ECE532 Design Project Final Report

Latchezar Dimitrov, Jonathon Riley, Steven Doo

1 Overview

1.1 Goals

The goal of this project was to implement a “laser-pointer” screen interface system and
use that in the design of a “shooter-like” video game. The user would be able to use a

laser pointer to point at and destroy targets moving across the screen.

The game is to run completely in software, executed by the Microblaze processor. The
coordinates of the laser would come from a hardware module which processes frames
coming from the video camera. The hardware would locate the coordinates of the point,
and pass them along to the software. The software would be doing the appropriate

scaling and the coordinates could then be used as the cursor for the game.

1.2 Background and Motivation

The idea behind this game originally came from the “Fruit Ninja” game on the iPhone. In
this game, fruits would be “tossed” around the screen and the user would “slice” these
fruits by using their finger to swipe the screen. We thought that this would be an
interesting game to implement on the Xilinx board along with laser pointers and video
cameras. Also, the laser-pointer screen interface system implemented in this project
could be used for other things besides a game as well (i.e. — laser pointer white board,

etc).

1.3 System Overview

Below is the system level overview diagram.

Game Logic Drawing Logic
& -Hit detection , - Microblaze M)) BRAM
-Object Position and size | d Processor ™ '0'-‘1‘9_Ct Size/Scale
-Handling Hits (Score, -Ok_)jeCfS |m?g€
splatter) -Objects Position
Camera x
x 12C Bus LMB
Video —
Decoder]{
PLB
¥
Laser —— 12C E:bc;]gl UART
; odule ;
Detection Controller Video Out Projector/
Module Screen
A —
h 4 Y A 4
MPMC
Main Memory (SD RAM)
Figure 1 — System Level Overview
1.4 IP and Hardware Descriptions
IP Function Author
laser_detector (called - Modified version of Group (modified

video_to_ram in actual
project)

video_to_ram module from
the example Video to RAM
system

- Detects the position of the
laser and writes it to a
specific location in the
RAM.

video_to_ram)

Microblaze

Processor core for setting
up video, and setting
up/executing the game

Xilinx; program
implemented by group;
used some code from
previous projects/examples

dimb/dImb_ctrl Data memory controller Xilinx
interfaced through Local
Memory Bus (LMB)

lImb/ilmb_ctrl Instruction memory Xilinx
controller interfaced
through LMB

PLB (plb_v46) Processor Local Bus used to | Xilinx
interface to various IP cores
including the microblaze,
laser_detector, and
video_out

[IC (xps_iic) Xilinx

Debug module (mdm) Debug Module to enable Xilinx
XMD

DDR_SDRAM (mpmc) Memory to hold laser Xilinx

coordinates data, and video
data

Video Daughter Card

Interface with video
camera

Analog Devices

Video camera

Captures the projected
game and laser dots on the
screen

UART Debug info Xilinx
VGA projector Display game
clock_generator Xilinx

led_debug_mux

LED debug info

2 Project Outcome

The project went as planned and the team achieved what we wanted to. We were able

to implement the laser-to-screen interface and be able to play the implemented game

with it. The final game allows two users to be playing it at the same time. Two laser dots

are detected by the hardware, and in the game, a line forms between the two dots.

Whatever objects hit this line will be “destroyed.” There are also special objects that the

user must avoid or try to hit. More details regarding this can be found later in the

report. The game also features a score which is displayed at the bottom of the screen.

The laser detection works accurately. We were able to configure it so that only the laser
dot would be picked up by the detection hardware. However, we did encounter some
problems as the screen itself acted as a light source under some lighting situations.
When the room is dark, the projected game appears brighter to the camera. As a result,
this causes the detected laser point to be unstable as the detector may pick up the light
from the screen. To solve this problem, we considered adding code to stabilize the point
in software. However, this would cause delay, so the solution was to simply ensure that

the room is well lit. Overall, we are pleased with the final outcome.

