

The Edward S. Rogers Sr. Department of
Electrical and Computer Engineering

University of Toronto

ECE532 Digital Hardware
Group Report

Title: Virtual Xylophone (Idioscope)

Team members:

Name: Student Number

Phil Messina 995395406

Mike McLean 995515161

 Alex Wong 994617982

Submission Date: Monday, April 5, 2010

Table of Contents

1. Overview ... 1

1.1. Project Goal .. 1
1.2. Project Components ... 1
1.3. System Block Diagram... 1
1.4. Brief Description of IP ... 2

2. Project Outcome .. 4
2.1. Results .. 4
2.2. Future Improvements ... 4

3. Block Descriptions .. 5
3.1. Hardware Modules ... 5

3.1.1. MicroBlaze .. 5
3.1.2. PLB Bus .. 5
3.1.3. Multi-Port Memory Controller (MPMC) .. 5
3.1.4. Video Out (XPS Thin Film Transistor (TFT) Controller) .. 5
3.1.5. Video to RAM (Custom Logic) .. 6
3.1.6. Block RAM (BRAM) ... 6
3.1.7. Letter Graphic Generator Core (Custom Logic) ... 8
3.1.8. Hit Detection/ Tone Generator Core ... 10
3.1.9. DMA (XPS Central DMA Controller) .. 11
3.1.10. XPS Interrupt Controller ... 11
3.1.11. Timer (XPS Timer/Counter) ... 11
3.1.12. XPS UART Lite .. 11

3.2. Software Modules .. 11
3.2.1. Red Colour Detection ... 11
3.2.2. Interrupt Handler ... 14
3.2.3. Playing Field Initialization .. 15

4. Description of Our Design Tree .. 17
5. References ... 18
6. Appendix A ... 19
7. Appendix B ... 20

Page | 1

1. Overview

1.1. Project Goal

The goal of the project was to create a system allowing users to play a ‘virtual
xylophone’ by giving the user visual and auditory feedback. With this project, the user
would strike hand drawn squares on a sheet of paper using a baton (microphone), and an
overhead mounted camera would actively track the baton (microphone). The microphone
is connected to the Xilinx XUP-V2P board which would detect strikes, ‘hits’, of the baton
on the playing surface, thus playing a specific tone for each virtual xylophone key ‘hit’.

1.2. Project Components

The various components required to develop the project consisted of the following:
• Xilinx XUP-V2P development board
• Camera to be mounted overhead playing surface with composite output feed
• Microphone with a red tip acting as the baton
• Speakers
• Paper indicating the playing field

1.3. System Block Diagram

Below is the system block diagram for the project. The diagram is intended to present
how the individual blocks are connected to each other, as well as the direction of data
flow.

The diagram consists of the key custom developed IP Cores, existing IP Cores used from
Xilinx and existing projects, and some directly attached hardware components on the
development board.

Page | 2

Figure 1: System Block Diagram

1.4. Brief Description of IP

The following table gives a brief description of the blocks found in the system block
diagram above.

Block Functionality Orign

Video to Ram • Takes video from video decoder, and
stores into RAM according to Video
Out specification (see appendix A)

Existing IP - Jeff
Goeders Custom Pcore

Multi-Ported
Memory
Controller

• 5 ported memory controller
• Offset 0x40000000: active video region
• Offset 0x200000: Red baton tracking

data processing
• Offset 0x400000: Playing field

initialization data processing

Xilinx IP

Video Out • Displays video from RAM onto VGA
attached monitor

Xilinx IP

Uart • Used to output debugging text to a
terminal

Xlinx IP

Page | 3

Hit detection/
Tone Generator

• Generates an interrupt if a baton hit is
detected audibly

• Generates audio tones for sound output,
depending on which region was hit

Mike McLean/ Phil
Messina Custom PCore –
started from Xilinx AC97
audio processing module

Letter Graphic
Generator

• Generates an overlaid letter of which
note is being played over top of the live
video feed

Phil Messina Custom
PCore

BRAM • Block RAM in the form of initialized
ROM

• Used to store letter information for
printing notes to the screen

Xilinx IP

DMA • Quickly copies live video frame from
0x40000000 of RAM into an offset Red
baton tracking data processing location
0x200000

Xilinx IP

MicroBlaze
Processor

• Software processor Xilinx IP

Interrupt
Controller

• Forwards the interrupt generated by the
Hit detection module to the MicroBlaze
processor

Xilinx IP

Timer • Used to time ½ second for when the
tone of the note, and graphic of the note
is active

