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1. Overview 

 

1.1. Background 

Electricity in biological tissue has been a fascination since the discovery of electricity producing 

muscle found in the electric ray fish by Francesco Redi in 1666. The interest in both the 

scientific community and the world in general has since been compounded by subsequent 

discoveries and experimentation such as Galvani's experiments in 1792 which showed that 

electricity could initiate muscle contractions in dead tissue inspiring the creation of the fictional 

character Frankenstein's monster and the discovery by Dubois-Raymond in 1849 that it was also 

possible to record electrical activity during voluntary muscle contraction which lead to the 

creation of electromyography (EMG) as we know it today.  Now, decades after the first EMG 

recording by Marey in 1890, muscular bioelectricity is still a hot topic of study that is full of 

potential due to the unique opportunity to directly connect living tissue and systems to non-living 

systems of our creation. 

Currently EMG signals are used in a variety of clinical and biomedical application. The oldest 

and most well studied use of the EMG is in diagnostics; it is used as a diagnostic tool for 

assessing a variety of neuromuscular disease, low back pain and disorders of motor control [1]. 

As a diagnostic and analysis tool the EMG is also used to study human movement in order to 

identify and monitor abnormal movement patterns allowing for management or treatment of 

motor disability through surgical or other correctional techniques [2]. More recently, EMG 

signals have been used as a control signal for advanced prosthetic devices most notably in hand 

and arm prosthetics particularly with the successful creation of the MANUS-HAND in 2004[3] 

and a multiple joint whole arm system created by T. Kuiken et. al in 2009 [4].  Related to 

prosthetics and one of the main motivations for our project is the rehabilitation of patients with 

disturbed neuromotor control using EMG feedback therapy.  

EMG feedback therapy helps patients regain function of paralyzed muscles or limbs. The target 

of rehabilitation is patients who exhibit some residual volitional motor activity which is 

insufficient for adequate motor function. The theoretical premise of EMG feedback therapy is 

that due to neuroplasticity (ability for the brain to change or remap as a result of experiences and 

reinforcement) and the existence of alternate pathways for each muscle function muscles 

controlled by damaged pathways can be activated and eventually completely controlled by the 

undamaged alternate pathways [5]. In EMG feedback therapy the patient is asked to attempt 

movement the EMG electrodes monitoring the muscle or muscle group will detect even the 

slightest electrical activity [5]. When desired activity is detected the patient is given auditory or 

visual clues that they have activated a neuromuscular pathway that can be recruited to replace the 

damaged pathway [5]. With repeated exercise and practice the alternate pathways recruited will 

strengthen and eventually assume the function of the damaged pathway [5].  
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1.2. Motivation 

The main inspiration for our project stems from the idea of providing audio and visual feedback 

based on EMG signals during training. Rehabilitation is typically a long and arduous process, but 

if feedback can be given in the form of entertainment it could help increase patient morale. A 

game calibrated to monitor target muscle functions would allow patients the ability to exercise, 

strengthening the desired pathways, in a more enjoyable environment. 

1.3. Goals 

At the outset of this project our goal was to implement a 2D, top-down perspective video game 

controlled via EMG. The game to be implemented would be an expansion on the classic Snake 

arcade game, pictured in Figure 1. In Snake a player controls the direction of movement of a 

pixilated snake (up, down, left, right) to collects objects that randomly appear on screen.  As the 

player collects these objects they score points and their snake character grows in length. The 

game ends when the player’s character try to go past the edge of the screen or into collides with 

itself. 

 

Figure 1: Classic arcade style Snake 

We determined that such a game could be created and expanded on in the course of the term and 

also provided an ideal number of input mappings for EMG controls. By taking EMG signal 

measurements from both wrists and biceps of a player, a one-to-one mapping between directions 

of movement and input signals could be created.  Further, avenues of expansion we decided to 

implement included multiple game stages or “environments” to play on, varying difficulty levels, 

and acceleration controls, which would allow us to execute gradual turning and establish 
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complete free range of character motion.  The focus of these expansions was to introduce 

elements of variability in game play to promote the game’s replay value. 

