

ECE 532 “PONG”
Group Report

Chirag Ravishankar (995399108)

Durwyn D’Silva (994761496)

Jeffrey Goeders (993367566)

April 5, 2010

Page | 2

Contents

1 Overview ... 3

1.1 Goals ... 3

1.2 Background ... 3

1.3 System Overview... 3

1.4 IP and Hardware Descriptions... 5

2 Project Outcome ... 7

2.1 Our Final Result and Key Successes .. 7

2.2 Shortcomings .. 7

2.3 Future Improvements ... 7

3 Modular Descriptions .. 9

3.1 Video to Memory Module... 9

3.2 Paddle Detector Module ... 13

3.3 Paddle and Ball Drawer Program .. 17

3.4 Sound Module ... 19

3.5 Ball and Score Control Module ... 22

4 References .. 30

5 Appendix ... 31

5.1 PLB Master, Burst Write Operation .. 31

5.2 PLB Master, Burst Read Operation ... 32

Page | 3

1 Overview

1.1 Goals

The goal of our project was to recreate the classic 2-player game, Pong, with added special features. The

vision was to have the players hold and move physical paddles hit to a virtual ball being projected onto

the screen. Image detection would be performed to detect the paddles, and calculations in hardware

would detect collisions, as well as the velocities and angles of the paddles. The game would be played on

a projected screen.

1.2 Background

Pong is one of the oldest and most popular arcade games. It is a digital version of tennis where

two players have a racquet/paddle on either side of the screen and the object of the game is to hit the

ball and score on the opponent. We wanted make this game more interactive such that the players have

physical paddles in their hands and using image detection, we would detect and draw them on a screen.

A ball will be drawn on the screen and the players have to move their paddles to interact with the ball.

Contrary to the classic game where the paddles are constrained to move only up and down, our game

would allow the players to move it in any direction. Calculations based on the angle and velocities would

be done to correspondingly interact with the ball

Figure 1: Classic Pong Game (left) and our version with the XUP-V2P Board(right)

1.3 System Overview

Our system diagram is similar to that of our proposal. However, the paddle and ball drawer was

implemented in software instead of on a separate hardware core. We also added an audio module to

play distinct sounds corresponding to the gameplay.

Page | 4

Figure 2: System Diagram

Page | 5

1.4 IP and Hardware Descriptions

IP Function Author

IP inside the FPGA

video_to_ram The core captures video from the camera

and inputs the information in the correct

format to the DDR-SDRAM through the PLB

Group

paddle_detector Analyzes the video data to find points of a

specific colour as specified by the

MicroBlaze program

Group

ball_control Using the paddle locations, creates a ball

location and identifies collisions between

the paddles and the ball. Also does the

physics calculations of the angles and

velocities. This module also keeps track of

the player scores

Group

audio_core Interface with the LM4550 chip to play

sounds

Embedded Computing

Audio_core custom

logic

Play 4 distinct sounds based on the status

of the game

Group

Microblaze Processor core for setting up video,

drawing the paddles and ball, interface with

the UART

Xilinx; program implemented by

the group

dlmb/dlmb_ctrl Data memory controller interfaced through

Local Memory Bus

Xilinx

ilmb/ilmb_ctrl Instruction memory controller interfaced

through LMB

Xilinx

PLB (plb_v46) Processor Local Bus used to interface to

various IP cores including the microblaze,

video_out, paddle_detector and

video_to_ram

Xilinx

XGpio (xps_gpio) Used to acquire and write signals from/to Xilinx

Page | 6

microblaze and other IP cores

IIC (xps_iic) Xilinx

Debug Module (mdm) Debug Module to enable XMD Xilinx

IP outside the FPGA

DDR_SDRAM (mpmc) Memory to hold the video data, Multi-

ported memory controller is used to

interface to several cores

Xilinx

LM4550 Audio Codec chip National Semiconductor

Video Daughter Card Interface with the video camera Analog Devices

Video Camera Capture the video of the players with

paddles

Speakers Output audio data corresponding to the

game

UART Debug information; report player scores

and display status of the game

Xilinx

VGA

monitor/Projector

Display the paddle and the ball

Table 1: Description and Source of all components of the design.