Xilinx IP

Playing Field
Initialization

• On startup, this function scans the video
and sets up virtual boundaries where
hand-drawn lines are located on the
playing field

Alex Wong Custom
software

Red Baton
Tracking

• Continually calculates the centroid of
the first detected red-coloured object on
the playing field

Mike McLean Custom
software

Interrupt Handler • On detection of a hit, this handler
detects which boundaries the red
objects lies within, and sends the
coordinates to the Letter Graphic
Generator, and the Tone Generator and
activates them

• A ½ second timer is also started to
disable the above modules later

Mike McLean Custom
software

Table 1: Description of IP Blocks

Page | 4

2. Project Outcome

2.1. Results

The end result of the project was very successful. As intended, the project can
successfully detect the hand-drawn vertical lines on a sheet of paper over the playing
field, creating up to a maximum of 7 different regions which represent the notes to be
played with the baton. After the learning phase, an infinite loop is used to detect the
centroid of a red object found in the playing field.

As the user plays the virtual xylophone, the auditory impacts of the baton to the ground
are detected, which creates interrupts for the software system. The software then uses the
most recently calculated red-object centroid to detect which region the baton is located in
for that “hit”, and activates the Tone Generator and Letter Graphics Generator for ½
second – giving auditory and visual feedback for each note played by playing a sound
and displaying the note.

The only problems occasionally encountered are when the lighting is not ideal. In this
case, both the playing field initialization code and red baton tracking code may fail to
locate the lines and baton. To avoid this situation, good lighting is required where the
contrast between lines and contrast between the baton and background are optimum.
Also, it is ideal to have a background not containing any red, so that the red baton can be
seen clearly and run our system in natural lighting conditions.

2.2. Future Improvements

To address the issues noted above, more robust algorithms could be proposed which
better process the video so that a more accurate detection could be made of the
boundaries and red baton. Since more sophisticated algorithms would imply greater
processing times, it may also be beneficial to implement them in hardware instead of
software to decrease lag. Since the existing detecting algorithms are relatively simple, the
slowness attributed to them being implemented in software is not apparent.

A more ambitious improvement to the project would be to have active boundary
detection. Currently, the playing field initialization is done only at the reset of the board,
and so the boundaries are only calculated once. If the boundaries were continuously
detected, then the camera would not need to be fixed, and would be allowed to move.
Furthermore, this can be expanded even further to allow the rotation of the camera, so
that the camera is completely free to move around in any direction. As stated earlier, this
would require faster processing then what can be done in software, so this would most
likely need to be implemented in hardware.

Page | 5

3. Block Descriptions

3.1. Hardware Modules

3.1.1. MicroBlaze

MicroBlaze, version 7.10.d was utilized to interface the hardware and software of the
project.

• The microBlaze processor handles custom c code that: initializes the playing
field, tracks in real time a red object, and handles interrupts.

• Interfaces with the Letter Graphics Generator to determine the correct graphic
(musical note) that should be drawn to the VGA monitor.

• Interfaces with the ‘Hit’ Detection & Tone Generator to ensure the tone
played corresponds to the note being played.

• Interfaces with DMA controller to transfer a single frame to a location in
memory so the software can process red color detection.

3.1.2. PLB Bus

Plb_v46, version 1.03.a was utilized to provide communication amongst all IP Cores.
To avoid putting too much stress on a single bus we used five PLB Busses in our
system to interact with the Memory.

1. Used for the microBlaze to communicate with the DDR_SDRAM (memory),
the ‘Hit’ Detection & Tone Generator module and the Letter Graphics
Generator module.

2. Used for the XPS Central DMA controller to communicate with memory.
3. Used by the Letter Graphics Generator to write the correct graphic to memory.
4. Used by the TFT to get video data from memory.
5. Used by the Video to RAM Core to put data into memory.

3.1.3. Multi-Port Memory Controller (MPMC)

MPMC, version 4.03.a was utilized for this project. Four ports were utilized as inputs
from various IP Cores, and one port was utilized as an output to the Video Decoder
(as seen in Figure 1 above). Having the ability to utilize multiple ports allowed for
easier implementation of interfacing many different modules especially since we were
working with a live video feed and in some instances drawing a graphic overtop the
live feed.

