
Table of Contents

21 Overview

21.1 Project Background

21.3 Block Diagram

21.4 Description of IP

42 Outcome

42.1 Initial Concept

42.2 Final Design

42.3 Improvements for Future Attempts and Continuation

53 Block Descriptions

53.1 MicroBlaze

53.1.2 FSM

53.1.1 Video Output/Ball Drawing

63.1.3 Music Control

63.2 MPMC

63.3 XPS TFT

63.4 Video to RAM

63.5 IIC Interface

63.6 Paddle Locator

63.7 Tone Generator

74 Appendix

74.1 Zip File Directory

74.2 References

1 Overview

1.1 Project Background

Pong is an early arcade games that most people are still familiar with. It is a simple game where there are two vertical paddles on either side of the game area and a ball bouncing between the two sides. It could be thought of as a very simple tennis or ping-pong game. Our group objective is to build a Human Pong game on an FPGA board (Xilinx Virtex-II Pro XC2VP30 with the Digilent VDEC1 Video Decoder).

Our concept for human pong is heavily based on the original game. Instead of using controllers, however, two human players will use physical paddles that will be detected by the hardware. The ball will be projected onto a wall between the two users.

1.2 Goals

Design a two-player human pong game where the players will be able to interact ‘physically’ with the objects in the game. The system will be able to detect physical paddles of distinctive colours based on video input, then output the location of the ball, and determine where the ball will move next. As part of the design, music will be played at the start and end of the game.

1.3 Block Diagram

[image: image1.emf]Video Decoder

(video_to_ram)

Video In

Memory

Game Controller

VGA Output

(XPS TFT)

T

o

P

r

o

j

ec

t

o

r

To Speaker

Memory

Controller

(MPMC)

Software

Custom Hardware

Hardware

Audio Output

Ball Drawing

Paddle Location

Identifier

Control Flow Diagram

[image: image2.emf]Video Decoder

(VDEC1)

S

-

V

i

deo I

n

Memory

(DDR)

Game Controller

XPS TFT

To

P

r

o

j

ec

t

or

To Speaker

Memory

Controller

(MPMC)

Audio Output

Ball Drawing

Paddle Location

Identifier

PLB

video_to_ram

PLB PLB

PLB

GPIO

IIC

XPS Timer XPS UartLite

UART

MicroBlaze

Xilinx Virtex-II FPGA

VGA Output

System Diagram

1.4 Description of IP

This section provides an overview of the components as appearing in the Control Flow Diagram. Further details on the blocks in the System Diagram can be found in section 3.
Video Decoder: Digitizes video signal from camera, storing frames in memory.

Memory Controller: Provides access to memory from multiple sources. Needs 2 write ports for the Video Decoder and Ball Drawing modules, 2 read ports for the Paddle Locator and VGA output.

Paddle Location Identifier: Finds endpoint coordinates for paddles based on digitized video frames in memory. Custom module implemented in hardware.

Game Controller: FSM for controlling overall game operations. Contains game state including ball position/velocity etc. to identify collisions between ball and paddle and react accordingly.

Audio Output: Hardware input interface consists of an edge-triggered “go” signal, a ‘done’ signal, and data buses for tone frequency and duration. Hardware module used to provide audible response to paddle/ball collisions and other game sounds. Communicates directly with the audio codec hardware.

Ball Drawing: Generates video frames in memory for output to VGA via the XPS TFT. The ball drawing is performed in software and receives ball position from the FSM. When called, the function erases the old ball and draws a new ball at the current position.
VGA Output: Reads generated frames stored in memory from Ball Drawing module, outputs to projector. This is handled by the XPS TFT core.
2 Outcome

2.1 Initial Concept

The initial concept for the game was to use a projector and camera to create a game that allows players to interact ‘physically’ with game objects. From the block diagram in Section 1.3, we expected the following components to be readily available from code libraries or previous projects:
· Video Decoder

· Memory Controller

· Audio Output

· VGA Output
The rest of the components would be designed and implemented by ourselves as custom hardware or software, with varying levels of expected difficulty. In particular, we identified a few key points of highest uncertainty:

· Video processing speed

· Accuracy of colour detection

· Method of drawing game frames to video memory
We were uncertain about the complexity required to implement the paddle location algorithm in hardware. Therefore, the speed of video processing was a major concern, since performing this feature on full-resolution video frames in software would most likely be prohibitively slow, requiring a processing rate of 9.2 million pixels per second (640x480x30 frames per second) to run at full speed.
With regard to colour detection accuracy, there were two primary concerns – the uniqueness of the paddles’ colour with respect to each other, the background, and players’ skin and clothing; and variation in lighting conditions causing pre-calibrated colour values to become invalid. In particular, when using a RGB colour representation, colour values are extremely sensitive to brightness shifts caused by ambient lighting changes (cloud passing by outside) and angle of reflection of the detected object.