1.4. System Changes 

During the course of the project three major adjustments were made to the original design 

proposal. 

 1. Introduction of multiplayer 

Instead of having artificially increasing levels of difficulty, in the form of more 

challenging enemies or obstructive obstacles as the player progressed, it was decided that 

having players compete against each other would be a more enjoyable challenge.  

Multiplayer allows the difficulty to naturally increase as competitors improve. 

2. Re-mapping of player controls 

At the cost of including multiplayer into the game, we elected to reduce the number of 

inputs per user to two, to greatly reduce the complexity and cost of the input circuit.  

Now EMG signals are measured from each player’s biceps and control whether the snake 

turns left or right. 

3. Processor Functionality Changes 

Originally it was thought to be possible to completely separate the video game update 

logic from the video game draw logic and run them concurrently on two separate 

processors.  Ideally the video game logic would only handle information about the game 

state and make calculations to determine the progression of the game state, while the 

draw logic continuously updates the video display based on the current game state.  

However, we found that due to the low level graphical nature of the game, the game logic 

was too tightly coupled to information in video memory.  As such it was determined that 

to avoid constant bi-direction communication between a game and video processor, we 

decided to give each processor the ability to manipulate only certain parts of video 

memory each.  The game processor deals with the center “game area”, where the players’ 

characters moved and where most of the game logic applies.  The designated video 

processor reads the players’ scores from memory and updates the sides the video display 

accordingly. 
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1.6. Brief Description of IP 

 

IP Function Origin 

  On Board IP 

microblaze (7.10.d) 

32-bit soft processor. 

 

Three microblaze processors are utilized in this project. 

 

1. uB_input: 

Performs digital signal processing on input EMG 

signals primarily to remove mains interference 

and movement artifacts. 

 

2. ub_game: 

Contains game logic and performs a majority of 

video processing. 

 

3. ub_video: 

Contains logic to update player scores and 

manipulate portions of the video display. 

 

Xilinx 

 

 

 

 

Group 

 

 

 

 

Group 

 

 

 

Group 

fsl_v20 (2.11.a) 

Fast Simplex Link which performs uni-directional point-to-

point FIFO based communication between elements on 

the FPGA. 

 

Two FSL connections carry processed player input to and 

from MicroBlaze processors. 

Xilinx 

lmb_v10 (1.00.a) 

Local Memory Bus used to connect processors’ 

instruction and data ports to BRAM.   

 

Every MicroBlaze processor in this project uses an LMB 

for both data and instruction ports. 

Xilinx 

plb_v46 (1.03.a) 

Processor Local Bus is a high bandwidth bus used as an 

interface to devices on the FPGA. 

 

Three PLBs are utilized in this project. 

 

1. plb_ub_main: 

Allows connected processors to read from and 

write to other components on the FPGA. 

 

2. plb_ub_video: 

Allows uB_video processor the ability to read and 

write to memory. 

 

Xilinx 
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3. plb_video_out: 

Services the reading of video frames by the TFT 

from the MPMC 

 

lmb_bram_if_cntlr 

(2.10.a) 

LMB BRAM Interface Controller is a memory controller 

that can be interfaced via the LMB.   

 

Each MicroBlaze processor in this project utilizes a 

controller for both data and instruction memory. 

Xilinx 

mpmc (4.03.a) 
Multi-Port Memory Controller provides access to the DDR 

SDRAM on the XUP board via multiple memory ports.   

Xilinx 

bram_block (1.00.a) 

Block RAM is a configurable memory module. 

 

Each MicroBlaze processor in this project interfaces with 

its own BRAM, which acts as its own local memory. 

Xilinx 

adc_data_reader 

(1.00.a) 

A custom logic module which receives player input in the 

form of digital signals and relays this information to the 

uB_input processor. 

Group 

mdm (1.00.d) MicroBlaze Debug Module allows JTAG-based debugging. Xilinx 

xps_gpio (1.00.a) 

XPS General Purpose Input/Output core for PLBs 

 

Three GPIOs are utilized in this project, which indicate 

various states of the game to the audio core. 