Page | 7

2 Project Outcome

2.1 Our Final Result and Key Successes

We have successfully implemented our project. We have implemented successful video capture,

storage of the frames to RAM, ability to decode the frame and detect the paddles, perform physics

calculations to determine the interaction between the paddles and a virtual ball, and draw the paddles

and ball on the screen. The system implemented is the same as the diagram shown above.

2.2 Shortcomings

A shortcoming of this project is that our decision to implement the Physics in hardware rather than

software caused us difficulties and delayed the project. There are several advantages to software we

realized in the later portion of our project:

1. Turn Around time – Compilation time for the hardware implementation (synthesis + place and

route + Bit stream) were considerably longer than software compilation times (Compiler + Bit

stream).

2. Availability of IPs to calculate Math – The major problem with the hardware implementation

was the availability of IPs such as the “Cordic” Math IP and Divider IPs. In order to implement

the physics, we required trigonometric functions (Sin/Cos) as well as simple math functions like

Divide. We spent a large amount of our time getting the IPs. In the end, we abandoned using

these IPs.

In addition to the physics, the ball detector core does not automatically calibrate to lighting conditions

and the paddle/ball drawer software currently causes the paddle and ball to “flicker” by printing

alternating white and black pixels frequently.

Another shortcoming is the proper detection of the location of the paddles. Sometimes, other items

seen by the camera are interpreted to be the paddle ends and the coordinates of the paddle are

updated to be incorrect. This causes the paddle to jump to unexpected places on the screen.

2.3 Future Improvements

We could improve the physics by implementing a software based angle detection scheme. For example,

we could implement a second Micro Blaze system which has the sole purpose of calculating the angle of

Page | 8

intersect between a paddle and the ball. This would allow us to achieve more realistic results when

collisions occur.

In addition, the paddle/ball drawer software on the existing micro blaze could be tweaked so that no

flicker is present and we could implement calibration routines in the ball detector core.

In terms of better detection of the paddle, we could have chosen to use the YCrCb scheme instead of

RGB. Changes to the lighting in the environment cause RGB values to all fluctuate. If the room gets

bright the R, G, and B values will all increase. This makes it difficult to narrow in on a particular colour

using the RGB scheme. In contrast, the YCrCb scheme uses a single signal (Y) for luminance. Thus, if the

room gets brighter or less bright only the Y component will change. The actual colour components (Cr

and Cb) will be unaffected by the change in room brightness. This solution would potentially be more

immune to changes in the room brightness and could allow for more consistent and reliable paddle

detection.

To create a smoother (flicker-free) movement of images on the screen, we would have to implement the

paddle/ball drawer in hardware.

Page | 9

3 Modular Descriptions

3.1 Video to Memory Module

3.1.1 Overview

The Video to Memory Module is responsible for capturing the video input and storing each video frame

into the DDR SDRAM memory through a PLB connection. Figure 3 shows the connections of the Video

to Memory Module.

Figure 3: Video to Memory Module

The input to this module is provided by the ADV7183B video processing chip found on the Digilent

VDEC-1 daughter board. The chip on the daughter board accepts the analog NTSC video format and

converts it to digital values for the Xilinx FPGA. The signals provided by the daughter board are:

 Pixel Clock (1-bit)

 YCrCb video data (8-bit)

The other signals provided to this module are the 100MHz system clock and the system reset. In

addition, the MPMC_DoneInit signal is provided. This signal allows the module to wait for the MPMC

memory controller to be initialized before requesting writes to the memory.

Figure 4 illustrates an overview of the operation of the Video to Memory Module.

Page | 10

Figure 4: Diagram of Video to Memory Module.

The following sections outline the steps required to process the video input and write the data to the

memory.

3.1.2 Line/Field Decoder

The video from the daughter board is provided in the ITU-R BT.656 video format. As with most video

formats, the video data is framed using synchronization signals. There are two synchronization signals,

field and line. The field signal indicates the beginning of a new frame of video, and the line signal

indicates the beginning of a new line of video data. With this video format, the field sync and line sync

signals are embedded into the YCrCb video signal using special reserved symbols.

The Line/Field Decoder is required to extract the field sync and line sync signals from the YCrCb video

data. The core, lf_decode, is provided by Xilinx.

The 8-bit YCrCb signal is routed from the daughter board directly to the lf_decode core. The pixel clock

is first routed to an input pin clock buffer, IBUFG, and then to the lf_decode core.