3 Description of Modules

3.1 Laser Detector Module

The laser detector hardware is entirely housed inside the (modified) video_to_ram.v
source file. The existing video_to_ram system (originally developed by Jeffrey Goeders)
was used as a starting point for the laser detector implementation since it already
accomplished the first task that we require in our application - namely the conversion of
the incoming video feed from YCbCr to RGB and the population of the two RGB line

buffers (Figure 2).

Existing Functionality

: Input Video RGBEB Pixel Encoding
* Stream ™
v »| LINE BUFFER 0
If decode »| vpd2? 444 dup »| YCrCbZRGE

» LINE BUFFER I

Figure 2

Further discussion on the implementation of the components in the diagram above will
not be provided here as they were effectively used "as is" in our application. The laser

detector logic is implemented on top of the structure shown in Figure 2.

The detector hardware reads every pixel out of the line buffers (alternating between the
buffers such that the one currently being read from is always the one that is NOT being
written to by the RGB decoder). As every pixel is being read out of the buffer, its
location in the overall frame is kept track of. The pixel's color encoding is then checked
to see whether or not it falls within the ranges specified by the current color limits
register. If it does, then the pixel's coordinates in the overall frame will be written to
one of two location registers - location register 1 if this is the first time that a pixel of
the appropriate color has been detected in the current frame or location register 2

otherwise (Figure 3).

Color Limits Register
Current Pixel RGB Encoding |
and Location i

e

[(R_lim - Margin) < R < (R_lim + Margin)]

. .- v &&
LINE BUFFER 0 [(G_lim - Margin) < G < (G_lim + Margin)]
&&
LINE BUFFER | [(B_lim - Margin) < B < (B_lim + Margin)]
)
{

if (first color "hit" in current frame)

-> Write Location in Register 1.
else

->» Write Location in Register 2

N /

Location Register 1 » Location Register 2

Figure 3

The encoding used in the three main (32-bit) registers (i.e. current color limits register,

location register 1 and location register 2) is described below (Figure 4):

Location Registers 1 & 2 Encoding

X _coordinate

Y coordinate

Frame number

[31:21] [20:10] [9:0]
Color Limits Register Encoding
R lim G _Lim B m Margin Refresh_rate
[31:26] [25:20] [19:14] [13:8] [7-0]
Figure 4

The frame number in the location registers is only used for testing / debugging purposes

as it simply holds the value of a running counter that gets incremented at the

completion of each video frame. The refresh rate number in the current color limits

register will be explained further below.

Intuitively, the detection algorithm will set the top-left-most pixel that meets the color

criteria in location register 1 and the bottom-right-most pixel that meets the color

criteria in location register 2 (Figure 5).

Location 1

Location 2 -~

Figure 5

If there are two laser dots visible on the screen, location register 1 would get the top-
left-most pixel associated with the first dot and location register 2 would get the
bottom-right-most pixel associated with the second dot (Figure 6). It is these pixel
locations that will henceforth be regarded as the coordinates of the first and second

lasers respectively.

Location 1

— Location 2

Figure 6

In the event that no pixels meet the color criteria, then both location registers would
retain the coordinates (0, 0) since that is what they are reset to at the beginning of each

new frame.

An overview of the laser detector FSM is shown below (Figure 7). Essentially, an entire
frame is processed while the FSM spins in S_LINE_HOLDER. During this time, the
location registers are updated accordingly with the coordinates of the two laser dots.
Once the whole frame is finished, the FSM either moves on to another frame or it
proceeds to perform memory updates depending on whether or not a particular refresh
count has been reached (under normal operation, the refresh rate is set to 0, which
means that memory updates will occur after each frame). If memory updates are to be
done, the FSM first reads a 32-bit word from a predefined location in memory

(0x45000000) and updates the current color limits register with the provided data. It

then writes the values currently stored in the two location registers to memory

addresses 0x45000004 and 0x45000008 which are associated with laser 1 and laser 2
respectively.

