engine
and PLB, so that our engine will not stall on PLB
transactions.

 10

4. Design Tree

BaseTerm\ C# program
 WiimoteToXUP.sln C# project file
 BaseTerm\bin\Release\BaseTerm.exe executable file

TBs\
 Line\ Test bench for line module
 README.txt Instructions on simulation
 line.v Flip-flop version
 line_latchV1.v Latch version
 line_ise\ ISE project
 timesime\ post-synthesis testbench
 README.txt Instructions on generating a netlist and run
 post-synth. simulation.
 line_timesim.v Netlist for post-synth. simulation.
 Fifo_PLB_logic\ Testbench for user_logic.v (see 1.7.2)
 user_logic.v The ‘glue’ FSM for FIFO and PLB Master
 README.txt Instructions on simulation
 2D_engine\ Test bench for the entire engine.

ECE532_PROJECT\ XPS project directory
 pcores\ Custom logics
 engine_v1_00_a\
 hdl\verilog\engine.v
 hdl\verilog\line.v line module (FF version)
 plb_engine_fifo_v1_00_a\ FIFO to PLB logic
 hdl\vhdl\plb_engine_fifo.vhd Top level of this block
 hdl\verilog\user_logic.v The FSM (see 1.7.2)
 code\
 xtft_example.c Example code for using the TFT controller

 11

5. References

[1] “Low-Cost Multi-point Interactive Whiteboards Using the Wiimote”
http://johnnylee.net/projects/wii/

[2] “A camera calibration using 4 point targets”
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=201621&isnumber=5221

[3] “Develop a .NET Base Class Library for Serial Device Communications”
http://msdn.microsoft.com/en-us/magazine/cc301786.aspx

[4] “Managed Library for Nintendo’s Wiimote”
http://blogs.msdn.com/coding4fun/archive/2007/03/14/1879033.aspx

[5] “Bresenham’s line algorithm”
http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm#Optimization

http://johnnylee.net/projects/wii/
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=201621&isnumber=5221
http://msdn.microsoft.com/en-us/magazine/cc301786.aspx
http://blogs.msdn.com/coding4fun/archive/2007/03/14/1879033.aspx
http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm%23Optimization

	Acknowledgement
	1. Overview
	1.1 Goal
	1.2 Block Diagram
	1.3 Overall System Description

	2. Outcome
	2.1 Results
	2.2 Future Improvements

	3. Block Descriptions
	3.1 MicroBlaze
	3.2 PLB
	3.3 FSL
	3.4 TFT Controller
	3.5 MPMC
	3.6 UART
	3.7 2-D Engine
	3.7.1 Engine
	3.7.1.1 Engine States:
	3.7.1.2 Opcode Specifications
	3.7.2 PLB_ENGINE_FIFO

	4. Design Tree
	5. References