3.1.3 4:22 to 4:4:4 Conversion

The input video is provided in 4:2:2 format. This means that the sampling rate of the luminance (Y)

component is twice as fast as the sampling rate of the Cr and Cb signals. Before the video can be

processed, the sampling rates must be equalized. This is accomplished by converting the video from

4:2:2 format to 4:4:4 format.

Page | 11

Xilinx provides a core, vp422_444_dup, which performs the task of equalizing the sampling rates. The

field and line sync signals as well as the YCrCb signal are inputted into the core. The core outputs

separate Y, Cr and Cb signals as well as adjusted field and line sync signals. The clock is also inputted

into the core, and due to the equalization of the sampling rates, the new output clock is divided by 2.

Thus, the new clock rate is 13.5MHz.

3.1.4 Colour Space Converter

The next stage of the video processing is to convert the YCrCb video format into RGB video format. The

RGB format allows the output of the video to a monitor through a VGA connection and also makes it

easier to detect Red, Green and Blue colours.

Xilinx provides a core, YCrCb2RGB, which performs the transformation from YCrCb video format to RGB

video format.

3.1.5 Dual Line Buffers

Once converted to RGB, the video data is fully prepared to be written to the DDR SDRAM memory.

However, the logic to interface with the memory controller is in the 100MHz clock domain. Since data is

supplied at 13MHz and written to the RAM at 100MHz, some buffering must occur. A double buffering

technique is used with a single line granularity. This means that each line of video is alternately written

into one of two available buffers. While one buffer is being filled with video data, the other is being

emptied and written into t he RAM. With each new line, as indicated by the line sync signal, the

operations are swapped. The double buffering technique ensures that there is always an available

buffer for incoming video data so that no data is ever lost.

The buffers are being filled at a rate of 13MHz and being emptied at a rate of almost 100MHz. The rate

is not quite 100MHz because there is some overhead in requesting memory operations with the DDR

SDRAM (See Section 3.1.8). Even with this overhead, the emptying rate is sufficient that the buffer will

always be emptied before the next line.

3.1.6 Special SVGA Timing Generation

Another core that is required is the Xilinx Special SVGA Timing Generation core. This core accepts the

27MHz pixel clock and the field sync signal. The core produces a line count. This line count is used by

the custom logic (3.1.7) to determine what address of the RAM to write the video data to.

Page | 12

3.1.7 Custom Logic

The custom logic is the top-level design and it is essentially the glue around all the modules. It has three

main functions:

 Instantiation of Xilinx video modules

 Logic to control double buffers

 PLB Bus master logic

The instantiation of the Xilinx modules includes all modules explained in Section 3.1 and the

interconnect between them.

The logic to control the double buffers ensures that each time a new line begins, the read and write

signals to the double buffers are swapped.

The PLB Bus master is responsible for the signals required to act as a master on the PLB Bus. Through

these signals, the core is able to request burst write operations from the Xilinx Multi-Ported Memory

Controller (MPMC).

The timing diagram of the burst transfers are shown in Appendix 5.1.

3.1.8 Bandwidth Calculations

The PLB bus supports a maximum burst size of 16. Since each pixel is word-size, this means that we can

successively write 16 pixels to memory before needed to perform another request. Figure 5illustrates

the flow of the PLB master bus requests.

Figure 5: Flow diagram for PLB Burst Write operations required to write the video frame data to the DDR SDRAM.

In order to write a video frame, the above three states are repeated until all pixels in the video frame

have been written. The timings of each state are indicated in Table 2.

State Cycles Required

Request Burst 1

Page | 13

Wait for Acknowledgement

10 (Simulations showed that the

memory controller always responded in

less than 10 cycles)

Transfer 16 pixels 16

Table 2: State timings of the PLB master write operations.