 

1. gpio_point 

2. gpio_game_running 

3. gpio_game_start_end 

 

Xilinx 

 

 

 

 

2010 - Virtual Pong 

Group 

xps_tft (1.00.a) 
XPS Thin Film Transistor Controller reads pixel data from 

memory and outputs it to video display via an SVGA port. 

Xilinx 

xps_uartlite (1.00.a) 

XPS Universal Asynchronous Receiver Transmitter 

provides an interface for serial data transfer over an 

RS232 connection. 

 

This project utilizes a UART interface to receive input 

commands from a P) to begin each new game.  Output 

can be sent to the PC through the interface for debugging 

purposes. 

Xilinx 

audio_core (1.00.a) 

A pcore which provides an interface to the LM4550 chip 

on the XUP board to generate audio. 

 

Custom logic from a previous project uses state 

information from the game to play 4 different sounds. 

Embedded 

Computing  

 

2010 - Virtual Pong 

Group 

clock_generator 

(2.01.a) 

Provides clock signals based on specified requirements. Xilinx 

Off Board IP 

AD623 A discrete instrumentation amplifier used in the sensor Analog Devices 



7 

 

components. 

LM4040 
Provides a 2.5V reference voltage. National 

Semiconductor 

MCP604 

Quad op-amp IC used to buffer the reference voltage for 

each input signal and perform low-pass filtering for 

proper analog to digital conversion. 

Microchip 

PIC18F4423 

PIC Microcontroller to sample all four input signals. 

 

Custom logic performs analog to digital conversion of 

input signal. 

Microchip 

 

Group 

Peripheral Devices 

EMG Electrodes 
Surface recording electrodes to measure electromyogram 

signals as player input. 

Rhymlink 

International 

Speakers 

Receive and play audio signals from the FPGA 

corresponding to events that occur while the game is 

being played. 

Group 

Video Display Where all game elements are displayed. Group 

PC 

Connects to the FPGA via UART interface.  Provides input 

to start a game and receives output for debugging 

purposes. 

Group 

 

 

 

Figure 2: EMG input and analog signal processing circuit for two pairs of player inputs 
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2. Project Outcome 

 

2.1. Results 

Despite the significant changes made during development, we still managed to complete a 

project that meets all of our minimum acceptance criteria, as well as many of our expectations 

beyond them.  We have successfully created an expanded version of the classic Snake arcade 

game, where players control their on-screen character with the electromyographic activity they 

generate by contracting the muscles in their arms. 

Our version of Snake, shown in Figure 3, has 

two players competing to collect ten gems 

without running into the other player, the edge 

of the game area or even themselves.  The 

winner is the first player to collect 10 gems or 

the last player standing.  As players collect their 

on screen snake counterpart increases in size to 

make it more difficult to manoeuvre.  One of 

four randomly selected stages is loaded at the 

beginning of each game to add variety to the 

game. 

 

2.2. Future Work 

The only significant shortcoming, in terms of goals set out in the proposal that we have not been 

able to meet, is the inclusion of acceleration controls.  This would involve the player controlling 

and varying the speed of their snake by the degree to which they contract the muscles in their 

arms.  To accomplish this more accurate circuit components would be necessary to be able to 

distinguish between fine changes in the input signal. 

Another way to improve the project would be to go back to our original plan of measuring four 

signals from each player to use as input controls.  This is because while the ability to turn left 

and right is sufficient for proper movement around the screen, it’s not always intuitive and can 

be somewhat disorientating when player wants to turn right and sees the snake more to their left 

(if it was traveling downward).  Giving the player up, right, down, and left controls (as found on 

every keyboard) would make the controls slightly more intuitive. 

Of course, there are also many improvements one can always make to the software of the game.  

Such as but not limited to, adding more stage environments, power-ups, new game mechanics 

and even the ability to switch between game modes.  

