

ECE532: Final Group Report
Computer Vision of the Idioscope

Paul Haist – 994865197
Nahid Hassan - 994877558

Table of Contents
1 Overview .. 1

1.1 Background Information .. 1

1.2 Goals ... 1

1.3 Implementation .. 2

1.4 Brief Description of IP .. 4

1.5 Outcome ... 5

1.6 Future Work ... 5

2 Detailed Description of Hardware Blocks .. 6

2.1 Microblaze (Ver 7.10d) ... 6

2.2 PLB (plb_v46 Ver 1.03a) ... 6

2.3 MPMC (Ver 4.03a) .. 6

2.4 UART_uB (xps_uartlite Ver 1.00a) ... 7

2.5 IIC (xps_iic Ver 2.00a) ... 7

2.6 TFT (xps_tft Ver 1.00a) ... 7

2.7 Video_to_RAM (Ver 1.00a) .. 7

2.8 Locate_Wand ... 8

2.9 Control_Registers ... 9

2.10 Clock_Synchronizer .. 10

2.11 Top_Colour_Detect .. 11

3 Microblaze Software .. 11

3.1 Teaching phase ... 11

3.2 Playing Phase .. 12

4 Computer Software ... 13

5 Design Tree .. 13

6 Bibliography ... 15

Page | 1

1 Overview

1.1 Background Information
The inspiration for our project came from the Idioscope suggested by Professor Mann [1]. The
Idioscope is basically a virtual desktop drum set as shown below in Figure 1. A series of shapes
drawn on a surface represent the different sounds or notes that can be played. To determine
which block is tapped, a camera is mounted in a fixed position above the surface and tracks the
position of a wand that has red tape at the end of it.

A tap is detected by a microphone mounted either on the desktop surface or on the wand itself.
Audio filtering would determine when a tap has occurred and the video tracking system would
be alerted. The coordinates of the red tape would then be used to determine which shape the
wand had tapped and the corresponding note that should be played.

Figure 1: A basic implementation of the Idioscope from Prof Mann's website

1.2 Goals
Our team decided to implement the video side of the Idioscope project. That is, our system
must be able to determine the centre point of the tip of a wand in the camera’s field of view
and determine which shape the wand tip is within. Also, the system must report which note or
sound needs to be played.

We decided to implement an extra feature in addition to those mentioned above. In the
Idioscope proposed by Prof Mann, the shapes drawn on the surface that represent the possible
notes are limited to a set of rectangles with fixed notes. We felt that the user should not be
limited to an fixed set of rectangles so we decided to incorporate an initial teaching phase

Page | 2

where arbitrary closed shapes could be drawn on the surface and the notes could then be
assigned to these shapes by the user.

1.3 Implementation
Our project was implemented on a Xilinx XUP Virtex-II Pro Development System and used the
Diligent Video Decoder Board (VDEC1) to interface with a video camera. A Panasonic DMC-TZ4
digital camera was used to track the position of the wand. We also used a VGA monitor to
display the results of the teaching phase and to indicate which note has been played.

For demonstration purposes, a C++ program running on a PC interprets data coming from the
XUP Development Board over RS-232 and plays sound files corresponding to the correct notes.
The PC also informs the XUP Board that a tap has occurred based on user input.

A block diagram of all the components in our system and how they connect together can be
found in Figure 2 on the next page.

Page | 3

Figure 2: Block diagram of the system

Page | 4

1.4 Brief Description of IP
For each of the blocks in the system block diagram (see Figure 2), a description of its function in
the system along with its origin can be found below in Table 1.

Name Function Origin
Microblaze +
BRAM

A soft processor used to configure the different IP blocks as
well as execute the teaching algorithm.