The maximum number of cycles required to write 16 pixels of video data is:

𝑀𝑎𝑥 𝐶𝑦𝑐𝑙𝑒𝑠 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 + 𝑊𝑎𝑖𝑡 + 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟

= 1 + 10 + 16

= 27

The time required to write all pixels in a line to memory:

𝑇𝑖𝑚𝑒 𝑃𝑒𝑟 𝐿 =
𝑃𝑖𝑥𝑒𝑙𝑠

𝐿𝑖𝑛𝑒
÷
𝑃𝑖𝑥𝑒𝑙𝑠

𝐵𝑢𝑟𝑠𝑡
×
𝑀𝑎𝑥 𝐶𝑦𝑐𝑙𝑒𝑠

𝐵𝑢𝑟𝑠𝑡
÷
𝐶𝑦𝑐𝑙𝑒𝑠

𝑆𝑒𝑐𝑜𝑛𝑑

= 640 ÷ 16 × 27 ÷ 10000000

= 10.8𝜇𝑠

According to the NTSC video standard, a new line arrives every 63.55𝜇𝑠. This means that the user logic

will always have sufficient time to write the entire line to memory before the next line arrives. The

Video to Memory Module is connected to its own PLB Bus; no other masters are present on the bus.

This ensures that there will never be contention and the full bandwidth of the PLB Bus will always be

available.

3.2 Paddle Detector Module

The Paddle Detector Module is responsible for using the video frame data to detect the endpoints of the

two player paddles. Figure 6 shows the connections of the Paddle Detector Module.

Page | 14

Figure 6: Paddle Detector Module

This module accepts the standard 100MHz system clock and system reset. In addition, the

MPMC_DoneInit signal is provided. This signal allows the module to wait for the MPMC memory

controller to be initialized before requesting reads from the memory. A PLB connection to the MPMC

memory controller allows the module to read the video frame data from memory. The (X, Y) locations

of both endpoints of the two paddles are provided as outputs.

Figure 7 shows the flow of operation of the Paddle Detector Module.

Figure 7: Flow Diagram of the Paddle Detector Module

Page | 15

3.2.1 Setting the Colour Bounds of Paddle Detection

The Paddle Detector Module detects the endpoints of the paddles based on predetermined colours. In

order to allow for real-time calibration of the system, these colours are stored in memory that is

accessible to the Microblaze processor.

The game is played with two identical paddles, with differing colours at the two ends of the paddle,

hereby referred to as End Colour 1 and End Colour 2. We chose to use Red and Green as they could

more easily be distinguished using RGB values; however, theoretically any two colours could be used.

Upon initialization of the game, the Microblaze processor writes 12 words of data into memory:

 Lower & Upper Bound of End Colour 1 Red Colour

 Lower & Upper Bound of End Colour 1 Green Colour

 Lower & Upper Bound of End Colour 1 Blue Colour

 Lower & Upper Bound of End Colour 2 Red Colour

 Lower & Upper Bound of End Colour 2 Green Colour

 Lower & Upper Bound of End Colour 2 Blue Colour

These 12 words are repeatedly read by the Paddle Detector Module via the PLB interface. This method

was chosen as it allows the Microblaze processor, at any point in time, to change the detection colours.

This allows us to adjust to lighting without having to recompile the hardware.

The Paddle Detector core is a master on the PLB Bus, which allows it to request a burst read operation

(See Appendix 5.2) to read these 12 words of data. The 12 words of data are stored in registers.

3.2.2 Scanning the Video Frame for Matching Pixels

Once the colour bounds of the paddles have been read, the active video frame can be read from

memory. The video frame is read from memory in 16 pixel increments using the same algorithm shown

in Figure 5, except that pixel data is read instead of written.

3.2.3 Updating Paddle Coordinates With New Location

As the pixel data is read from the memory, the Red, Green and Blue values of the pixel are analyzed to

determine if the pixel corresponds to the end point of a paddle. Figure 8 illustrates the process to

determine if the given pixel belongs to a paddle endpoint. If it does, the corresponding (X,Y) coordinate

is updated.

Page | 16

Figure 8: Decision flow to update location of paddle endpoints.

3.2.4 Writing the Paddle Locations to Memory

Finally, the four paddle (X, Y) endpoints are written into memory. The 8 values are written to memory

using the PLB interface to the MPMC. The burst write protocol is used (See Appendix 5.1).

These values are written into memory so that they are always available to the Microblaze. This is

essential so that the Paddle and Ball Drawer Program (Section 3.3) knows where to draw the paddle.

Page | 17

3.3 Paddle and Ball Drawer Program

The Paddle drawer was created using the Bresenham’s line drawing algorithm. The ball drawer

was created using a modification of the Midpoint circle algorithm. Both the algorithms were

implemented on the MicroBlaze soft core processor.

