
ECE 532 DIGITAL SYSTEM DESIGN

Group Report
First Person Shooter Project

Patrick Judd (

Ian Katsuno (

Bao Le

Professor: Paul Chow

TA: Vincent Mirian

 1

Table of Contents

Overview ... 2
Project Description .. 2
Project Motivation... 2
Project Background ... 3
Project Functional Requirements .. 3

System Block Diagram ... 4
Brief Description of IP .. 5

Outcome .. 6
What Works: .. 6

First demo: .. 6

Second demo: .. 6

What Does Not Work: ... 7

Improvements to the Current System.. 7
Future work ... 7

Detailed Description of IP Blocks ... 8
IP_to_Mem and mem_to_ip.. 8

IP_to_mem .. 8
Target Locator Logic ... 8

Mem_to_ip .. 9
Microblaze .. 9
Multi Port Memory Controller and DDR Memory ... 10

TFT controller .. 11
XPS_Ps2 Core .. 11

Mouse Handler .. 12
Central Software Controller: ... 12

Target Remover: .. 12
Description of Design Tree ... 13

Project Folder #1: Target_Detector_No_Mouse ... 13
Project Folder #2: Target Remover_Mouse .. 13
Doc Folder... 13

 2

Overview

Project Description

The goal of this project was to create a "live action" first person shooter game. It uses a stationary

video camera connected to the Xilinx XUP Virtex 2 Pro FPGA board to capture the live video feed.

This live video feed is modified and displayed on a computer monitor using the VGA output of the

FPGA board. Using a mouse connected to the FPGA, the player of the game look at the computer

monitor and shoot at “targets” which move within the camera's field of view. To start the game the user

must first take a reference shot of an empty section of a room to serve as the stage for the game. Any

person who then appears on the stage in the cameras field of view becomes a “target.” If the player is

successful in 'shooting' (clicking on) a target then the target is be removed from the screen. Thus, it is

similar to a first person shooter except for the fact that the both the game environment and the game

targets are live-action.

Figure 1: Grayed Out Target Indicates it has been “shot” by mouse

Project Motivation
The motivation for this project stems from three trends in today's consumer computing applications:

1. First-Person Shooters: One of today's most popular video game genres is the first-person

shooter. These can be described as action games in which the player must shoot targets on a

screen from the first-person perspective. Examples include the Call of Duty series and Counter-

Strike[1]. The gameplay mechanics in this project closely resemble the gameplay of these

franchises.

2. Augmented/Diminished Reality: Augmented or diminished reality applications have become

increasingly common, largely due to the ubiquity of cameras in smart-phones. These are

applications in which a live-action video feed is modified to give the user a changed view of

reality. These applications are deemed augmented if they add information or diminished if they

remove information [2]. Our project could be classified as both. It is diminished reality because

we are removing targets from the feed, but it could also be augmented if a score or life bar were

added to the video with more development.

3. Motion Gaming: With the introduction of the Nintendo Wii [3]. It was proved that there was a

 3

lucrative mainstream market for Motion gaming. Motion gaming is when players affect the

game though motions of their body rather than by pushing buttons. Our project includes motion

gaming not from the shooter side, but from the target side. Targets could be real people which

move in an attempt to make themselves harder to hit.

Our project incorporates aspects of all three of these trends. The heightened interest and profit potential

which surrounds each of them serves to motivate our project.

Project Background
The framework of this system draws from that of a past ECE532 project, namely the Color

Replacement project from 2009 [4]. The most important concept borrowed from this project was the

manner in which the targets would be made to disappear. The Color Replacement project was able to

make certain colours invisible. This was done by first taking a still reference shot with a stationary

camera. Then, they would examine pixel data to search out for the colour they wished to make

invisible. If they detected a pixel of that colour they would replace its data with that of the reference

picutre, thus, making it “invisible”. Our project works in a similar manner, except that instead of

replacing pixels of a specific colour, we replace all pixels which are part of a target that has been hit

(clicked on). Pixels are determined to be part of a target if they differ from the reference picture. A

more detailed description of the target detection algorithm can be found in the detailed IP descriptions.

There are two major aspects which set our project apart from the Colour Replacement Project and other

games which have been created for this course:

1. This game uses a pointing device as a communication tool between the user and the system.

This allows the interaction more precise and responsive.