Xilinx IP

LMB The bus used by the microblaze to communicate with the
BRAM containing data and instruction memory

Xilinx IP

PLB Three high bandwidth buses:
1. Video_to_RAM block writes video frames to the

MPMC
2. TFT block reads video frames from the MPMC
3. Microblaze configures the IP blocks and performs

reads/writes on MPMC

Xilinx IP

MPMC Provides multiple interfaces to the DDR SDRAM located on
the XUP board. Acts as an arbitrator when simultaneous
access of the SDRAM is requested

Xilinx IP

UART Connected to the microblaze PLB. It is used to send and
receive data from the PC using an RS-232 protocol

Xilinx IP

IIC Bridges communication between the microblaze and the
VDEC1 decoder

Xilinx IP

TFT Reads video frames from the MPMC and generates VGA
compatible video signals

Xilinx IP

Video_to_RAM Reads in the YCbCr video stream from the VDEC1, converts
the stream to RGB and continuously writes each frame to
the MPMC

Borrowed
Custom/Xilinx IP

Locate_Wand Reads the RGB video stream from the Video_to_RAM block
and finds the centre of a coloured object (Either Red,
Green, or Blue). Communicates with the microblaze over
PLB

Custom IP

Control_Registers The microblaze configures the Locate_Wand block and
reads back the coordinates of the wand through these
registers

Custom IP
(Generated by
Xilinx wizard)

Clock_Synchronizer Synchronizes communication between the microblaze’s
100MHz clock and the 13MHz clock of the video logic

Custom IP

Top_Colour_Detect A wrapper module for the Video_to_RAM block, the
Locate_Wand block, the Control_Registers and the
Clock_Synchronizer

Custom IP

Table 1: Description of all IP blocks used in the FPGA

Page | 5

There were several components used in the implementation of our design that were not
internal to the FPGA. These components are described below in Table 2.

Name Description/Function
DDR
SDRAM

A 512MB stick of DDR SDRAM located on the XUP Board holds various data for the project
including: Input, output, and working video frames as well as a custom stack used by the
shape detection algorithm

VGA
Monitor

Displays the image in the output frame of the DDR SDRAM. Used to provide visual feedback
to the user

VDEC1 The Diligent Video Decoder Board attached to the XUP Board. The analog video stream
from the camera is decoded into a digital YCbCr stream and sent to the FPGA

Camera A Panasonic digital camera with an composite video out is used to track the position of the
wand during all phases of the design

PC A PC is connected to the FPGA over a UART connection. All messages for the user are
displayed and input from the user is sent back to the FPGA. The PC also plays sound files
whenever the user taps a valid shape.

Table 2: Description of the components external to the FPGA

1.5 Outcome
The final result of our project is a successful prototype. The user first draws any number of
arbitrary closed shapes using a black marker on white paper within the field of view of the
camera. Then, through the PC, the user starts the teaching phase. Then the user can assign
notes in ascending order by ‘tapping’ within each shape. A ‘tap’ is triggered by hitting the
<ENTER> key on the PC.

Once all shapes have been assigned a note, the user can exit teaching mode and begin to play
their newly created virtual instrument. When any of the shapes are ‘tapped’ a codeword byte is
sent to the PC followed by an integer representing the note that should be played. For our
demonstration, only 10 unique notes from a piano can be assigned and played.

1.6 Future Work
In the future, an audio processing module would be integrated on the FPGA and perform two
main functions. Firstly, a microphone would listen for the wand to be tapped and an audio filter
would determine when a tap occurs. Secondly, the notes would be generated by the audio
module instead of being a fixed set of audio files. This would allow any note to be played from
the instrument of the user’s choice.

Page | 6

2 Detailed Description of Hardware Blocks
The following sections outline the details of each block used in our design.

2.1 Microblaze (Ver 7.10d)
This IP provided by Xilinx is a soft-processor with a 32-bit architecture. It uses the Block RAM
local to the Virtex-II FPGA to store both instruction and data memory. The microblaze is run at
a 100MHz as is the PLB it is connected to.

The microblaze executes all the initialization and configuration code for the VDEC1 board and
the Locate_Wand IP block. It then uses the functionality of the Locate_Wand block to run the
teaching phase, followed by the main function of the project. This main function involves
reading the location of the wand and sending codewords followed by notes over the UART to
the PC.