3.3.1 Paddle Drawer

The four points of the two paddles were detected in the Paddle detector module and output to

the processor using the XPS General Purpose IO IP provided by Xilinx. The

port connections between the Paddle Detector and the Gpio were made

using the EDK GUI and were made available through the program using

XGpio_DiscreteRead(XGpio *InstancePtr, unsigned Channel); Each XGpio IP

had two channels corresponding to the two points for each paddle. Using

the Bresenham’s line drawing algorithm, a line was drawn to connect the

two points.

The line is erased (drawn black) and re-drawn at each iteration of

the while loop.

3.3.1.1 Paddle Drawer Algorithm

A standard Bresenham’s line drawing algorithm was used. It works as

follows:

 Check if the line is a steep line (i.e. change in Y is bigger than the

change in X), in which case, swap the X and Y co-ordinates of both

points.

 Make sure that X1 is smaller than X2, if this is not the case, do the

necessary swapping of the points.

 If Y1 is smaller than Y2, then each step (Ystep) must be a negative

value. Otherwise, it must be positive. In our case, we are

incrementing by 1.

 Loop from X1 to X2, if the line is steep, plot (Y,X) as X,Y on the

screen, otherwise, plot (X,Y) on the screen

 If the next point requires a Y-increment, then perform the

corresponding Ystep increment. This is checked using an error

variable which is initialized to dx/2 (half of the change in X), and

after each plot, dy is subtracted from it. If the result is negative,
Figure 9: Bresenham’s Line Drawing
Algorithm

Page | 18

then an increment is necessary. See the Algorithm diagram for an illustration.

3.3.2 Ball Drawer

The location of the ball is calculated by ball_control core (See 3.3) and the X, Y co-ordinate is

supplied to MicroBlaze through the XGpio interface. The co-ordinate is updated at a configurable

number of clock cycles depending on the velocity of the ball. This value is read by the software and the

ball is drawn.

 The ball is erased (i.e. drawn black) and redrawn at each iteration of the while loop.

3.3.2.1 Ball Drawing Algorithm

A standard Midpoint Circle Drawing Algorithm was used as explained in Wikipedia [1]. However, this

algorithm does not fill in the circle. Therefore, the algorithm was modified such that instead of plotting

two pixels, a line was drawn between them. This filled in the circle with a solid colour.

3.3.3 Functions used in MicroBlaze

//Create and XGpio variable

XGpio Instance;

//Initialize the variable with the device ID as generated in xparameters

intXGpio_Initialize(XGpio *InstancePtr, u16 DeviceId);

//Read from the particular GPIO port – corresponds to a memory-mapped port as connected in the

//system diagram

u32 XGpio_DiscreteRead(XGpio *InstancePtr, unsigned Channel);

//Write to a particular GPIO port – corresponds to the port as connected in the system diagram

u32 XGpio_DiscreteWrite(XGpio *InstancePtr, unsigned Channel,u32 Mask);

Page | 19

3.4 Sound Module
The goal of this module was to produce sound each time the ball interacts with the paddle, or to

indicate the start or end of a game. There are four possible sounds that can produced: A single toned

beep during a ball-paddle collision, a double toned beep when a player scores, a 5-toned sound when a

new game is started and a 6-toned sound when the game ends. A third party verilog to interact with the

AC’97 LM4550 chip on the XUP-V2P board was found in [2]. The HDL was able to direct the audio input

from a mic to the speakers. It also produced a square wave that was output to the speakers. This was

modified to produce square waves of different frequencies to correspond to the different tones. An 11

bit counter was used for this purpose, where each bit of the counter produced a square wave of

different frequency (e.g. counter[0] produces a square wave that is double in frequency from

counter[1]).

Figure 10: Sound Module interactions

Collision_Occured, Point_scored is produced by the ball_control core. The Start_gameand End_game

signals are produced by the program in MicroBlaze and interfaced through the XGpio interface.

Page | 20

3.4.1 FSM to produce different tones

This FSM produces 4 distinct sounds. The

Beep state is triggered with the

collision_occured signal is a single state

where we wait a certain amount of time,

during which a tone is output to the speakers.

Similarly, the End Game Beep State is

triggered by the end_gamesignal, the Start

Game Beep state by the start_gameand the

Point beep by the point_scoredsignal. This is

a moore-type state machine where the

output is controlled based on the current

state.