Figure 3: Snake as implemented on the XUP-V2P board 
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3. Detailed Description of IP Blocks 

 

3.1. EMG Electrodes 

EMG is a well documented and frequently used technique to detect and record biopotential 

potentials (electrical activity) generated by skeletal muscle activity. The source of electrical 

activity recorded in an EMG is the firing of muscle fiber units during muscle contraction. 

Currently there are two major types of EMG techniques in use: surface EMG and intramuscular 

EMG. In surface EMG disc electrodes are attached to the skin above the muscle of interest while 

in intramuscular EMG needle electrodes are inserted through the skin into the muscle tissue 

directly. For our project surface EMG is more desirable as they are less invasive and more useful 

in terms of rehabilitation therapy. 

In a surface EMG the amplitude range of the EMG signal is 0-10mV (peak-to-peak) or 0 to 1.5 

mV (rms) [6]. The usable energy of the signal is limited to the 0Hz-500Hz frequency range, with 

the majority of the energy in the 30Hz-150Hz range [6]. In surface EMG due to the placement of 

electrodes on the skin surface instead of inserted into the muscle itself noise is of greater 

concern. The three major sources of noise are detailed below. 

1. Inherent noise in the electronic components used: noise generated by electronic 

equipment is inherent in the electronic parts selected and it ranges from 0Hz to several 

thousand hertz. [6] 

2. Ambient noise: ambient noise is noise from power transmission lines and other 

electrical equipment typically ranging from 50Hz-60Hz. It originates far away from the 

detection site and is therefore common to all electrodes [6]. 

3. Motion artifacts: motion artifacts are generated 

both by the movement of the electrode cables and 

the movement of skin with respect to the detection 

surface of the electrode. The energy of motion 

artifacts are mostly in the 0Hz to 20Hz range [6]. 

For our project we measure signals from the Biceps Brachii 

muscle using two signal electrodes placed about 1cm apart 

[7]. The signal electrodes are placed along the longitudinal 

midline of the muscle between the innervations zone and 

tendon insertion [6]. A reference electrode is also places at 

the elbow above the bone to raise common mode rejection.  

Figure 4 demonstrates the electrode placement. Figure 4: EMG surface electrode placement 
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3.2. Sensors 

The input to each sensor is an analog differential signal with peak-to-peak voltage approximately 

10 mV and unspecified common-mode voltage, band-limited to approximately 400 Hz [12], 

measured through surface electromyography electrodes. The sensor stage therefore comprises an 

instrumentation amplifier, which produces a single-ended output value relative to some given 

reference voltage, and supporting components. 

The instrumentation amplifier used is the Analog Devices AD623, selected for its relatively low 

cost. A discrete instrumentation amplifier was chosen over constructing an amplifier from 

multiple operational amplifiers due to the inaccuracies caused by the difficulty of matching 

components [14]. A low-pass filter constructed from an RC circuit with −3 dB bandwidth fc = 40 

kHz, located at the amplifier input, is necessary to prevent high-frequency interference from 

introducing DC offset errors at the output [15], while a high-pass filter also constructed from an 

RC circuit with −3 dB bandwidth fc = 10 Hz provides a return path for amplifier input bias  

current [16] and helps to prevent movement artifacts (introduced by large-scale movements of 

the limbs being measured) or a steady-state difference between the two electrodes from 

saturating the amplifier [11]. An additional low-pass filter between the two ends of the 

differential signal, is necessary to maintain effective common-mode rejection [15]; this filter has 

−3 dB bandwidth fc = 900 Hz. This circuit is shown in Figure 5. 

All analog circuitry used is rail-to-rail (i.e. can provide output signals close to their ground and 

supply rails) with a supply voltage of 5 V. A National Semiconductor LM4040 voltage reference 

is used to produce a 2.5 V reference voltage, which is buffered by one op-amp in a Microchip 

MCP604 quad op-amp IC for each of the four input channels. Hence a 0 V difference between 

the two differential inputs to a sensor results in a 2.5 V steady-state output from the 

instrumentation amplifier. The voltage reference circuit is shown in Figure 6. 