3.1.4. Video Out (XPS Thin Film Transistor (TFT) Controller)

The XPS Thin Film Transistor Controller, version 1.00.a is a hardware core found in
the Xilinx EDK library. The XPS TFT controller reads video data in RGB from RAM

Page | 6

and feeds it to a VGA monitor. The controller is connected a 32-bit wide PLB bus
which is connected to the MPMC. The core starts reading at address 0x40000000, the
location of the first pixel stored in RAM, and continues reading the next pixel at the
next address location until the last pixel is read.

3.1.5. Video to RAM (Custom Logic)

This is a custom IP Core developed by one of our peers: Jeffrey Goeders. This core
takes in an active video feed from the video decoder of the VDEC1 Video Decoder
Daughter Card supplied with the Xilinx board and stores frames in a specific RAM
location (memory address 0x40000000). These frames get converted from YCbCr
format to RBG so that a VGA monitor can properly display the active video feed.
Once the frame has been properly encoded to RGB it is displayed on a VGA monitor.

3.1.6. Block RAM (BRAM)

Bram_block, version 1.00.a was utilized to store ROM blocks consisting of COE files
containing hexadecimal representations of a letter that is being drawn to the screen.
Mike McLean had created a parser in c++ that takes as input a monochrome bitmap
image consisting of a single letter seen in Figure 2 below.

Figure 2: 128x128 Pixel Image

The parser processes the image files and converts the images to COE files (BRAM
initialization files) in which black is depicted as a binary 0 and white is depicted as a
binary 1 which can be seen in Figure 3 below. The COE files consist of a read depth
size of 16 bits, and a read width size of 1024 bits. The Figure below only depicts the
first 384 bits wide.

Page | 7

Figure 3: COE File of the letter ‘A’

The Xilinx IP (CORE Generator & Architecture Wizard), more specifically the
Distributed Memory Generator v3.4 provided by the ISE tool was utilized to create a
ROM block to store the COE file so that the hexadecimal contents could be accessed
by the Letter graphics Generator Core (as described in section 3.1.7 below). The
image seen in Figure 2 above had a maximum size of 128x128 pixels. The reason for
this is because the ROM block used to store the letter via COE file allows a maximum
read depth of only 16bits. This is seen in Figure 4 below where the radix corresponds
to the ROM Read Depth.

Figure 4: Distributed Memory Generator v3.4 Product Specification

So to achieve a letter that appears square on the screen, it was decided to have a ROM
read width of 1024bits.

16bits*1024bits = 16384pixels = 128*128pixel image
7 binary COE files as well as 7 ROM blocks were created to store each individual
letter (A through G) that can be drawn to the screen.

Page | 8

3.1.7. Letter Graphic Generator Core (Custom Logic)

This is a custom core that was developed to draw a letter to a screen overtop a live
video feed. As previously stated, the letters are stored in BRAM ROM blocks
allowing for a 128x128 pixel resolution letter to be drawn to the VGA. This core
includes PLB slave registers which are controlled by the software system determining
where on screen the letter is to be drawn, what letter to draw, the colour of the letter
displayed as well as for how long the letter should be drawn. In addition, this core
implements Master Service Configuration to obtain Master User Logic control so that
this core can directly interact with and write to the PLB Bus. The entire state diagram
can be found in Appendix B.

The design of the Finite State Machine is broken down into 3 discrete stages;
1. Start & Determine which Letter to print

PLB slv_reg7 is a software controlled register that starts the FSM (letter
generation process) once this bit has been changed from a 0 to a 1. Once a 1 is
asserted, slv_reg8, which contains the region number 0 through 6, is examined
to determine which letter A through G gets printed to the screen and data from
the corresponding ROM block at ROM_Address 0x0 is stored in a register
called DATA. Figure 5 below depicts the physical placement of each letter.

Figure 5: Physical Keyboard Layout

2. Parse DATA register

Each row in the COE is individually considered at this stage. Two 128 bit
counters are implemented in order to draw a 128x128 pixel letter to the screen.
The first row of the COE file, all 1023 bits of the DATA register is examined
by left shifting the data. Whenever a 0 bit in the DATA register is seen,
col_count is incremented and the next bit in the DATA register is examined.
When a 1 bit is seen in the data register, it means that a single pixel must now
be drawn to the VGA (See stage 3 below). When the column counter reaches
127, it gets reset and a row counter (row_count) increments and now we start to

Page | 9

see the 128x128 pixel block begin to form. When all 1024 bits of the first row
of the COE file have been examined most counters are re-set (except for
row_count), and the ROM_address is incremented by 1 to obtain the next set of
1024 bit row data to be placed in placed in the DATA register. This process
repeats until the ROM_Address has incremented 16 times, meaning that all
data in the COE file has been exhausted. At this point all counters are then re-
set and the process repeats. This process stops after 0.5 seconds (which we
determined is ideal for a note to be displayed) when the software causes an
interrupt which sets slv_reg7 to 0. The state diagram found in Appendix B
depicts this design.