To produce a multi-toned sound, multiple

states are cycled through and a different tone

is played depending on the state. To change

the tone (i.e. frequency of the square wave), a

different bit of an 11-bit counter is assigned

the speaker. The tones in the state machine

diagram shown correspond to:

Tone 1: counter[10]

Tone 2: counter[9]

Tone 3: counter[8]

Tone 4: counter[7]

Figure 11: State Diagram for Custom Logic

Page | 21

3.4.2 Sound Module Diagram

The Audio module interfaces with the clock generator, the Ball Control custom module,

MicroBlaze, as well as external ports.

Clock generator supplies a buffered clock, the Ball Control module identifies the points of

collision and when a player scores a point. The corresponding values are held high for one clock cycle,

and are read by the audio core custom logic. The ‘Start Game’ and ‘End Game’ signals are supplied by

the MicroBlaze program through the XGpio interface. The Audio module has external pins, which

connect to the LM4550 chip in the XUP-V2P board. A modular diagram is presented below:

Figure 12: Sound Module Diagram

Page | 22

3.5 Ball and Score Control Module

The Ball Control Module is responsible for the physics of the project. It is given the detected points from

the Paddle Detector Module. It utilizes this information to keep track of the position of the ball. Upon a

collision of the paddle with the ball, it will change the velocity of the ball and as a result, the position of

the ball will be updated with the new velocity. After it completes this, it sends the ball co-ordinates to

the “Paddle and Ball Drawer Program” on the Micro blaze which will draw it on the screen periodically.

Velocity
Calculation

Collision Outcome Ball Registry
Score Registry

C
lo

ck
R

es
et

Paddle
Location 1

(x1,y1,x2,y2)

Paddle
Location 2

(x1,y1,x2,y2)

Ball
Location

(X,Y)

Ball and Score Control

Paddle
Velocities

P
ad

d
le

 1
 -

(x
1

,y
1

,x
2

,y
2

)
P

ad
d

le
 2

 -
(x

1
,y

1
,x

2
,y

2
)

Ball Location (X, Y)

Ball Velocity (X, Y)

New Ball
Velocity (X,Y)

Update Velocity

Point
P1

Point
P2

Score
P1

Score
P2

From Paddle
Detector Core

From System

Start
Signal

From MicroBlaze

Figure 13 Ball and Score Control Complete Module

3.5.1 Velocity Calculator

This core determines the velocity of the Paddle. This velocity is required in order to determine the speed

of collision between the ball and the paddle.

Sources of Input (Refer to I/O Diagram below)

 Paddle Detector Core – Locations of Paddles

 Sampling Rate Parameter – Made configurable through EDK

Page | 23

Functions:

 Register the input velocity

 Periodically (Based on Sampling Parameter) determine the difference between the old velocity

and the new velocity

 Determine the new velocity vector

 Ensure the velocity does not go out of bounds (parameter Max Value)

IO Diagram &State Diagram:

Velocity
Calculation

C
lo

ck
R

es
et

Paddle
Location 1

(x1,y1,x2,y2)

Paddle
Location 2

(x1,y1,x2,y2)

Paddle 1 -(x1,y1,x2,y2)
Paddle 2 -(x1,y1,x2,y2)

From Paddle
Detector Core

Reset
Calculate
Velocity

Wait State

Wait Counter =0;

Current Velocity = 0;

Old Location = Paddle
Input Location;

Wait Counter =0;

Current Velocity = Minimum
(New Location-Old Location,

Max Velocity)

Old Location = Paddle Input
Locations;

Wait Counter =
Wait Counter + 1

Start Counter >= SAMPLE RATE

Counter >=
SAMPLE RATE

Paddle
Velocity

Figure 14 Velocity Calculation Sub Module IO Diagram and State Machine

3.5.2 Collision Detector

Given the position and speed of the Paddle as well as the ball’s co-ordinates + velocity, we can

determine when the objects collide and the resulting velocity of the ball.

Sources of Input (Refer to I/O Diagram below)

 Paddle Detector Core – Locations of Paddles

 Velocity Calculator - Velocity of each Paddle point

 Ball Registry – Current Ball Location and Velocity

Functions

Page | 24

 Determine when a collision occurs based on the 2 points of each paddle and the ball location.