The AD623 accepts input voltages of at most 0.3 V outside the ground or supply voltages [15]. 

To ensure that this condition is reliably met, a first-order op-amp low-pass filter weakly drives a 

body ground electrode, placed on a non-muscular patch of skin near the sensor electrodes, to 

near the reference voltage [12]. This circuit is shown in Figure 7. 

3.3. Analog Processor 

Although digital signal processing is usually preferred to analog signal processing due to lower 

cost and ease of reconfiguration, some analog low-pass filtering is necessary for correct analog-

to-digital conversion (see Section 3.4).  

 

 There are four major filter types [13]: 
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Figure 5: Sensor Circuit 
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Figure 6: Voltage Reference Circuit 
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Figure 7: Body Ground Driver Circuit 
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• Bessel filters have maximally linear phase response in the passband, i.e. they minimally 

distort the shape of unattenuated waves. However, they have the slowest rolloff of the 

four types for any given number of poles (filter complexity and cost is proportional to 

number of poles.) 

 

• Butterworth filters have maximally flat magnitude response in the passband, i.e. they 

minimally distort the amplitude of unattenuated waves, and rolls off exponentially to zero 

in the stopband. They have superior rolloff but inferior phase response to Bessel filters. 

 

• Chebyshev filters (and inverse Chebyshev filters) have a steeper rolloff than Butterworth 

or Bessel filters, but have ripple in the passband or stopband (i.e. small variations in the 

gain for similar frequencies). They are also usually more complex to implement than 

Bessel or Butterworth filters for a given number of poles. 

 

• Elliptic filters have the steepest rolloff of all filters, but have ripple in both the passband 

and stopband and are the most complex to implement. 

 

A bandwidth of fpass = 250 Hz is suffcient to collect the useful part of the surface EMG signal 

[12]; given a sample rate of fs = 1.2 kHz, which defines a cutoff frequency of fstop = 600 Hz (see 

Section 3.4), it was determined that a 4th-order (4-pole) Butterworth filter was an acceptable 

trade off between phase response, filter sharpness, and filter complexity. The filter was 

implemented using two cascaded 2nd-order op-amp filters in the common Sallen-Key 

architecture, which is simple, effective, and tolerant of resistance and capacitance variations [14].  

The circuit is shown in Figure 8. 

 

3.4. Analog to Digital Converter & adc_data_reader 

The processed analog signal must be digitized before it can be used. A single Microchip 

PIC18F4423 microcontroller samples all four input channels at 12-bit resolution and sends the 

sampled data to the FPGA for further processing and usage. Its circuit is shown in Figure 9. 

 

The sample rate for each channel was selected to be fs = 1200 Hz, based on a combination of 

factors: 

 

• The Nyquist criterion requires that a signal with bandwidth fc must be sampled at a rate 

fs > 2fc to be represented correctly (without aliasing) [15]; given an EMG bandwidth of 

400 Hz and additional bandwidth for filtering, this imposes the condition fs ≥ 1 kHz 

usually seen on commercial EMG systems [12]. (The converse formulation, that a signal 

sampled at fs must be bandlimited to 1 fs to prevent aliasing, motivates 2 the necessity of 

analog filtering as described in Section 3.3.) 
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Figure 8: Antialiasing Filter Circuit 
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Figure 9: Analog to Digital Conversion Circuit 
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• Despite the use of differential input, significant mains interference (interference 

corresponding to the ubiquitous AC power supply) tended to appear in the signal. While a 

digital notch filter capable of removing a sinusoid of a single frequency is easily 

implemented, various effects (especially a poorly-designed switched-mode power supply) 

may emit non-sinusoidal interference at the mains frequency. Eliminating such 

interference (i.e. signals of a given frequency and its harmonics) is most efficiently done 

using a comb filter, which requires the sample rate to be an integer multiple of the 

fundamental frequency to be notched. The most common mains frequencies worldwide 

are 60 Hz and 50 Hz, so a sample rate that is an integer multiple of 300 Hz is desirable. 