3. Draw Pixel to VGA

In order to draw a pixel to the correct address location, both col_count and
row_count are added to the TFT base frame memory address 0x40000000. This
computation is done as follows;
 IP2Bus_Mst_Addr <= 0x40000000 + (4096*row_count) + (4*col_count);
Where IP2Bus_Mst_Addr is the address where we want to write pixel data to.
This calculation was taken from the TFT data sheet which can be found in
Appendix A. Once the address has been computed, the IP2Bus_MstWr_Req
(BUS Write Request) is set high in order to draw a pixel at this specific
location. Once the bus acknowledges that the pixel data has been written,
which is done by examining Bus2IP_Mst_Cmplt (BUS Master Complete
signal), the Master Write Request goes low and stage 2 above continues. Figure
6 below shows a letter being printed overtop a live video feed.

Figure 6: Implementation of Letter Graphics Generation Core

Page | 10

3.1.8. Hit Detection/ Tone Generator Core

This core was not provided in the IP Catalog. A hardware implementation utilizing
the AC97 Audio Codec Controller that takes in input from a microphone and outputs
a single tone was found online by our peer Nancy Chong;
http://embedded.olin.edu/xilinx_docs/projects/audio-v2p.php [1].

In order to integrate this core with the system we had to create a custom Verilog
audio core to interface with the interrupt controller which interacts with the software
causing an interrupt in the system whenever a ‘hit’ was detected by the AC97 Audio
Controller. Within this custom pcore, we instantiated the ac97_audio and processing
modules in order to correctly process audio only when an interrupt occurred within
the system.

Using a microphone connected into the Xilinx Board, the Audio Controller actively
detects a sound above a threshold of 0x4 and generates an interrupt on the PLB to the
microblaze processor from the Verilog audio core. The software then interacts with
the Letter Graphic Generator to draw a specific note to the screen as well as play a
specific tone corresponding to the note being played by interacting with the audio
cores tone generator. Figure 7 below depicts this process. The processing.v module
that was included in the package from the website listed above was modified to
generate 7 different tones as output for the Audio Controller. The processing.v
module already had Verilog code to generate one square wave tone. This code was
then expanded to produce 7 different tones starting at a low frequency noise and
continually increasing to a higher frequency tone.

Figure 7: Audio Core Implementation

http://embedded.olin.edu/xilinx_docs/projects/audio-v2p.php�

Page | 11

3.1.9. DMA (XPS Central DMA Controller)

The XPS Central DMA Controller, version 2.00.b is an IP in the Xilinx EDK library
that allows the copying of data from one memory location to another without the need
of a processor. The controller is connected to a 32-bit wide PLB bus, which is
connected to the MPMC. The DMA Controller is used to copy a frame from memory
location 0x40000000 to 0x40200000 such that the Red Color Detection Module is
able to operate.

3.1.10. XPS Interrupt Controller

The XPS Interrupt Controller, version 1.00.a is an IP in the Xilinx EDK library that
takes in inputs from multiple peripheral to handle multiple interrupts and produce a
single output through a PLB bus to a MicroBlaze processor. The input of this block is
connected to a XPS GPIO module, which will be used to for our “hit” detection.

3.1.11. Timer (XPS Timer/Counter)

The XPS Timer/Counter, version 1.00.a is an IP in the Xilinx EDK library, which is
connected to a 32-bit PLB bus as a slave. The counter will increment and generate an
interrupt through the PLB bus when a value is reached. The timer is used to control
the duration of the tone and graphic that will appear once a “hit” has been detected in
our system.

3.1.12. XPS UART Lite

The XPS UART, version 1.00.a is an IP in the Xilinx EDK library that provides an
interface for serial data transfer. The core is able to take serial data and transmit it in
parallel through the connected 8-bit PLB bus. Similarly, the controller can transmit
serial data from incoming parallel data.

3.2. Software Modules

3.2.1. Red Colour Detection

This software module is used to compute the centroid of a single red object located on
the screen. This routine in the software is run as a continuous loop, which constantly
recalculates the centroid. The centroid is then used (by the interrupt handler) to
calculate which region the centroid is within – or which ‘note’ the baton is playing

The live video is stored as single continuously updated frame at the beginning of the
DDR SDRAM location 0x40000000. The active portion of the frame is 640x480

Page | 12

pixels, but is stored in memory in a block of 1024x512 words, where the extra 384
words of each row is ignored. Also, the last 32 rows are ignored, since they do not
hold any information. Each word holds a single pixel in the RGB colour space in the
following format.