2. Our video processing would be color independent. We believe this allows our game to be more

liberated from the environment and thus makes the game more exciting.

Project Functional Requirements
From the outset, our project had the following requirements:

1. The system must be able to handle 30 frames per second of video

2. The system must be able to handle a video feed with a 640x480 resolution

3. The system must be able to display the input video frames which have been modified by the

internal logic

4. The system must be able to identify a “target” in the input video feed

5. The system must also be able to track the movement of the “target.” The system must decide if

an identified “target” is the same “target” identified in the previous frame, or if it is a new target

in the frame.

6. The system must be able to display the mouse cursor/crosshair on the output image

7. The system must allow targets to be selected using the mouse

 4

System Block Diagram

Figure 2: Hardware Block Diagram

FPGA

interrupt

controller

(xps_intc)

PS2

mouse

controller

(xps_ps2)

DDR Memory

- reference frame

- live frame

- configuration data

Microblaze

Multi Port

Memory

Controller

(mpmc)

Port0

Port1

Port2

Port3
mem_to_ip

- read reference

frame

ip_to_mem

- read video in

- target locator

logic

I
2
C

Controller

(xps_iic)

Video Decoder

(VDEC1

daughter

board)

PS2 Mouse RCA Video Input

VGA

controller

(xps_tft)

VGA Video Output

Plb_ub

Plb_ip_to_mem

Plb_mem_to_ip

Plb_tft

Library IP

Modified

Custom IP Plb bus

Wire bus

 5

Mouse data-packet Target location

 Hardware Interaction

 Software Interaction

Figure 3: Software Block Diagram

Brief Description of IP

Block Description Origin

Hardware IP Blocks in FPGA

IIC Sends commands to the video

decoder

Xilinx IP

ip_to_mem Detects targets, writes video data

to memory

Modified from Colour

Replacement Project

mem_to_ip Reads reference image from

memory, supplies it to

Imported from Colour

Replacement Project

Microblaze

Mouse

Controller

DDRAM Ip_to_mem

Software

Mouse

Information

Target

Remover

Central

Software

 6

ip_to_mem

Microblaze Executes software in

final_software.c

Xilinx IP

MPMC Memory controller which has

multiple ports

Xilinx IP

PLB Bus used for communication

between Microblaz and

peripherals, as well as

transferring video data

Xilinx IP

TFT Reads frame buffer from

memory and outputs to VGA

Xilinx IP

XPS_Ps2 Provides interface for

transmitting data over PS2 Port

Xilinx IP

Software Blocks*

Mouse Handler Draws mouse cursor on screen Custom

Hit/Miss Detector Detects hit or miss on click Custom

Target Remover Removes Target from video Custom

Hardware Outside FPGA

VGA Monitor Displays Video School Supplied

PS2 Mouse Controls Cursor Self Supplied

Video Camera Captures Video Self Supplied

Video Decode Daughter Board Decodes Video School Supplied

Table 1: Brief Description of IP Blocks

*Note: These are logical Software blocks, all software is contained in file final_software.c

Outcome

What Works:

We will have two demonstrations on the demo day:

First demo:

- A mouse is used as a pointing device, its cursor is drawn on screen, and its information is

stored in the software.

- The software extracts the target data from hardware. For this part, the target coordinates are

hard-coded in hardware. In other words, the target detection logic is not employed.

- The software will detect if a user click inside the area occupied by the target. If so, the target

will be removed from the video feed, the background is displayed at that area instead.

Second demo:

- A new object appears on screen. This whole object will be painted blue.

These two demonstrations show that we have had all of our hardware, software blocks functional.

 7

However, when we integrate the mouse controller block with the two modified custom IPs, we have

problem that makes our whole project not fully working.

What Does Not Work:

When we integrate the mouse into with the two custom IPs, the video input signal becomes garbled [5].

Basically, random lines are drawn on screen. Consequently, our target locator outcome becomes

falsified as it always detects these lines as targets. We have no luck to find the source of this noise in

the video feed, and the reasons why the existence of the PS2 block creates this noise. This phenomenon

can be witnessed in the first demonstration.

As a result of this effect, we separate them for the sake of our demonstrations. We want to show that

our target locator logic in correct video in stream would output the correct target coordinate. And when

the target coordinate is correct, our system will behave in a correct way.