 

The microcontroller signals the FPGA using a custom I/O protocol using five wires, designated 

clock, write, data, and the 2-bit signal channel. To send a sample, the microcontroller sets write 

low and sets the channel signal according to which of the four channels has been sampled, then 

pulses the clock, strobing out data from LSB to MSB to be latched on the rising edge. After all 

12 bits have been written, write is set high. On the FPGA, a custom logic module contains four 

12-bit serial-in, parallel-out shift registers (clocked by clock ) and some logic to send channel 

and sample data to the signal processor through a Fast Simplex Link (FSL) (see Section 3.5) 

when write is set high. Some two-flop synchronizers are used to prevent metastability issues 

when crossing clock domains. 
 

3.5. uB_input 

Some digital signal processing is done to remove mains interference (see Section 3.4) and 

eliminate movement artifacts [11]. The processing is primarily done by a MicroBlaze processor 

configured with a barrel shifter and an integer multiplier. For performance reasons all arithmetic 

is done in fixed point (all numbers are signed integers that are implicitly fractions of a power of 

two). In processing done natively in the MicroBlaze, input samples, intermediate values, and 

output values are in Q4.11 (16-bit fractions of 211 = 2048), while coefficients are in Q1.14 (16-

bit fractions of 214 = 16384). There are two major digital filter architectures [16]: 

 

• Infinite impulse response (IIR) filters, which use feedback in their construction. IIR filters 

are usually designed by reference to an analog filter, allowing the implementation of 

common filters (such as low-pass, high-pass, or band-pass filters) with broad constraints 

depending on the filter type (Butterworth, Chebyshev, etc.) (see Section 3.3). IIR filters 

usually require less computation to achieve a given filter sharpness requirement. 

However, they do not have linear phase response in general, and due to their use of 

feedback, they may suffer from instability and compounded rounding errors in longer 

filters. 

 

• Finite impulse response (FIR) filters, which do not use feedback. FIR filters may 

implement arbitrary functionality, can be designed to have linear phase response (i.e. all 

frequencies are delayed by the same number of samples before appearing at the output) or 

minimum phase, are always stable, and do not suffer from compounded rounding errors. 
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However, they usually require more computation to achieve a given sharpness 

requirement than an analogous IIR filter. 

 

In this application, minimum phase (i.e. minimum group delay) is more important than linear 

phase (i.e. constant group delay), since greater group delay will be perceived by a user as 

increased input latency. For mains interference filtering, a comb filter (which is a pecial form of 

IIR filter) is used due to its extremely high efficiency for notching harmonics; its magnitude 

response and group delay are shown in Figure 10. For removing movement artifacts, both IIR 

and FIR filters with similar magnitude responses and group delays may be constructed; 

magnitude responses and group delays are shown in Figure 11 and Figure 12. Since the IIR filter 

has no ripple, rolls off exponentially to zero at low frequencies, and is of low enough order for 

rounding error to be of minimal concern, the IIR filter (an order-2 Butterworth filter with −3 dB 

bandwidth fc = 20 Hz) was chosen for implementation. After a sample has been processed, its 

magnitude is taken, and the sum of the past 128 processed sample magnitudes for that channel is 

evaluated. If the sum exceeds an upper threshold, and the channel is currently marked as ‘not 

asserted’, then the signal processor marks the channel as ‘asserted’ and sends the game processor 

a signal via a FSL indicating that the channel has registered an input. Otherwise, if the sum drops 

below a lower threshold, the channel is marked as ‘not asserted’. This scheme implements 

hysteresis in the input mechanism to ensure that each user input results in exactly one input being 

read by the game. 
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Figure 10: 60Hz Comb Filter Response 
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Figure 11: Order-2 Butterworth IIR high-pass filter response 
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Figure 12: Order-63 minimum-phase FIR high-pass filter response 
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3.6. uB_game 

The uB_game processor contains the game logic and a majority of the video memory 

manipulation logic.  As the game progresses it will continually read from and write to video 

memory as well as other areas of memory.  Most game state information, such as the location of 

the snakes and the players’ scores are not stored locally, but instead stored on the boards 

SDRAM.  This is to ensure data can be shared between processors if necessary.  Specifically the 

uB_video processor, which needs to read player scores to manipulate the video display.  