The method of drawing the game to video memory was subject primarily to difficulty of implementation in hardware, and running speed if implemented in software. If implemented in hardware, a significantly complex engine would need to be built to output different shapes/colours in the correct locations, but software implementations would potentially suffer from the same speed issues as video processing.

2.2 Final Result
The final design of the game uses a digital camera for input, and a projector to output video frames. A border is projected on a blackboard, in order to provide a frame of reference for players, and the camera is carefully aligned during set-up to match the captured image’s boundaries to the projected border. The players’ “controls” are two distinctly coloured strips of fluorescent cardboard, which can be held at any position/angle within the playing field in order to reflect the path of the ball. Initially, either player is able to hit the ball; however, after the first hit, players must alternate hitting the ball, and the game ends when the ball leaves the left or right edge of the playing field.
As expected, the Video Decoder, Memory Controller and VGA Output modules were taken from libraries/previous projects (more details on specific components in Section 3). However, no audio module was found that suited our purpose of asynchronously generating a tone of specified frequency and duration. Thus the audio module was created by adding custom tone-generation logic to an existing core that handles the interface to the on-board audio codec.
Initially, for ease of implementation, the paddle detection was done in software. This allowed us to fine-tune our detection algorithm and focus on fully developing other features of the game. However, as expected, this was too slow (approx. 2-3 frames per second processing rate when skipping 3 out of 4 pixels both vertically and horizontally). Once the detection method/algorithm was considered ‘stable’, it was ported to a hardware core in order to optimize performance.

The issue of colour detection accuracy was solved by representing colours in the YUV colour space instead of RGB. This was accomplished by modifying the Video Decoder component (video_to_ram) to simply remove the YUV-to-RGB conversion. Since brightness is most tightly linked to the Y component (luminosity), we made the algorithm insensitive to brightness by only testing the U and V components. However, for extreme changes in brightness, there is still some variation in U and V since the colours may become desaturated (close to a neutral gray/white colour). As an additional improvement, at the start of the game, players are able to register their paddle colour, to account for lighting differences in different gaming locations.
For drawing the game frame/ball, we eventually decided on a software implementation. Drawing a circular ball in hardware would either take heavy mathematics or else the ability to read an image from another region in memory, which would double the complexity. On the other hand, a software implementation was sufficiently fast because only a small ball needs to be redrawn for each frame, not the entire 640x480 image.

2.3 Improvements for Future Attempts and Continuation

· More powerful colour detection, potentially using a HSV colourspace representation so that saturation can be ignored, preventing it from affecting detection in extremely bright environments.
· Adding background music. This could be done using the existing tone generator or with an additional file playing module.
· Adding obstacles to the game area where the ball will bounce off of

· Shortening the paddles and increasing the number of players to four where each one is at a certain boundary but requires a smaller projected game area or projecting the game area onto a table.

3 Block Descriptions

3.1 MicroBlaze

The MicroBlaze processor is responsible for controlling the Game FSM, Game/Ball Drawing functions, and audio control. In addition, it performs some configuration via the IIC module to the video decoder hardware daughter board (taken from the original video_to_ram project). The design uses the MicroBlaze v7.10d.
3.1.2 FSM

Game FSM is handled in software. The software maintains information pertaining to ball position and uses a timer to progress the game.

At the start of the game, users are prompted to register paddle colours. These colours are read straight from memory from a pre-defined location. A max and min value are recorded for Cr and Cb while a default Y value is used. These values are provided to the hardware paddle detector.

The ball is initially travelling horizontally, towards the left or right (alternating between games). The FSM maintains the ball position and angle.

Interrupts occur every 500ms. On interrupt, paddle positions are retrieved from the paddle detection hardware. Based on the max/min point provided from the detection hardware, the paddles are modelled as a line between the two points. The distance from the ball to the line is calculated. If the ball is close enough to the active player’s line (the hit radius is maintained as the ball radius plus the number of pixels the ball moves per memory interrupt), it is registered as a hit. Both players are initially considered active. Once a player has hit the ball, the active player alternates (ie. players cannot hit the ball twice).

If a hit has been registered, the ball angle is updated. The ball angle is reflected based on the normal of the line modelling the paddle (ie. reflected based on a line perpendicular to the paddle) as would occur in real life. This angle is calculated as twice the angle of the paddle less the ball angle.