2.2 PLB (plb_v46 Ver 1.03a)
The Processor Local Bus is a high speed data bus with several useful features. It has support for
multiple masters, multiple slaves, and has the capability of arbitrating control for masters with
different priorities.

Our design uses three separate instantiations of the PLB all using a 32-bit data bus. These three
buses have the following functions:

1. plb_uB: The microblaze is the single master on this bus. It is used to communicate
between the different IP blocks for initial configuration. It is also used to control the
Wand_Locator block and read back the result as well as send and receive data from the
PC over the UART block

2. plb_video_out: The TFT block is the only master on this bus and the MPMC is the only
slave. The sole function of this PLB is to transfer data from the output frame in the
DDR_SDRAM to the TFT block so it can be displayed on the VGA monitor.

3. plb_video_to_RAM: The Video_to_RAM block is the only master on this bus and the
MPMC is the only slave. The video_to_RAM block writes RGB video frames to the
DDR_SDRAM over this bus.

2.3 MPMC (Ver 4.03a)
The Multi-Ported Memory Controller is the FPGA’s interface to the DDR_SDRAM on the XUP
Board. The true strength of the MPMC is the multi-port access it provides. This allows various IP
blocks to read and write to the DDR_SDRAM independently and without worrying about
collisions.

Our project uses an MPMC with three independent ports configured as PLB slaves. Each of the
three PLB instantiations mentioned in Section 2.2 has a connection to a port of the MPMC.

Page | 7

2.4 UART_uB (xps_uartlite Ver 1.00a)
The Universal Asynchronous Receiver/Transmitter block is a slave device on the plb_uB and is
the communication link between the FPGA and the PC. The microblaze sends strings of
characters to the UART block and these characters are relayed to the PC over the RS-232
protocol.

This link is used for two purposes. Firstly, it is used to communicate messages to and from the
user. Secondly, it sends codewords to the PC in order to trigger a sound file to be played.

2.5 IIC (xps_iic Ver 2.00a)
The Inter-Integrated Circuit block is a slave on the plb_uB and is used to communicate with the
video processing chip on the VDEC1 Board. The block is used only once at the startup of the
system to configure the settings of the video processor.

2.6 TFT (xps_tft Ver 1.00a)
The Thin Film Transistor Controller block is the single master on the plb_video_out bus. Its sole
purpose is to read the output frame located on the DDR_SDRAM and generate VGA timing
signals.

2.7 Video_to_RAM (Ver 1.00a)
This IP block was borrowed from Jeffrey Goeders. It consists of several Xilinx IP blocks linked
together in a custom top-level block. The purpose of this block is to take in the YCbCr video
stream from the VDEC1 Board and write RGB pixel data to the input frame of the DDR_SDRAM.
The Xilinx blocks within and their purposes are listed below:

• BUFG: Clock buffer for the 27MHz input clock and the 13MHz generated clock
• OFDDRRSE: A DDR output flip flop to center the clock in the pixel data
• lf_decode: Decodes the incoming video stream to extract the vertical and horizontal

sync signals as well as determine if the stream is interlaced
• vp422_444_dup: Upsamples the YCbCr stream by simply duplicating the Cb and Cr

values
• YCrCb2RGB: Converts the upsampled YCbCr stream to an RGB stream
• BRAM LINE_BUFFER: This stores a line of RGB pixel data. The dual port functionality of

the BRAM is used to synchronize data between the 13MHz video clock and the 100MHz
plb_video_to_RAM clock.

• NEG_EDGE_DETECT: Detects the falling edge of the field bit in the timing reference code
to synchronize the output stream with the video source.

• SPECIAL_SVGA_TIMING_GENERATION: Handles interlaced video and correctly outputs
line numbers.

Page | 8

A few modifications were made to this IP Block based on the requirements of our project. The
Locate_Wand block needs the incoming stream encoded in RGB format along with the sync
signals to function. Therefore these internal signals were brought out as outputs from this
block.

Also, the 13MHz clock generated by this block is used to clock the logic inside the Locate_Wand
block as well as the Clock_Synchronizer block.