Figure 8: Image Data, As Stored in Memory

Note that since each colour channel is only 6 bits, they have a minimum value of
0x00, and a maximum value of 0x3F (see appendix A for more details).

Because the video frame is refreshed at 30 frames per second, the software would not
be fast enough to process a single frame before it is refreshed. To solve this problem,
the algorithm first starts by initiating a DMA memory transfer from 0x40000000-
0x401FFFFF to 0x40200000-0x403FFFFF. Then, the software processing is done on
location 0x40200000 which resembles a still frame from the instant the DMA was
called.

The red colour detection module is essentially two nested for loops that scan through
the entire frame looking for red. It does this by first (1) going row by row, and
scanning across looking for the beginning and ending x coordinate of a region
deemed as ‘red’. Once this is done, the x centroid is the midpoint of these two x
coordinates. Next (2), the algorithm goes through each column in between the
beginning and ending x coordinate, and scans downward, looking for the beginning
and ending y coordinate of a region deemed as ‘red’. The y centroid is then the
midpoint between these two y coordinates. Figure 9 below demonstrates the described
algorithm.

Page | 13

Figure 9: Red Colour Detection Algorithm

To make the process of defining ‘red’ less unambiguous, the algorithm (as it scans)
performs a thresholding operation. This operation looks at each channel of the RGB
colour space for each pixel, and if the value is above a certain threshold, it considers
it as maximum (0x3F), otherwise it considers it as a minimum (0x00). To demonstrate
this better, the following Figures 10 and 11 show what the algorithm sees before and
after thresholding as it is looking for a ‘red’ object.

Figure 10: Baton before Thresholding

Page | 14

Figure 11: Baton after Thresholding

As can be seen from the Figures above, what is considered ‘red’ after thresholding is
no longer unambiguous; it is simply when the R channel is the maximum (0x3F), and
the G and B channels are the minimums (0x00).

As a result of the way the algorithm progresses, only a single red object will be
detected in the frame, and the red objects will have a top-left priority for being
detected.

3.2.2. Interrupt Handler

The primary interrupt handler is called whenever the hit detection/tone generation
module detects a sound above a certain threshold. This purpose of the interrupt
handler is to decide which note was hit, and activate the graphics generator and tone
generator appropriately. To accomplish this, the interrupt handler performs several
consecutive tasks:

1. Disable interrupts.
2. Compare the most recent centroid coordinates with the array of region

boundaries to determine which region it lies within (if it’s out of bounds, then
return).

3. Write the region number (0-6) to the graphics generator and tone generator
registers, and activate them (by writing ‘1’ to their ‘start’ registers).

4. Start the timer to interrupt after 0.5 seconds.
5. Re-enable interrupts.

Page | 15

After the above steps are complete, the tone generator will begin to sound a specific
note for the region hit, and a letter will display on screen for the region hit (A for
region 0, B for region 1, ect.).

After 0.5 seconds, the timer will cause another interrupt which will call the secondary
interrupt handler. All this handler does is de-activates the tone generator and graphics
generator by writing a ‘0’ to their ‘start’ registers. This causes the letter to disappear
(because it is written over within 1/30 of a second by live video data), and the tone to
stop.

3.2.3. Playing Field Initialization

The Playing Field Detection Module is a software module using the MicroBlaze
processor, designed to detect the different regions on the playing field when our
system first starts up. Each region will output a different note when a red baton strikes
it.

As described above, the video data is stored memory with each pixel located in a
single block of memory and 1024 pixels in one line (only 640 pixels displayed) stored
sequentially. From this, we can simply calculate the memory address for a specific
pixel using the equation:

Address = StartAddress + row * 1024 + column

Every read pixel will be converted from RGB color values to YCbCr using this
conversion [2]:

Y = 16 + (65.738 * R)/256 + (129.057 * G)/256 + (25.064 * B)/256 [2]

The Y component represents the luminance. This is important because it allows the
detection of black lines. For black, the Y value is expected to be low while white will
produce a high Y value.