However, to avoid any severe race conditions or having asynchronous data, the uB_game 

processor will e the only processor to write game state information to memory and all other 

processors will only perform reads on these sections of memory. 

The game logic runs in a nested while loop as seen in Figure 13.  The outside loop only executes 

at the beginning of a game, whereas the inside loop will execute until someone wins, either by 

collecting ten gems or having their opponent run into an obstacle.  There is also the possibility of 

a tie, where both players have collected 10 gems or have both run into an obstacle during the 

same time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

False 

True 

True 

False 

... 

initialize_game_state() 

... 

 

if(1) 

... 

place_game_elements() 

... 

 

if(getchar() == ‘q’) 

 

if(!gameover) 

... 

progress_game_state() 

... 

True 

Figure 13: High-Level Pseudo-Code program loop 
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To initialize the game state, each player’s score is set to zero and their snakes are returned to 

their respective starting positions be overwriting the value of the snake locations in memory with 

their default values.  Before the game can start a ‘q’ character must come through the UART to 

the FPGA.  This is the only form of input the game processor receives that is not a form of EMG 

signal.  We decided to have the game start way, instead of through one player’s EMG signal to 

prevent any “head starts” from occurring. 

Once the game starts, the program advances the snakes by calculating a new position for each 

snake’s head (determined by the direction they are traveling).  Then the location values for each 

segment of the snake are shifted toward the end of the snake such that the second segment of the 

snake now has the head’s old position value, and the third segment has the second’s and so on.  

After that the head gets the newly calculated position value.  To visually advance the snake on 

the video display, the game will “erase” the last segment of the snake and “draw” the head at its 

new position. 

However, in each iteration of the game loop before advancing the snake it is necessary to check 

if the new position that was calculated resides outside the game area or is occupied by a gem, the 

players own snake, the player’s opponent’s snake, or an obstacle.  To perform this check, the 

game logic will read the colour values of each pixel in the new position to determine if it is being 

occupied.  Any result that is not a gem or an unoccupied space will cause the player to lose the 

game.  It is important to note that before declaring a winner, the new position of both players is 

check to ensure a tie hasn’t occurred.   

3.7. uB_video 

Comparatively the uB_video processor executes far less complex program than the uB_game 

processor.  While originally meant to handle all of the video output, it now updates only the 

areas of the video display that are to the left and right of the “game area”. Following a simple 

loop as illustrated in Figure 14, the uB_video processor continuously checks for a change in the 

players’ scores.  If one occurs, it will overwrite the old score on the video display and replace it 

with the new one, and add a gem to that user’s side of the screen. 
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if(old_player1_score 

!= player1_score) 

if(old_player2_score 

!= player2_score) 

False 

old_player1_score = player1_score 

player1_score = read_score(1) 

old_player2_score = player2_score 

player2_score = read_score(2) 

 

update (old_player1_score, 0, 1) 

 

update (old_player2_score, 0, 2) 

update (player2_score, 

 SNAKE1_COLOUR, 2) 

 

update (player1_score, 

 SNAKE1_COLOUR, 1) 

 

if(1) 

True 

True 

False 

Figure 14: uB_video program loop 
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3.8. GPIOs & audio_core_0 

To add sound to our game without building an audio controller from scratch, we looked to past 

projects for an audio implementation that we could integrate into our system.  We found one  

suitable enough in the Virtual Pong project from 2010.  

(http://www.eecg.toronto.edu/~pc/courses/532/2011/pastprojectsnode6.html)  

 

They utilized an audio pcore from Embedded Computing to interface with the LM4550 National 

Semiconductor audio codec chip located on the XUP board along with several XPS GPIO units 

to produce various sounds for their game related project.  Their custom logic for the audio core, 

which utilizes a moore-type state machine and 11-bit counter, can produce single, double, 5 and 

6 tones beeps depending on the game state.  The core receives game state information from the 

various GPIO units. 

