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1 Overview

1.1 Goals

The goal of this project is to create a tool to aid in digitizing handwritten notes. The project

was motivated by instructors who display notes using overhead projectors. While students can see

the final process, a compact digital representation for playback is generally not available. Merely

recording a video of the notes is not satisfactory, as this includes unncessary visual components such

as the instructor’s hand. Our system provides a compact representation of notes being written that

removes clutter and reduces file size. The system records only the notes written on a piece of paper,

removing the user’s hand and other extraneous data, and displays them via a VGA port.

Figure 1: Projector1

The system is robust to movement of the paper and allows the user to write in multiple colours. To

implement this, each pixel is classified in hardware as ink or not with a decision tree classifier. The

classifier is designed to further exclude pixels having a skin colour. The output of the classifier is

written to RAM, to be later read by the processor. The processor computes the time that each pixel

has been classified as ink and uses this information to generate video output. The entire process is

recorded for later playback.

1Image adapted from: http://www.instructables.com/id/How-to-Make-XXL-Street-Stencils-%26-Get-Away-

WIth-It/step5/Scale-up-your-letters/
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1.2 Block Diagram

A block diagram of the system is shown in Figure 2. The functionality of each block is described

in later sections.
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Figure 2: Block diagram of system showing internal and external connections
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1.3 Brief Description of IP

Figure 3: Overview of IP

1.3.1 Reference Design

As a basis for the video processing portion of our design, we used a reference design by Jeffrey

Goeders posted on the 2011 discussion board on Blackboard for ECE532 1. In the reference design,

the video to ram pcore reads in data from a video camera using the video decoder. It converts

from YCbCr format to RGB format and sends pixels to RAM via the PLB bus. All control signals

for timing is computed in video to ram. There is a second pcore (video out) which reads pixels

from RAM and generates signals necessary to drive the monitor via VGA. The video decoder is

1https://portal.utoronto.ca//E163B5E40E942455D203314EA00BDC27/courses/1/Winter-2011-ECE532H1-S-
LEC0101/db/ 2337128 1/Video To RAM System.rar

6



configured using the processor via IIC. The code for configuring the video decoder is contained in

video setup.c.

We adapted the design for our project and modified modules contained in the video to ram pcore

as well as the code in video setup.c.

1.3.2 Processor Code

The primary source file is video setup.c. Originally, this code was borrowed from the Video to RAM

project by Jeffrey Goeders and only configured the video decoder. We added in additional func-

tionality as follows:

• It receives data from the video to ram module, and based on the values given (either 1 or 0,

for black or white), stores these in a buffer.

• When it determines that a pixel has been black for a period of time, it decides it corresponds

to ink (and not to a transient shadow) and sets the pixel value accordingly.

• When it determines that a pixel has been white for a longer period of time, it decides that

the ink has disappeared (and is not occluded by a hand) and removes it.

• It stores frames in a circular buffer, so that it is possible to replay a video of the notes being

written.

• A menu allows the user to pause recording, replay the buffer, or change the colour of the ink.

1.3.3 Video to ram

This hardware module does the following things:

• It reads in data from the video camera (This functionality is based on the pcore Video To RAM

by Jeffrey Goeders).

• This data is classified using the YCbCr colour data for each pixel. The hand-trained decision

tree classifier first uses the Cr value to decide if a pixel belongs or does not belong to a hand.

For the non-hand pixels, it then classifies them as ink or paper based on the Y value.

• It converts the decision made for each pixel to a RGB value (either all ones or all zeros, i.e.

either black or white) and sends one bit per value per pixel to the processor.
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1.3.4 Other IP

dlmb, ilmb, dlmb cntlr, ilmb cntlr: Used for communicating between the processor and the

BRAM.

lmb bram: The block RAM.

plb uB: The master on this bus is the processor, which uses it to communicate with the video to ram

module, the UART module and the SDRAM primarily. The iic and debug modules are also

slaves on this bus.

plb video out: The TFT module, which communicates with the VGA, is the master on this bus,

which uses it to communicate with the SDRAM. This is used to communicate between the

processor and the tft module that communicates with the VGA.

plb video to ram: This is used to communicate between the video to ram module and the

SDRAM module, with the video to ram module being the master.