The module first looks for the piece of paper where our playing field will be by
searching for a pixel that has a Y value greater than 0x9FFF. Once found, a search for
vertical lines is started. To find the vertical black lines, a scan is performed
horizontally at a certain row. If the Y value is greater than our threshold (0x80FF), the
location is stored indicating that a black line is found. This will continue until all 8
lines are found (creating 7 boundaries) or the end of the line is reached. Figure 12
below depicts this process.

Page | 16

Figure 12: Horizontal Scan for a Row

Once the vertical lines are found, the upper and lower bounds must be found using the
same strategy as above. A vertical sweep will be performed until a pixel that meets
our threshold is found indicating that a line is found at a certain coordinate. The
coordinates will be stored in memory where the Interrupt Handler Module can access
it.

Algorithm
1. Find row to sample (row searched are predefined)
2. Read pixels along that row (sweeping horizontally)
3. Locate the piece of paper that our playing field will be on. This requires

luminance value to be high of the paper
4. Once playing field is found, continue to read the pixels in that row to locate the

first vertical line. A line is located when a pixel meets a threshold for its Y value
5. Continue scanning for the remaining vertical lines
6. Sample other rows to ensure vertical lines are consistent
7. Once vertical lines are located, read pixels vertically (in the same column) to find

the upper and lower lines
8. Store boundaries into memory for Interrupt Handler module to process

Page | 17

4. Description of Our Design Tree

The following table illustrates the content of the folders that we have submitted with regards to
our project. A README file has also been included at the top level directory for the same
purpose.

Folder Name Description
System This folder contains the XPS project
System\pcores This folder contains the code for existing as well as our own custom pcores.

Key files include:

1. user_logic.v (for Letter Graphic Generator)
System\pcores\draw_note_v1_00_b\hdl\verilog\user_logic.v

2. A.v to G.v (modules instantiating each individual ROM block)
System\pcores\draw_note_v1_00_b\hdl\verilog\A.v – G.v

3. user_logic.v (for Hit Detection)
System\pcores\audio_v1_00_a\hdl\verilog\user_logic.v

4. processing.v (for Tone Generation)
System\pcores\audio_v1_00_a\hdl\verilog\processing.v

5. ac97_audio.v (for input and output audio processing)
System\pcores\audio_v1_00_a\hdl\verilog\ac97_audio.v

These files are commented for further review.

System\pcores\
video_to_ram_v1_00_a

This folder contains a custom IP Core developed by one of our peers;
Jeffrey Goeders.

System\pcores\
led_debug_mux_v1_00_a

This folder contains a custom IP Core developed by one of our peers;
Jeffrey Goeders. (Was not used in this project)

System\sw This folder contains the software code used for this project.

Key file includes:

1. video_setup.c (used for Red Colour Detection, Interrupt Handler,
Playing Field Initialization)
System\sw\video_setup.c

Documentation This folder includes all of the documentation files for our project.

Project Proposal: Idioscope Project Proposal
Group Report: Group Report
PowerPoint of our Presentation: Presentation
Playing Field: Playing Field

Table 2: Description of Design Tree

Page | 18

5. References

[1] EmbeddedComputing, “AC’97 Audio Codec Controller for Digilent XUP-V2P,” 2007.
[Online] Available: http://embedded.olin.edu/xilinx_docs/projects/audio-v2p.php. [Accessed:
March 17, 2010].

[2] Jack, Keith. "YCbCr to RGB Considerations", intersil. [Online] Available:
http://www.intersil.com/data/an/AN9717.pdf. [Accessed: March 30, 2010]

[3] Xilinx. (September 16, 2009). Product Specification: Thin Film Transistor (TFT) Controller
(v2.00a).

http://embedded.olin.edu/xilinx_docs/projects/audio-v2p.php�
http://www.intersil.com/data/an/AN9717.pdf�

Page | 19

6. Appendix A

The following is an applicable excerpt from the Xilinx product specification for the ‘Thin Film
Transistor Controller (v2.00a)’ [3].

Figure 13: Address Calculation Used to Write Pixel Data

Page | 20

7. Appendix B

The following is a state diagram of the Finite State Machine implemented for the Letter Graphic
Generator core.

Figure 14: Letter Graphics Generator FSM

	Title Page
	University of Toronto
	Group Report

	Table of Contents
	1. Overview
	2. Project Outcome
	3. Block Descriptions
	4. Description of Our Design Tree
	5. References
	6. Appendix A
	7. Appendix B

	Group Report
	1. Overview
	2. Project Outcome
	3. Block Descriptions
	4. Description of Our Design Tree
	5. References
	6. Appendix A
	7. Appendix B