 Determine the resulting velocity of the ball

 Determine when the Ball Registry should update its Value

I/O Diagram

Collision Outcome

C
lo

ck
R

es
et

Paddle
Location 1

(x1,y1,x2,y2)

Paddle
Location 2

(x1,y1,x2,y2)

B
all

Lo
catio

n

(X
,Y)

P
ad

d
le

 1
 -

(x
1

,y
1

,x
2

,y
2

)
P

ad
d

le
 2

 -
(x

1
,y

1
,x

2
,y

2
)

From Paddle
Detector Core

From System

P
ad

d
le

V

el
o

ci
ti

es

From Velocity
Calculator

B
all

V
elo

city
(X

,Y)

New Ball
Velocity

(X,Y)

Update
Velocity

Figure 15 Collision Outcome I/O Diagram

State Diagram

Reset
Check

Intersection
Update Velocity

Wait Counter =0

New Ball Vel = 0

Update Velocity = 0

Start

Wait Update
Velocity Drop

Wait State

Intersect = 1

Intersect = 0

Intersect = 0

Intersect = 1
Wait Counter <

WAITCYCLES

Wait Counter >= WAITCYCLES

Wait Counter =0

Update Velocity = 0

Update Velocity = 1

New Ball Velocity <= New
velocity based on

Algorithm*

Wait Counter ++

Figure 16 Collision Outcome State Machine

*Resulting Velocity Calculation Measurement(NOTE: We treat the X and Y directions independently)

Page | 25

CASE1: BALL AND PADDLE MOVING IN THE SAME DIRECTION
if ((Current Ball Velocity is positive AND Velocity of Paddle is positive) OR
 (Current Ball Velocity is negative AND Velocity of Paddle is negative))

NewBallVel= CurrentBallVel + VelPaddle;

CASE2: BALL AND PADDLE MOVING OPPOSITE DIRECTIONS
else if ((Current Ball Velocity is positive AND Velocity of Paddle is negative) OR
 (Current Ball Velocity is negative AND Velocity of Paddle is positive))

NewBallVel= -CurrentBallVel + VelPaddle;

CASE 3: ALL OTHER CASES:
else

NewBallVel= -CurrentBallVel;

Determining when a collision has occurred

We use mathematics to determine if a collision has occurred. We base our decision on 2 main

conditions:

 CONDITION 1: The intersecting ball should fall within the regions contained within the box of

the paddle co-ordinates. For example:

o X1<X<X2 OR X2<X<X1

o Y1<Y<Y2 OR Y2<Y<Y1 where X1, X2, Y1, Y2 are the paddle points.

 CONDITION 2: The intersecting ball will lie along the line and will contain the same slope as the

line of intersection. Given Paddle Point 1 (X1,Y1) and Paddle Point 2 (X2,Y2) and Ball point

(X3,Y3) we can compare the slopes with the following equation.

o Slope = Difference in Y Co-ordinates/Difference in X Co-ordinates

o (Y3-Y1)/(X3-X1) ==? (Y2-Y1)/(X2-X1)

o Cross Multiplying (To avoid dividers) we get:

o (Y3-Y1)*(X2-X1) ==? (Y2-Y1)*(X3-X1)

Page | 26

(X1, Y1)

(X2,Y2)

(X3, Y3)

X3-X1

X2-X1

Y2-Y1

Y3-Y1

PADDLE
POINT 1

PADDLE
POINT 2

BALL

Figure 17 Collision Outcome Condition 2 Slope Depiction.

3.5.3 Ball Registry and Score Registry

The ball registry is responsible for keeping track of the location and velocity of the ball. As the game

progresses, it periodically updates the ball’s position on the screen.

The score registry keeps track of the score based on the ball collisions with the left and right of the

screen. If a collision is detected, then the score is incremented and a signal is sent to the Audio core so

that a sound is played.

Sources of Input(Refer to I/O Diagram below)

 Collision Outcome - New calculated Velocity and Update Velocity Signal

 MicroBlaze – Start Game Signal

Functions

 Store the current ball location and velocity

 Update the ball location based on the velocity

 Allow the velocity to be altered based on Collision Outcome core.