DDR SDRAM: The main memory, where we store our data (frames, etc.)

debug module: Used for debugging the MicroBlaze processor over JTAG.

proc sys reset 0: Allows external resetting via the reset button.

iic: Used to configure the video decoder.

video out: Sends data to the VGA.

uart uB: An xps uartlite module. Allows the user to interact with the processor over USB.

clock generator 0: Provides clocks.

led debug mux 0: Unused, put in as an initial test.

2 Outcome

2.1 Results

For this project, we were very successful in meeting all of our originally proposed goals, requirements,

and acceptance criteria. Results are summarized in Tables 1, 2, and 3.

When designing the system, we realized that the acceptance criterion of 10 frames per second

(Table 3) is undesirable. Since human writing speeds are slow compared to hardware, large amounts

of memory and processing power would be required to keep track of the length of time that each

8



Features Status
Record notes as users write them Complete
Ignore user’s hand and writing utensil Complete

Optional features Status
Allow user to erase previous text Complete
Allow user to change colour of text Complete
Record voice along with video
Save data produced to a PC.

Table 1: Status of initially proposed features.

Functional requirement Status
Real time video input to FPGA board Complete
Real time thesholding of pixel values to determine what is possible writing Complete
Store past state of writing for several frames to determine what constitutes
writing

Complete

Output buffer of stored writing to monitor Complete

Functional requirements of optional features Status
Use above real time thresholding of pixel values to detect white paper, indicating
text has been erased (and is not merely occluded)

Complete

Change output colour of text based upon switches set by user Complete
Record and store audio at a known sampling rate to synchronize with video
Over USB, additionally save the buffer of stored writing to a PC.

Table 2: Status of initially proposed functional requirements

Acceptance criteria Status
System correctly differentiates between notes and non-notes in physical tests of
the system

Complete

System is able to correctly recall position of notes on screen and display them Complete
System is able to process a 320x200 frame at a rate of 10 frames/second
System is able to process a 640x480 frame at a rate of 2 frames/second
This improves performance. See discussion.

Complete

Table 3: Status of initially proposed acceptance criteria
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pixel has been classified as ink. Accordingly, reducing the frame rate allows the system to consider

a larger period of time while still using a small amount of memory.

To reduce the frame rate, we implemented most of the core video processing logic, and in particular

the history and replay logic, in software rather than hardware. This transition provided several

benefits:

1. A larger time frame can be considered

2. More freedom in the way memory addresses are mapped

3. Easy to pause processing for menu interactions

4. Complete freedom in the way real-time results are debugged

5. Small compile time (5 seconds compared to 20 minutes) allowed rapid prototyping of features

The details of how the system functions is described in later sections.

2.2 Possible Further Improvements

A future extension to this project would be to allow users to adjust the decision tree classifier

in software, allowing for training/calibration of the classifier at runtime instead of in a separate

project. This could be implemented several ways, such as with fast simplex links, shared memory,

or memory mapped device registers. The system is presently calibrated for a particular lighting

environment and does not allow the user to change the calibration. This feature would greatly

improve the robustness of the system.

Another possible extension would be a dynamic construction of the tree based on the luminance

value (so that the user would only need to manually set thresholding to exclude their hand). An av-

erage brightness of the scene would be computed, and then the decision tree nodes would be assigned

as a fraction of the average luminance. Once coded, some additional testing would be required to

ensure that the classified pixels form a consistent fraction of the average luminance.

3 Description of the System Components

3.1 video to ram

video to ram contains all of the video processing logic in this project, including receiving YCbCr

input from the video decoder, controlling timing of the video signals, classifying pixels as ink or not

ink, and finally writing the classification results to RAM via the PLB.
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3.1.1 Decision Tree Classifier

The decision tree for the project is shown in Figure 4. The text below describes our design process

of obtaining the tree.

Cr > 140?

Yes

not ink

No

Y > 115?