Angleball, new = 2 x Anglepaddle - Angleball, old
Finally, the ball position is updated based on the past position and the ball angle. Initially, the ball moves 10 pixels per interrupt. Every 50 interrupts, the ball step is incremented by 2. The ball position is maintained as an x and y value. It is updated using trigonometry, rounded to the nearest integer value:

xnew = xold + Ball_Step x cos(Angleball)

ynew = yold + Ball_Step x sin(Angleball)

The ball is also able to hit the top or bottom of the frame, in which case it bounces off. If the ball reaches the left or right frame, this is considered the end of the game. The FSM maintains a record of wins and losses and allows the user to restart the game.

3.1.1 Ball Drawing

The memory used for video output is maintained in software. The video output is stored in a separate memory location than the input information. The output memory is initialized to a black background with a white frame.

Two different colours are used for the ball to indicate to the players whose turn it is. The ball images are stored in a 20x20 Xuint32 hard-coded array that is copied to the output memory at the location defined by the FSM. The old ball is overwritten by the background colour before copying in the new ball.

3.1.3 Tone Generator Control

For the music, the tone generator hardware module takes in the following signals: BEGIN, PERIOD (for the pitch), LENGTH, and DONE. These signals are duplicated so that two separate tones can be played simultaneously. They are connected to the Microblaze through GPIO peripherals on the PLB bus. All of them are 1 bit signals except for length and period which are 32 bit. A wrapper function makeTone is added to the software that takes the channel, tone period and duration, and writes appropriate values to the GPIO ports to control the Tone Generator hardware module.
Musical notes are played when the ball speeds up – Super Mario Bros 1up, or a tone when the ball bounces off a hard surface, and another tune when the game is over.

The pitch, or period, for different notes is determined according to the formula 1/(note_frequency) * clock_frequency. Notes that are an octave higher can be played simply by halving the period.

3.2 MPMC

The MPMC module acts essentially as a multiplexer for the DDR RAM hardware. It is an IP core provided by the Xilinx core library, and contains ports for video input (write only), paddle locator (read only), ball drawing (write only) and VGA output (read only). The design uses the Multi-Port Memory Controller(DDR/DDR2/SDRAM) v4.03a.
3.3 XPS TFT

The XPS TFT module reads video frames from a specified location in RAM and outputs them to a hardware VGA port. It is an IP core provided by the Xilinx core library. The design uses XPS TFT Controller v1.00a.
3.4 Video Decoder
This module receives data in 10-bit-per-component YUV format from the external multimedia daughter board and writes the data to RAM. It was taken from Jeff Goeders’ video_to_ram project, and originally performed a conversion to 8-bit-per-component RGB before writing to RAM. In our project, we modified it to remove the YUV-to-RGB colourspace conversion. The YUV components originally ranged from 64 to 940, so in order to scale this to an 8-bit format compatible with our paddle locator module, the two least-significant bits were dropped in our modified version. This corresponds to a value range from 16 to 235, which is a roughly appropriate range for 8-bit values.
3.5 IIC Interface

IIC is a 2-wire master-slave bus protocol that allows the master to read and write hardware registers on the slave device. In this project, the IIC interface core allows the MicroBlaze to configure the Digilent VDEC1 Video Decoder during startup. The software code to do this initialization was taken from Jeff Goeders’ video_to_ram project. The core itself is provided by the Xilinx IP core library and the design uses the XPS IIC Interface v2.00a.
3.6 Paddle Locator

The Paddle Locator module reads video frames from memory and determines the start and end points of each paddle, identified by colour. Its configuration parameters, as well as the result registers, are accessible by PLB (PLB control logic generated using the IPIF wizard from XPS).
The following registers are writable via PLB:
· Colour ‘minimum’ and ‘maximum’ thresholds for detection of both paddles

· Memory address to read video frames from

· Pixel step; e.g. if this value is 1, all pixels are processed, if it is 4, then every 4th pixel is processed.

· “Begin” – once the value ‘1’ is written to this register, the module begins processing frames.

The following registers are readable via PLB:

· X, Y coordinates of the beginning and ending points of both paddles (8 registers total)

· Hit Count for both paddles – number of pixels matching the colours of each paddle (2 registers)
· Frame period – the time taken to process the last frame

· 2 reserved registers for debugging purposes

For our final implementation, only the first set of readable registers is used. The Hit Count registers provide a quantitative means of measuring calibration quality; the original intention for this interface was to auto-calibrate the detection colours in software by adjusting the YUV detection thresholds until Hit Count reached a peak. The Frame Period feature was used for determining the performance of the core, and based on this value, the Pixel Step configuration parameter can be adjusted to meet the desired framerate/resolution tradeoff.
The algorithm used for paddle detection is essentially to find the first and last occurrence of a given colour in the frame. Under the approximation that the paddle is a line segment with zero width, this will give the X,Y coordinates of the two endpoints of the paddle. Based on these coordinates, the MicroBlaze is able to calculate the angle and position of each paddle, allowing realistic reflection dynamics in gameplay. However, since the paddles are actually rectangular, the angle detected is slightly inaccurate. Thus care needs to be taken in constructing the paddles, that they need to be sufficiently thin for the angle to be accurate, but sufficiently thick to be detected reliably.
3.7 Tone Generator