2.8 Locate_Wand
The purpose of this block is to sniff into the pixel stream generated by the video_to_RAM block
to locate the centre coordinates of the wand.

Three possible colours can be used in a wand – Red, Blue or Green. The equation used to
determine if a pixel is red from the RGB values is given below:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶𝐶𝐶2 − 𝑔𝑔𝐶𝐶𝐶𝐶𝐶𝐶𝑔𝑔2 − 𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶2 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝑁𝑁𝐶𝐶𝐶𝐶𝑁𝑁

The ColourRedValue being greater than zero means that a red colour has been detected. The
COLOUR_NORM factor enables us to control the measure of pure red that is to be detected. So a
higher COLOUR_NORM value will detect purer red. Similarly, blue and green can be detected
using the same equation just by swapping the red component with the respective colour.

The Locate_Wand traverses through the source video frame keeping track of the uppermost,
lowermost, leftmost and rightmost coordinates of the wand coloured pixels in the frame. In order
to cope up with corruption in the frame, we disregard small cluster of pixels which might have
the same colour as the wand. Then it calculates the mean of these values appropriately to find the
X and Y coordinates of the centre of the wand using the following equations:

𝑋𝑋𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑔𝑔𝐶𝐶𝑐𝑐𝐶𝐶 = (𝐶𝐶𝐶𝐶𝑙𝑙𝑐𝑐 + 𝐶𝐶𝑐𝑐𝑔𝑔ℎ𝑐𝑐) 2⁄

𝑌𝑌𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑔𝑔𝐶𝐶𝑐𝑐𝐶𝐶 = (𝐶𝐶𝑢𝑢 + 𝐶𝐶𝐶𝐶𝑑𝑑𝑔𝑔) 2⁄

When this algorithm was implemented in hardware, several registers were created to store
configuration values as well as the results of the algorithm. After the configuration registers are
set, the process of locating the wand is stated by setting Go bit within the status register. The
hardware waits for the next Vsync to start computations on a new frame. Once the algorithm has
completed, it sets the Done bit within the status register on the next Vsync which indicates that
the coordinates are ready to be read.

Page | 9

2.9 Control_Registers
The Locate_Wand block uses several configuration values that are set by software running on
the microblaze. Also, the resulting coordinates must be read from the block by the microblaze.
The simplest way to accomplish this communication is over the plb_uB bus.

Five 32-bit registers were created for the Locate_Wand block. The names and descriptions of
these registers can be found below:

STATUS_NORM
Bit 31 30 29:16 15:0
Name Go Done Reserved Colour_Norm
Read/write R0/W R R0 R/W

• Bit 31 – Go: Setting this bit to one starts the process of detecting the wand based on the
configuration values. This bit will always read as a zero.

• Bit 30 – Done: This bit will go high once the location of the wand has been found and
the coordinates have been loaded into CENTRE register. The bit will be cleared by
hardware when a one is written to Go. Writing to this bit has no effect.

• Bits 29:16 – Reserved: These bits will always read as zero.
• Bits 15:0 – Colour_Norm: The 16 bit normalization value for the Locate_Wand

algorithm. Details on this value can be found in section 2.8.

WAND_IGNORE
Bit 31:18 17:16 15:0
Name Reserved Wand_Colour Ignore_Pixels
Read/write R0 R/W R/W

• Bits 29:16 – Reserved: These bits will always read as zero.
• Bits 17:16 – Wand_Colour: These bits correspond to the colour of the wand. There are

three possible values that can be stored in these bits:
o 0x00: Red
o 0x01: Green
o 0x02: Blue

• Bit s 15:0 – Ignore_Pixels: To deal with stray pixels that are the same colour as the wand
any cluster of pixels less than the value Ignore_Pixels will be ignored.

Page | 10

LEFT_RIGHT
Bit 31:16 15:0
Name Left Right
Read/write R R

• Bits 31:16 – Left: Once the Done bit in the STATUS_NORM register has gone high, the
horizontal coordinate of the leftmost pixel can be read here.

• Bit 15:0 – Right: Once the Done bit in the STATUS_NORM register has gone high, the
horizontal coordinate of the rightmost pixel can be read here.