Yes

not ink

No

ink

Figure 4: Final decision tree for system

We did some testing to figure out the optimal classification scheme. We’d originally planned to

simply classify based on the Y (luminance) value, with all pixels below a given value being classified

as ink, but we found it was hard to distinguish between a writing hand and ink. From a distance,

even a thick black marker would not show up in the video camera as being black. Evidently, a more

complex classification scheme was needed.

Based on our knowledge of how YCrCb works, we hypothesized that a decision tree might work

well. We would first classify using the Y value, with high values being classified as paper, and low

values as ink. The values in the middle would be further classified using the Cb value. Since we

know, due to the use of blue and green screens, that these colours are considered to be easy to

separate from human skin tones, we believed that it should be able to remove hands from the image

due to their low Cb value. However, we did not have as good results as we expected.

We decided to systematically experiment with thresholding based on Y, Cb, and Cr separately in

order to determine how best to go about constructing our decision tree. We created a new Xilinx

project, a modified version of our main project, in order to do so. We first displayed the YCbCr

values read by the camera directly to the VGA. The Y values were mapped to green, the Cb values

to blue, and the Cr values to red. From this, we hypothesized that we could probably get better

results by taking into account the Cb and Cr values. It was apparent that a writing hand, the

paper, and the ink differed significantly in more than just the luminance value.

We then modified the code so we could display only one of the three values at a time, and so that

the colour we choose to display could be selected by modifying and recompiling the software instead

of the hardware, and ran tests on each individual value. The results of the tests are summarized in

Appendix A.
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Our final classifier first removes the user’s hand, based on the Cr value (Figure 4). With careful

adjustment of the thresholding value, it is possible to also remove shadows cast by the user’s hand,

as these often have a slight reddish tint. We then separate between ink and paper using the Y

(luminance) value. We continue to use the testing project we created in order to more efficiently

determine the thresholding value at each node of the decision tree, as we can then separate the

effects of each node on the final display.

3.2 Processor

All of the functionality of the processor block is contained in video setup.c, the main software

component of the system. Algorithmically, the software behaves as follows:

1. Initialize of all data structures for video processing

2. Loop indefinitely:

• Clip borders and fill in with background colour to deal with offsets in output. It was

found that some visually unappealing noise appeared around the borders of the frame,

likely due to errors in the YCbCr decoder.

• Update pixel history and assign new output colours (section 3.2.3).

• Update output to VGA controller (section 3.2.2).

• Poll for user input to enable menu functionality (section 3.2.4).

3.2.1 Memory map

Figure 5 shows the addresses used by the processor for data storage. The decision tree classifier in

the video to ram module writes to 0x40000000 - 0x40200000.

3.2.2 VGA.h

The VGA.h header file is used to facilitate buffered access to the xps-tft module for outputting

video. It was written by Andrew Shorten and taken from the project website2. The header defines

the various structures and helper functions for screen buffering, modifying pixel rgb values, and

handling double buffering. We use circular buffering instead of double buffering. The reasons for

this improved system are described in section 3.2.5.

2http://www.eecg.toronto.edu/ pc/courses/432/2009/projects/tft-edk.txt
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0x40000000	  

Memory	  Map	  

0x40200000	  

0x40400000	  

…
…
	  

Classifier	  Output	  

History	  buffer	  

0x40600000	  
Circular	  Buffer	  [0]	  

0x5E000000	  
Circular	  Buffer	  

[239]	  

Figure 5: Memory map for SDRAM, accessed by both the processor and the video to ram module.

3.2.3 History

For each pixel, the processor reads the binary output from the decision classifier (starting at

0x40000000) and appends it to the history buffer for each pixel (starting at 0x40200000). Each

pixel’s history buffer is fixed to 32 bits, so the previous values are bit-shifted to make room (Equa-

tion 1).

history-buffer[x, y] = (history-buffer[x, y] << 1) | (classifier-output[x, y]) (1)

Monitoring the recent history of a pixel is crucial in deciding whether or not it corresponds to

actual writing that we want to record. The decision-tree classifier (section 3.1.1) is used to segment

pixels that potentially correspond to ink on the page, but it is the history that verifies this through

permanence. We make the assumption that any transients in the colour of a pixel will correspond

to things that are not ink, such as the tip of a pen or a particularly dark shadow. If a pixel has

remained dark for sufficiently long we decide that it is not transient and most likely corresponds to

ink on the page.