For this tone generator, the AC'97 Audio Codec Controller for Digilent XUP-V2P found online was converted to a pcore. Initially, the controller was designed to play one pitch, continually. Modifications were first made to allow two different pitches to be played, for a duration of specified length. This was later augmented to allow any pitch to be played, and finally the tone generation submodules were duplicated and the outputs averaged, to allow two tones to be played simultaneously. The interface for this module is a set of signals consisting of single-bit ‘begin’ and ‘done’ signals for each channel, as well as 32-bit tone period and duration signals for each channel. Tone period (e.g. 1 / frequency) and duration are both measured in clock cycles, or in the context of this project, 1 / 100MHz.

This core is divided into two sections: audio output, and data generation. The audio output section (module ac97) is unmodified from the original AC’97 Audio Codec Controller ISE project. The tone generation section (processing.v) simply has a running counter that increments every clock cycle. When the counter reaches (TONE_PERIOD/2), it flips the MSB of its tone-data-output value. In the toplevel module, a similar counter is kept; when BEGIN is set high, the counter is reset, and the output of the data generation module is forwarded to the audio output module. When the counter reaches TONE_LENGTH, it stops counting and the audio output module is fed a constant logic 0. The DONE signal output from the core is set low on Begin, and set high when TONE_LENGTH is reached. In this way, tones can be played synchronously in software by simply setting BEGIN and then polling the DONE signal until it is asserted.
3.8 XPS Timer

The Timer module provides timed interrupts to the MicroBlaze. It is an IP core provided by the Xilinx core library. The design uses XPS Timer v1.00a.

3.8 XPS UartLite

The XPS UartLite module provides an interface between the MicroBlaze and a terminal running on an external computer. It is an IP core provided by the Xilinx core library. The design uses XPS UartLite v1.00a.

4 Appendix

4.1 Zip File Directory

This section provides an overview of the directory structure. A full directory structure can be found in the README file of the zip file directory.
/__XPS/ – Xilinx generated directory
/blkdiagram/ – Xilinx generated directory

/data/ – Xilinx generated directory
/doc/ – Contains group report

/GroupReport v3.doc – Group report

/etc/ – Xilinx generated directory
/lib/ – Xilinx generated directory
/pcores/ – Cores directory

/led_debug_mux_v1_00_a/ – core used in debugging, not used in this design, from Jeffrey
 Goeders

/paddle_locator_v1_00_a/ – Paddle detector core

/tone_gen_v1_00_a/ – advanced tone generator core, allows for multiple tones and tone done

 output
/tone_gen_v1_00_abc/ – basic tone generator core, not used in this design.

/video_to_ram_v1_00_a/ – core for writing video input to memory, modified from Jeffrey

 Goeders’ core.
/report/ – Xilinx generated directory

/sw/ – Software directory
/_impactbatch.log – Xilinx generated file

/bitinit.log – Xilinx generated file

/clock_generator_0.log – Xilinx generated file

/platgetn.opt – Xilinx generated file
/system.log – Xilinx generated file

/system.log.bak – Xilinx generated file

/system.make – Xilinx generated file
/system.mhs – Xilinx generated file

/system.mss – Xilinx generated file
/system.xmp – Xilinx generated file

/system_incl.make – Xilinx generated file

/README – information regarding project directory

4.2 References

http://embedded.olin.edu/xilinx_docs/projects/audio-v2p.php
video_to_ram core from Jeffrey Goeders, retrieved from course discussion board.
ECE532 – Digital Systems Design – Winter 2010

Group Report > > >

Human Pong

Design Report

Chris Langan, Kevin Lam, Nancy Chong

13

_1331938153.vsd
Video Decoder
(video_to_ram)

Video In

Memory

Game Controller

Paddle Location Identifier

Memory Controller
(MPMC)

VGA Output
(XPS TFT)

To Projector

To Speaker

Software

Custom Hardware

Hardware

Audio Output

Ball Drawing

_1331939807.vsd
Video Decoder
(VDEC1)

S-Video In

Memory
(DDR)

video_to_ram

PLB

Game Controller

PLB

Paddle Location Identifier

Memory Controller
(MPMC)

XPS TFT

PLB

To Projector

PLB

To Speaker

GPIO

IIC

Audio Output

Ball Drawing

XPS Timer

XPS UartLite

UART

MicroBlaze

Xilinx Virtex-II FPGA

VGA Output