 Determine if the ball goes out of bounds and if so, switch the velocity so it stays within bounds

 Notify the Audio core when a sound should be played (collision with walls or point for a player)

 Keep track of the score of players (collisions with Left and Right side)

Page | 27

I/O Diagram

Ball Registry
Score Registry

C
lo

ck
R

es
et

Ball
Location

(X,Y)

P
o

in
t

P
1

P
o

in
t

P
2

Sc
o

re

P
1

Sc
o

re

P
2

From System

Start
Signal

From
MicroBlaze

N
ew

 B
al

l
V

el
o

ci
ty

(X

,Y
)

U
p

d
at

e
V

el
o

ci
ty

Ball
Velocity

(X,Y)
From Colission

Outcome

Figure 18 Ball and Score Registry I/O Diagram

State Diagram

Reset
Wait for Start

State
Normal Update

State

Wait Counter =0

Ball Location =
Center of Screen

Velocity of Ball =
Random

Start

Detect Top/
Bottom Edge

State

Update Velocity
State

Start Signal = 0

Wait State

Detect Left/
Right Edge and
Update Score

State

Start Sig= 1 Update
Velocity = 1

Update
Velocity = 1

Update
Velocity = 1

Counter Wait < WAITCYCLES
& Update Velocity = 0

Update
Velocity = 0

Wait Counter =0

Ball Location = +/- 1
based on Velocity

If Y coordinate is
at the top/bot

edge, then switch
velocities

Colission=1
(sound)

If X coordinate is
at the left/right

edge, then switch
velocities

Point (P1/P2)= 1
Score(P1/P2)++

Wait Counter ++

Collision = 0,
Point = 0

Current Velocity
= New Velocity

Update Velocity = 0

Figure 19: Ball and Score Registry State diagram

Page | 28

Update Position based on Velocity

When updating the balls position, we considered two alternatives for updating the ball.

 Alternative 1: Update position every fixed period (Parameter) by Velocity (0, 1,2, or 3) pixels

 Alternative 2: Update position by 1 unit per period; however the period will vary with Velocity.

We initially chose Alternative1, however the game play was not smooth to our liking and velocities could

only increase in multiples of the original velocity. In Alternative 2, we have implemented a configurable

period where we can determine the frequency of updates based on the velocity. The Implementation

involved splitting the FSM shown above into two each having independent Wait Counters. By alternating

the comparison value of the counter, we can implement different speeds.

Detection of Edges

We detect if the ball is positioned near the edges of the screen. The purpose is to prevent the ball from

going out of bounds, keep track of the score, and send a signal to the sound control to output a sound

when a collision with walls are detected.

In the current implementation, the ball has a radius of 10. The ball’s location is also determined by the

center of the ball. To prevent the ball from appearing outside the bounds of the screen, we ensure that

the center of the ball stays within R (10 pixels) of the edges at all times. If we detect a ball is within the

edge region, we reverse the velocity direction to bounce the ball back.

R

R

Ball

R

R

R

Center of Ball

Figure 20 Edge Detection of Ball on Screen

Page | 29

3.5.4 Testing the Ball and Score Control Module

In order to test this module prior to integration, ISE and ModelSim was used in conjunction. ISE was

used to develop the HDL and ModelSim was used in all stages to verify that the code was synthesizable

and that it worked as expected before and after synthesis (Translation).

Each Sub-Module (Velocity Calculator, Collision Outcome, and Ball/Score Control) were independently

developed and tested (before and after synthesis). In addition, a useful feature we utilized in ISE was the

test bench skeleton generator as well as the Core Generator which was used to integrate a divider into

the calculation for collisions.

Below is a ModelSim screenshot showing a moving ball hitting a stationary paddle. The outcome of the

collision switches velocity.

Paddle is placed
Vertically at location

600 and extends along
the entire screen

Ball Reaches
Location 600

Collision Outcome
tells Ball Registy to
Update its location

Ball Registry Updates
its location

Intersect Condition 1
Intersect Condition 2

Intersect for a finite
amount of time

Figure 21 ModelSim simulation. Basic case depicting a collision of a stationary paddle with a moving ball

Page | 30

4 References

[1] Midpoint Circle Algorithm, [Online] <http://en.wikipedia.org/wiki/Midpoint_circle_algorithm>

Accessed: March 10, 2010

[2] AC’97 Audio Codec controller for Digilent XUP-V2P, [Online]

<http://embedded.olin.edu/xilinx_docs/projects/audio-v2p.php> Accessed: March 17, 2010

Page | 31

5 Appendix

5.1 PLB Master, Burst Write Operation

Page | 32

5.2 PLB Master, Burst Read Operation