In technical terms, we first set aside a screen buffer in memory to act as a ‘history buffer’. This is

identical to the structures used to buffer individual frames in memory except that instead of each

word corresponding to the RGB values of a pixel it corresponds to the history of the colour of that

pixel. The 32 bits correspond to the value of that pixel over the last 32 frames, with ‘0’ meaning

the pixel was dark in that frame. The algorithm for updating the history and verifying the content
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of a pixel is as follows:

1. Load previous history word for the pixel

2. Bit-shift left and OR with the binary output of the classifier for the pixel in the current frame

3. Store the new history word in memory

4. Switch to Background : If the history equals 0xffffffff, i.e. has been non-ink for 32 frames,

then the background colour is written to the output monitor for display (Equation 2). This

condition is met by pixels that were ink but have been erased, or by pixels that has never

been classified as ink.

(history-buffer[x, y] = 0xffffffff) =⇒ output[x, y] = background-color (2)

5. Switch to Foreground : If the last 16 bits equals 0xffff, i.e. has been ink for 16 frames, then

the foreground colour is written to the output monitor for display (Equation 3). Additionally,

we use a check to see if this pixel is being newly coloured (ie. it previously was the colour of

the background). This supports writing in multiple colours as it causes previously coloured

pixels to remain unchanged when the foreground colour is changed.

((history-buffer[x, y] & 0xffff) = 0) && (3)

previous-output[x, y] = background-color)

=⇒ output[x, y] = foreground-color

3.2.4 Menu System

Users can interact with the system using the UartLite communication link to transmit data between

the processor and the laptop over USB. The user menu system provides access to three major

functionalities:

• Change Foreground Colour: Users can change the colour of the output foreground (the

written text that is displayed) to one of Black, White, Red, Blue, Green, Yellow, Teal, or

Purple. This foreground colour will be used for all subsequent writing on the page.

• Playback recent history: The history playback feature is discussed in section 3.2.5.

• Reset: The reset feature allows the user to reset all colours, buffers, and histories. This is a

software equivalent of performing a manual reset of the board.
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3.2.5 Replay

In order to implement the replay feature we needed to move away from the standard double-

buffering method of storing and accessing image data in RAM. Data is still loaded into a single

buffer location in memory from the camera but the location that the output frame is moved to

(after history checking and colour assignment) is a circular buffer using the remainder of RAM.

This allows us to store a large number of past frames (239 in total) that we can play back on

demand to show the recent history of writing on the page. At each update of the circular buffer

the start and end addresses are saved for later playback.

The play back functionality is accessed through the user menu. Starting from the first valid frame

in the circular buffer (ie. the start) we iterate through the buffer to the last valid frame (end of

the buffer). In between each iteration we sleep (spin in a loop) for a pre-specified amount of time

in order to give time for the frame to be written to the video out module as well as to meet a

desired playback speed (chosen arbitrarily at compile time using the setting of a playback delay

parameter).

3.3 Internal Communication and External Ports

3.3.1 Video input

We use the video decoder board to connect to a video camera, which connects directly to the

video to ram module (without using a bus).

3.3.2 Internal Communication

The video to ram module, the processor and the video out module all communicate by reading

from and writing to memory. The video to ram module has its own bus, with which it writes

to the SDRAM. A second bus is used for all processor communication: with it, the processor can

access the SDRAM, the video out module, and the UART.

3.3.3 Video output

A third bus is used to communicate between the video out module and the SDRAM. The video out

module, a xps tft module, is used to write to write to the VGA.
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4 Description of Design Tree

As there are many files in our project folders, we have summarized only the key files below.