 

Our system feeds the audio core game state information in the same manner, through three 

GPIOs which are written to by the uB_game processor.   

 

1. gpio_game_running 

This GPIO contains a single 1 bit wide data channel, which the uB_game processor 

writes to indicate if the game is running.  No sounds will be produced if this channel has 

not been set. 

 

2. gpio_game_start_end 

This GPIO contains two 1 bit wide data channels.  One indicates when a game has started 

and another when a game has ended when they are ser respectively.  Two channels are 

necessary so that we can have a start where a game hasn’t ended, but also hasn’t just 

started. 

 

3. gpio_point 

This GPIO also contains two 1 bit wide data channels.  One channel is set whenever 

either player collects a gem and earns a point. The other channel is set when a collision 

occurs, either between players or a player and an obstacle. 

 

3.9. video_out 

The video_out block of the system consists of a XPS TFT controller whose sole purpose is to 

read frames of video from memory and send them through the SVGA port to the video display.  

As such it is connected to the MPMC via its own PLB line to prevent unnecessary congestion on 

the main bus line. 
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Figure 15: XPS TFT Controller Block Diagram [17] 

 

3.10. fsl_v20 

Fast Simplex Link (FSL) Bus is a uni-directional point-to-point communication FIFO-based bus.  

Its main use is to provide high speed communication between elements on the FPGA.  We use 

this type of data bus to carry player input signals from the adc_data_reader to the uB_input 

processor and subsequent output of said processor to the uB_game processor.  Since signals are 

coming from multiple players at a constantly streaming rate, it’s important to handle them 

quickly and not have one player’s signals drown out another’s.  The FIFO implementation of this 

bus is ideal for this scenario, since any backlog of signals will not be lost and still be processed 

in the order they arrived from the players.  As long as there are no significant delays, the effects 

should go unnoticed by the players 

 

 

 

 



27 

 

 

 

 

 

 

 

 

 

 

 

 

3.11. clock_generator 

The clock generator can provide various clock signals based on specified requirements.  In our 

system we generate a 100MHz “system clock” that is used by all PLBs, FSLs, the audio core and 

DDR_SDRAM.  A slower clock, at 25MHz, is created for the TFT controller since it is 

constantly reading video memory.  The MPMC also takes two other clock signals: one shifter by  

47 degrees the other by 90 degrees. 

 

 
Figure 17: Clock Generator Block Diagram [19] 

 

 

 

Figure 16: Fast Simplex Link (FSL) Bus Block Diagram [18] 
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4. Design Tree Description 

 

• emgvideogame - root directory 

o system.xmp - XPS Project File 

 

o system.mss - System Hardware Specification file 

 

o system.mhs - System Software Specification file 

 

o _xps - Option files for bitinit, libgen, simgen and platgen 

 

o blkdiagram - Block diagram gerenated by Xilinx tools 

 

o data - System Constraints File 

� system.ucf 

 

o drivers - Drivers for custom pcores 

� adc_data_reader_v1_00_a 

 

o etc - Option files for bitgen and downloading 

 

o Input - uB_input executable file 

� executable.elf 

 

o lib - IP Library for XUP board 

� XilinxProcessorIP 

 

o pcores - Custom hardware peripherals 

� adc_data_reader_v1_00_a 

� audio_core_v1_00_a 

 

o sw - Custom software and ub_game executable and linker file 

� bioefilt.c 

� bioefilt.h 

� constants.h 

� exec.elf 

� input.c 

� linker.ld 

� main.c 

� shared.c 
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� shared.h 

� VGA.h 

� video.c 

 

o ub_game - Software library files for uB_game processor 

 

o ub_input - Software library files for uB_input processor 

 

o ub_video - Software library files for uB_video processor 

 

o Video - uB_video executable file 

� executable.elf 
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