TOP_BOTTOM
Bit 31:16 15:0
Name Top Bottom
Read/write R R

• Bits 31:16 – Top: Once the Done bit in the STATUS_NORM register has gone high, the
vertical coordinate of the uppermost pixel can be read here.

• Bit 15:0 – Bottom: Once the Done bit in the STATUS_NORM register has gone high, the
vertical coordinate of the lowermost pixel can be read here.

Centre
Bit 31:16 15:0
Name X Y
Read/write R R

• Bits 31:16 – X: Once the Done bit in the STATUS_NORM register has gone high, the
horizontal coordinate of the centre of the wand can be read here.

• Bit 15:0 – Y: Once the Done bit in the STATUS_NORM register has gone high, the vertical
coordinate of the centre of the wand can be read here.

2.10 Clock_Synchronizer
This block is used to synchronize the data between the Control_Registers which is running at
the plb_uB clock of 100 MHz and the Locate_Wand which is running at the pixel clock of 13
MHz. The mux enable scheme is used for clock domain synchronization [2]. The Go bit is the
enable bit from PLB clock domain and the Done bit is the enable bit from pixel clock domain.

Page | 11

2.11 Top_Colour_Detect
The Top_Colour_Detect is the top level wrapper for the video_to_RAM, Clock_Synchronizer,
Wand_Locator and the Control_Registers blocks. It brings out the PLB interfaces for both the
slave Control_Registers and the master video_to_RAM. It also takes in the video signals from
the video decoder.

3 Microblaze Software
There are two main sections in the microblaze software – the teaching phase and the playing
phase. During system startup, the user needs to train the device to indentify the notes
associated with different shapes. This is done by constructing a lookup table containing integers
that represent the notes of the instrument. In the playing phase, the system determines the
coordinate of wand during a tap and simply looks up the integer from the lookup table and
sends it out via UART.

3.1 Teaching phase
The teaching phase implements a look up table containing the integers that represent the notes
of the instrument. There are two main tasks involved in the creation of this lookup table. Firstly,
an image of the shapes drawn by the user is stored in the DDR_SDRAM and floored. The result
of the flooring is an image where the borders of the shapes and the background have a
significant contrast. Secondly, the region enclosed by each shape is identified and a note is
assigned by the user.

The steps involved in creating a floored image are outlined below:

1. Copy a video frame of the incoming video source to a separate memory location known
as the working frame.

2. Compute the magnitude of the pixels to provide a higher contrast between dark and
light regions using the equation below, where the colour components are 8 bit unsigned
values:

𝐼𝐼𝐼𝐼𝐶𝐶𝑔𝑔𝐶𝐶𝑁𝑁𝐶𝐶𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶 = (𝐶𝐶𝐶𝐶𝐶𝐶2 + 𝑔𝑔𝐶𝐶𝐶𝐶𝐶𝐶𝑔𝑔2 + 𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶2)

3. Scale the magnitude of each pixel in the image so that the ImageMagnitude is limited to
a 8 bit unsigned value:

𝑆𝑆𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐶𝐶𝑔𝑔𝐶𝐶𝑁𝑁𝐶𝐶𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐼𝐼𝐼𝐼𝐶𝐶𝑔𝑔𝐶𝐶𝑁𝑁𝐶𝐶𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼_𝑆𝑆𝐶𝐶𝐼𝐼𝐶𝐶𝐼𝐼_𝐹𝐹𝐼𝐼𝐶𝐶𝐹𝐹𝐶𝐶𝐶𝐶⁄

4. Floor each pixel to either white (0xFFFFFF) or black (0x0) based on whether it is above
or below the threshold factor called TEACH_FLOOR_THRESH

Page | 12

After the creation of the floored image, possible pixel values of the resulting image are either
pure black or pure white. This makes it easier to distinguish between a light background and a
dark border.