Design: main XPS project

↪→ pcores/video to ram v1 00 a: video-to-RAM module

↪→ video to ram.v: takes data from the camera, sends it to ycrcb2rgb, and then sends

the classification decision to the processor

↪→ ycrcb2rgb.v: contains colour-conversion code, and classification code

↪→ sw: software

↪→ video setup.c: primary file for our C code (not just the video setup code)

↪→ VGA.h: data structures for dealing with frames

Calibrator: the XPS project used to calibrate the classification system. Nearly identical to the

above project, with the following differences:

↪→ pcores/video to ram v1 00 a: video-to-RAM module

↪→ ycrcb2rgb.v: sends Y to G, Cr to R and Cb to B.

↪→ sw: software

↪→ video setup.c: various simple decision trees are set up here; select between them

by commenting out the unwanted ones and recompiling

Video

Documentation: excluding individual reports

↪→ Group Report

↪→ Slides

16



Appendices

A Experimentation with Classification Schemes

The following tests were done only to determine the accuracy and usefulness of thresholding based

on each of Y, Cr and Cb. Tests are displayed in chronological order, as the results varied with the

height of the sun in the sky outside.

Cb Value Notes
100 good - a bit blocky
125 doesn’t work at all - entirely white
75 almost all black, the hand shows up to some extent
85 still has large black blotches on the paper
95 almost entirely black
125 almost entirely white
115 paper and hand show up as mostly white, but text shows up very blurry
100 hand shows up white, paper and ink both mostly black

Table 4: Split on Cb

There was about an hour break taken around the horizontal line. Note how the results at a given

threshold value differ significantly before and after the line.

Cr Value Notes
110 all black
200 all white
150 text somewhat black, paper somewhat white, unreliable
140 slightly worse result than 150
160 paper is black, text is black. Hand (and surrounding shadows!) is all white.
155 like 160, but better separation between hand and non-hand.

Table 5: Split on Cr

We also tried an experiment where we tested with a black background. Interestingly enough, the

hand showed up as black, with a white outline around it. We did not, however, wind up using this

phenomenon in the final design.

Choosing a Thresholding Algorithm

• If Cb < 100 (on a scale of 0 to 255), we can safely assume that we should classify the pixel

as white. If Cb > 100, it should be classified as black. In between, no assumptions could be

17



Y Value Notes
115 Too dark.Hand all black, some of page black.
100 adequate. Words a little faint, hand black.
80 hand invisible, text too faint.
120 words come out strong, maybe a little too strong in the corner (although corner

text is blurry in the camera view too.
125 Seems good.

Table 6: Split on Y

made. These values could change substantially based on minor changes in lighting conditions

(such as if the sun is lower in the sky, if the experiment is performed in a room with a window

even if the camera is not in direct sunlight or near the window.) Evidently, using Cb is not

particularly useful, given the small benefit given and the high precision of the thresholding

values needed.

• If we split Cr at 160 then we can use the Cr value to distinguish between a hand and a

non-hand. This seems to be accurate at about ±10; if we can get this value precisely then

shadows cast by a hand will also be classified as being red (as presumably some light reflects

off the hand, giving the shadows a slight reddish hue).

• If Y is split at 125, we can more or less accurately determine between ink and non-ink. Some

shadows cast by the hand will appear, but as long as the hand keeps writing their positions

will change and they will not be classified as ink. This is accurate to roughly ±15.

Based on the above experiments, we tried splitting based on Cr, then Cb, then Y. We also tried

splitting based on Cr, then Y, and got much better results.

We did additional testing in the lab to determine which values to use with those lighting conditions,

and we decided to split Cr at 140 and Y at 115.
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B Previous design: all processing in hardware

Before we realized that attempting to process incoming video in realtime is counter-productive,

we attempted to design a system that could perform all processing in realtime. As shown in

Figure 6, this involved several hardware modules that would all read and write to different portions

of memory. The first module, VideoToRam would be in charge of controlling the other modules.

Each module would be on its own PLB bus to write to minimize bus conflicts, as all devices will be

continuously writing in burst mode.

MPMC DDR Memory

VideoToRam

WriteHistory

WriteFrame

Video Out

Microprocessor

Port A

Port B

Port C

Port D

Port E

pixel histories

frame for display

Bus
Master

TFT Controller
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Figure 6: Design of system for processing entirely in hardware
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