Improvements to the Current System

The first improvement would be to discover and remove the source of the noise that is introduced when

the ps2 core is added to the project. This would allow our target locator to work with the mouse cursor

and provide the basic game play mechanic of our design. Another improvement to our design would be

easier configuration of the target locator. Currently the parameters Minimum Target Width and Pixel

Difference Threshold are set by writing to memory using XMD. We could improve this configuration

interface by using the push buttons to increase and decrease each of these parameters.

Future work

We had initially envisioned a much more sophisticated system for our project. However, we decided to

scale back some of the features in order to meet time constraints. We feel that adding these features

would be technically challenging and greatly improve the final product.

The first feature we removed was support for multiple targets. We feel this would create a more

interesting and challenging user experience. Being able to detect and distinguish between multiple

targets would require much more sophisticated algorithms than that used to detect a single target. There

are a lot of cases to take into account involving how the targets move around the screen and interact

with each other.

The second feature we removed was the use of a light gun as the input device instead of the mouse. Our

idea was to have the game function similarly to Nintendo’s Duck Hunt, where the user would aim a

light gun and the screen to shoot targets. The light gun works as follows: when the user pulls the trigger

the screen flashes a black and white pattern. The black represents the background while the white

represents a target. The light gun can sense the color on the part of the screen that it is aimed at and

thus can determine whether or not you have hit the target. The challenge in adding the light gun

peripheral would be the hardware interface. The light gun would likely not have a connector that would

connect to the FPGA board so some extra interfacing hardware would be required. The system would

 8

also need to be modified to produce the black and white flash.

Detailed Description of IP Blocks
Note: Only IP blocks which have non-trivial configurations or functions will be described.

IP_to_Mem and mem_to_ip

The ip_to_mem and mem_to_ip cores were borrowed from the Real Time Color Replacement project

[7]. These cores contained much of the functionality needed by our project. This includes reading video

from the video decoder, writing the image data to memory and reading back image data from memory.

This served as the necessary framework for our target locator logic.

IP_to_mem

The ip_to_mem core reads the video data from the video decoder and writes that data to the memory. It

also reads configuration data from the memory using the same PLB port that it uses to write the video

data. For information on the FSMs that controlled the read and write operations see the Real Time

Color Replacement documentation [7]. We modified the core by removing the color replacement logic

and implementing our own target locator logic. We also reused the configuration data address but

changed the configuration encoding. Our configuration encoding is show in table 2. Software

accessible registers and a slave PLB port were also added to communicate with the microblaze.

Configuration Address Bits Description

0x9020d000 [31:22] Pixel Difference Threshold

[21:10] Reserved

[9:0] Minimum Target Width

Table 2: Configuration Encoding

Target Locator Logic

We define a target to be anything in the live video frame that is different from the reference frame. The

function of the target locator is to determine the x and y coordinates of a box that encloses the target.

Specifically the target box is defined by the top left, (x_min, y_min) and bottom right (x_max, y_max)

corners of the box (see figure 2). These four values are then stored in 4 software accessible registers.

The microblaze can read these registers via the microblaze plb connected to the slave plb port.

 9

Figure 1. Reference Frame

Figure 2. Live Frame

The target is located by comparing pixel values of the live image with the reference image. If the

difference between the reference pixel and the live pixel is greater than a certain threshold then that

pixel is considered part of the target. The threshold was introduced to account for noise in the video

signal and slight variations in lighting which could cause the live video to differ from the reference

frame even though nothing has entered the frame. The threshold can be set using the configuration

memory as described in table 2. Pixel data is compared by comparing the individual color channels and

summing the differences. A pixel is determined to be part of the target if the following expression

holds.

| live_red – ref_red | + | live_green – ref_green | + | live_blue – ref_blue | > threshold

One issue we had was with the noticeable jitter of our input video feed. This caused errors in our

detection logic around sharp edges in the background because pixels seemed to be moving back and

forth in the horizontal direction. This caused our detection logic to falsely identify target a target due to

pixels at the edges drastically changing in color. To overcome this we added a minimum target width

requirement. A minimum target width section was added to the configuration data as shown in table 2.

The logic was modified so that a consecutive set of “different” pixels would not register as a target

until it reached the minimum target width.

Mem_to_ip

The mem_to_ip core reads reference image data from memory and stores it in a local buffer. That

buffer is connected to the ip_to_mem core so that ip_to_mem can read the reference image data. This

core remains unchanged from the Real Time Color Replacement project. For information on the read

FSM see the Real Time Color Replacement documentation [7].