To identify a closed region, the pixels in that region are changed to an integer value other than
black or white. This is done using a recursive algorithm which is described in the code below. In
the code, pixel_value is the integer number that will be written to every pixel within the
shape and the pixel_coordinate is the algorithm starting location.

depth_first_search(pixel_value, pixel_coordinate)

IF (coordinate outside image OR shape border OR pixel
visited before)

 DO nothing

 Else

 Assign this pixel with pixel_value

 CALL depth_first_search… on LEFT pixel

 CALL depth_first_search… on RIGHT pixel

 CALL depth_first_search… on UP pixel

 CALL depth_first_search… on DOWN pixel

When this algorithm was implemented on the microblaze, there was not enough data memory
for the stack to execute the recursive function as many times as required. Therefore, the
function was rewritten as an iterative function and a block of the DDR_SDRAM was used as an
extended stack.

The different shapes are assigned a unique pixel value which refers to a note. Once all the
shapes have been identified by the user, the teaching phase is complete and then the system
moves to the playing phase.

3.2 Playing Phase
In the playing phase, the microblaze waits for a tap of the wand which in the case of our demo
is any byte received on the UART. When there is a tap, the Go bit in the top_colour_detect
status registers is set which starts the Locate_Wand algorithm. Then the CPU polls for the Done
bit. When the Done signal is received, the coordinates of the centre of the wand are read.
These coordinates are used to look up the integer representing a note from the look up table

Page | 13

generated in the teaching phase. Then a codeword byte followed by the integer is sent out via
UART to the PC. This process repeats until the system is restarted by the user.

4 Computer Software
The computer is running a C++ program which notifies the microblaze of a tap as well as plays
the note corresponding to the integer. There are two threads running in this program which
take care of the read and write of the serial port separately. The write thread notifies the
microblaze of a tap of the wand by writing a byte to the serial port when the <Enter> key is hit
on the keyboard. The read thread reads bytes sent by the microblaze which contains user
interface messages and note information. All the user interface messages are relayed to the
console of the computer. When a codeword is received from microblaze indicating a note, it
treats the next byte as an integer and plays the associated note.

This C++ program is used only for the purposes of the demo and would not be needed if the
work outlined in Section 1.6 were completed.

5 Design Tree
The following is a description of the files located in our project’s directory tree:

• Project_files – root directory
o hw – all of the pcores used in this project

 top_colour_detect_v1_00_a – this core contains the video stream
decoding logic, the colour detection (used to detect the wand), the
control registers for the colour detection and finally the synchronizer
between the plb’s 100MHz clock and the colour detector’s 13MHz clock

o sw – all of the drivers and application software used in this project
 main.c – The main application code for the project.
 teaching.c – The depth first algorithm along with the image processing.
 colour_detect.c – Functions that initialize the Locate_Wand core and run

the colour detection algorithm
 video_setup.c – A single function along with a custom structure to

initialize the decoder chip on the VDEC1 Board over I2C.
 video_RAM.c – Functions that can read or write a single ‘pixel’ in the

DDR_SDRAM and a function to copy an entire video frame from one
location to another.

 UART.c – Functions to access to low level registers of the uartlite module.
Used to send special codewords and receive characters from the PC

Page | 14

o Full_project.zip – Our project in its entirety without any generated hardware or
compiled software. If this project is opened and a bitstream is generated, the
project will work as described in this document.

Page | 15

6 Bibliography

[1] http://wearcam.org/idioscope/ece532.htm

[2] http://w2.cadence.com/whitepapers/cdc_wp.pdf

	Overview
	Background Information
	/
	Goals
	Implementation
	Brief Description of IP
	Outcome
	Future Work

	Detailed Description of Hardware Blocks
	Microblaze (Ver 7.10d)
	PLB (plb_v46 Ver 1.03a)
	MPMC (Ver 4.03a)
	UART_uB (xps_uartlite Ver 1.00a)
	IIC (xps_iic Ver 2.00a)
	TFT (xps_tft Ver 1.00a)
	Video_to_RAM (Ver 1.00a)
	Locate_Wand
	Control_Registers
	Clock_Synchronizer
	Top_Colour_Detect

	Microblaze Software
	Teaching phase
	Playing Phase

	Computer Software
	Design Tree
	Bibliography