Microblaze

The Microblaze instance in this design is version 7.20.d and is configured to run at an operating clock

speed of 100MHz. It is connected to a PLB bus which allows it to communicate with peripherals.

 10

Multi Port Memory Controller and DDR Memory

The multiport memory controller (mpmc) is a Xilinx EDK IP which allows multiple port connections to

an external DDR memory attached to the FPGA. In our project the DDR memory is used for three

purposes:

1. store the live video frame

2. store the reference frame

3. store configuration data for the ip_to_mem block

The addresses for each memory object are summarized in table 1

Object Address Range Size

All allocated DDR memory 0x90000000-0x9FFFFFFF 256 MB

Live Video Frame 0x90000000-0x90200000 2 MB*

Configuration Data 0x9020d000-0x9020d000 4 B

Reference Frame 0x90400000-0x90600000 2 MB*

Table 3. DDR memory address map
* video data should be stored in 1024x512 word memory region (1 pixel = 1 word = 4 bytes) [6]

The mpmc has 4 ports, which are each connected to a different core via a plb bus. Each core that

requires memory access was given its own port and plb connection in order to allow simultaneous

memory accesses to different addresses.

Port 0: microblaze plb

The microblaze needs to be able to write to the live video frame in order to draw the cursor and read

the reference frame in order to perform the target removal.

Port 1: tft plb

The vga controller needs to be able to read the live video frame in order to display it on the vga monitor

Port 2: ip_to_mem plb

The ip_to_mem core required memory access for two reasons. First, it needs to be able to read the

configuration data stored in memory. Second, it needs to be able to write the input video data from the

video decoder to the memory.

Port 3: mem_to_ip plb

The mem_to_ip core needs to be able to read the read the reference image from memory so that

ip_to_mem can compare it to the input video. This was done in parallel with ip_to_mem writing the

live video data in order to increase throughput.

 11

TFT controller

The tft controller allows image data stored in memory to be displayed on a monitor attached to the

FPGA board via VGA. The tft controller reads image data from the DDR memory via a dedicated PLB

bus attached to its master PLB port. The tft controller is also connected to the microblaze plb via its

slave PLB port. By default the tft controller is set to read the live video frame from memory. However,

the microblaze can configure the tft to read the reference frame using the slave PLB port. This feature

is useful for debugging.

XPS_Ps2 Core
XPS_Ps2 v1.00a is a Xilinx IP core which allows the microblaze processor to communicate with the

PS/2 mouse.. This IP connects as a slave to the same PLB bus which the microblaze processor. It has

two sets of registers. One corresponds to the mouse PS/2 port, and one to the keyboard PS/2 port. In

this design we have no keyboard so only the mouse port is used.

The following XPS_Ps2 registers are used in our design:

Register Name Description Base Address + Offset Type of Access

SRST_1 Software Reset Register C_BASEADDR + 0x0000 Write

STATUS_REG1 PS2 Core Software Register C_BASEADDR + 0x0004 Read

RX1_DATA Receive Data Register C_BASEADDR + 0x0008 Read

TX1_DATA Transmit Data Regiser C_BASEADDR + 0x000c Write

GIE_1 Global Interrupt Enable C_BASEADDR + 0x002c Read/Write

IPISR_1 Interrupt Status Register C_BASEADDR + 0x0030 Read/Write

IPIER_1 Interrupt Enable Register C_BASEADDR + 0x0038 Read/Write

Table 4: XPS_Ps2 IP Memory Mapped Registers Used in Design

Initializing the PS2 core and configuring the PS2 mouse according to the PS2 protocol are central

functions of the microblaze software. Pseudo code for these actions is shown below:

 //SETTING UP THE PS2 DRIVER INSTANCE:
 Declare Driver Instances of the ps2 core;

 call Xps2_LookupConfig();
 call CfgInitialize();
 call Xps2_SelfTest();

 Specify the interrupt handler using Xps2_SetHandler();
 //CONNECT THE INTERRUPT CONTROLLER TO PS2 ISR:
 Declare interrupt controller driver instance;
 call Xintc_Initialize();
 call Xintc_Connect();
 //MOUSE INITIALIZATION PROTOCOL:
 send reset code 0xFF;
 spin until receive acknowledge code 0xFA;
 spin until receive self-test-passed code 0xAA;
 spin until receive Device ID 0x00;

 12

 send “set to stream mode” code 0xFA;
 send “enable data streaming” code 0xF4;
 //ENABLE INTERRUPTS AND START INTERRUPT CONTROLLER
 call Xps2_IntrEnable();
 call Xps2_IntrGlobalenable();
 call XintC_Enable();
 call XintC_Start();

Mouse Handler
The mouse handler is software code that will receive data packet from the mouse at interrupts. It then

updates the x and y coordinates and the mouse status accordingly. At every interrupt, the mouse send

out three bytes:

Byte Index Containing Data

Byte 1 Mouse status: Left Click/ Right Click/ X Direction / Y Direction

Byte 2 Relative Coordinate in x Direction

Byte 3 Relative Coordinate in y Direction

Table 5: Mouse Data Packet Table

Central Software Controller:
This piece of software is used to do all the software routine work. Every iteration starts of by checking

the current mouse coordinates still in the boundary of the screen size (640x480). If a user moves the

mouse out of the boundary, its location is adjusted accordingly. After that, it draws the current mouse

cursor to the live video frame. Now if a user is currently clicking inside the area covered by the target,

the target remover is called; otherwise, go to the next iteration of this routine.

o Pseudo Code :

 if ((click) && (x_min < mouse_x < x_max) && (y_min < mouse_y < y_max))

Target_remover(x_min,x_max,y_min,y_max);

Click: - indication of a user is clicking the mouse.

x_min, x_max, y_min, y_max are coordinates of the rectangle covers the target.

mouse_x, mouse_y: mouse location.

Target Remover:
Target remover is called when a target must be hit already. This software simply replaces the pixels in

the live frame with pixels from the reference image. These actions are only performed inside the area

covered by the target as we only want to remove the target from the video output.

o Pseudo Code:

For i = y_min to y_max

 For j = x_min to x_max{

 Int color = read_pixel(reference, i , j);

 Write_pixel(current_image, color, I, j);

 }

reference: the starting address of the reference image 0x90400000

current_image: the starting address of the video output 0x90000000

 13

Description of Design Tree
Due to integration problems our design is split into two projects, each of which demonstrates a function

of our project. The archive root directory has three folders:

 Target_Detector_No_Mouse

 Target_Remover_Mouse

 Doc

These three Directories are described below:

Project Folder #1: Target_Detector_No_Mouse

Folder Description
System This project contains the XPS project which detects the target

but has no mouse.

Key files:

1. ip_to_mem custom logic

\system\pcores\ip_to_mem_v1_00_a\hdl\verilog\user_logic.v

2. mem_to_ip custom logic

\system\pcores\mem_to_ip_v1_00_a\hdl\verilog\user_logic.v

Project Folder #2: Target Remover_Mouse

Folder Description
System This project contains the XPS project which can not detect

target but has a mouse and can replace targets.

Key files:

1. ip_to_mem custom logic

\system\pcores\ip_to_mem_v1_00_a\hdl\verilog\user_logic.v

2. mem_to_ip custom logic

\system\pcores\mem_to_ip_v1_00_a\hdl\verilog\user_logic.v

3. final_software.c

\system\sw\final_software.c

Doc Folder

Key Files:

1. Project Proposal: Proposal.doc

2. Group Report: Group_Report.pdf

3. Project Presentation: Project_Presentation.pptx

 14

References

[1] First-Person Shooter.

 http://en.wikipedia.org/wiki/First-person_shooter

[2] Augmented Reality.

 http://www.howstuffworks.com/augmented-reality.htm

[3] Wii.

 http://www.nintendo.com/wii

[4] 2009 Projects.

 http://www.eecg.toronto.edu/~pc/courses/532/2011/pastprojectsnode5.html

[5] Problems caused by interlacing

http://en.wikipedia.org/wiki/Interlaced_video

[6] Xilinx, “XPS Thin Film Transistor (TFT) Controller (v1.00a) Product Specification”

page 9, July 21 2008. available:

http://china.xilinx.com/support/documentation/ip_documentation/xps_tft.pdf

[7] C. Liu, A. Bajenov, J. Sham. “Real Time Color Replacement” April 9, 2009

available: http://www.eecg.toronto.edu/~pc/courses/432/2009/projects/colorreplacement.zip