S INIT e
System Reset _| ;E: H;’

S _START LINE

Jrame line
is ready
S LINE HOLDER
line finished &&
Jframe finished &&

refresh_counter ==

refresh_rate S READ REQUEST
PLE slave
address

3 D acknowledged

PLE slave read
complete asserted
S_READ COMPLETE

Laser Detector FSM

line finished

dedt (frame
NOT finished
rgfresh_cownder
1= rgfresh_rats)

g

Key F5M State Descriptions

S WRITE REQUEST I
PLE slave address
ackrnowledged
S WRITE 1
PLE slave write
complete asserted
S_WRITE COMPLETE I
S _WRITE REQUEST 2

-5 LINE HOLDER: A single pixel is vead
out of the line buyffers and the location
registers are updated accovding to the pixel’s
color content as well as the value of the
color limits register.

-5 _READ REQUEST: The appropriate
signals are asserted on the PLB in order to
request a 4-byte read at the memory location
where the color limifs are to be found

-5 READ: The color limits register is
updated with the data supplied by the

PLE slave address
acknowledged

PLE slave write
complete asserted

S WRITE 2

§ WRITE_COMPLETE 2

Figure 7

MEMOTY.

-5 WRITE REQUEST X: The appropriate
signals ave asserted on the PLB in order to
request a 4-byie write to the memory
location where the coordinates of laser X arve
to be placed The contents of location
register X are also placed on the write datfa
bus.

3.2 Software Modules

3.2.1 VGA Modules (VGA.c/h)
This module consisted of code used to write pixels to the screen. It was taken from

http://www.eecg.toronto.edu/~pc/courses/432/2009/projects/tft-edk.txt. A new

function named “cal_screen” was added to be able to print the calibration screen
sequence. Depending on the parameters provided by the calibration module (section
3.2.3) the cal_screen module will draw an X at the appropriate spot on the screen,
directing the user to point the laser at that spot for calibration. The cal_screen()
function also effectively acts as the replacement of the “clear_screen()” function as it

clears the screen and draws a 590x430 box in the screen to represent the playing area.

Other unmodified functions in this module allow other the other modules to write a
pixel given the x,y location. It also does double buffering by swapping between two vga

screens in memory.

3.2.2 Laser Detector Software Interface (Laser_track.c / Laser_track.h / video_setup.c)
This is the software abstraction that directly communicates with the laser detection
hardware (through memory addressing). In turn, this abstraction (i.e. methods and data
structures) (Figure 8) is used by the actual game software whenever laser coordinates

are needed.

struct LaserTrackerModule {
int colorlimits;
long long currentPositions;
¥
struct LocalTrackerDataStruct {
long long in_buf_L;
int in_buf_I, out_buf_I;
int X_pos_1, Y_pos_1, F_num_1, X _pos_2, Y_pos_2, F_num_2;
¥;

void getRawlaserloordinates(struct LaserTrackerModule * modulePtr, struct LocalTrackerDataStruct * dataStructPtr);

Figure 8

10

The interface is established in main() [video_setup.c] through the declaration of two

pointers and a local data struct (Figure 9).

Jf===== Tracker Variable Instantiations =============
struct LaserTrackerModule * LM_ptr;

struct LocalTrackerDataStruct LocalTrackerData;
struct LocalTrackerDataStruct * LD ptr;

Figure 9

LM_ptr is made to point to the color limits word in memory (0x40000000) while LD_ptr
is made to point to LocalTrackerData. LocalTrackerData is where the decoded
coordinates are to be stored. All of the needed initializations are shown below (Figure
10). Note how as part of the initialization, the color limits which the hardware will use,

are set to represent a particular color (actual value is defined in Laser_track.h).

Jff===== Initializing the Tracker =======================
LM ptr = (struct LaserTrackerModule *) LASER TRACK_BASE ADDR;
LD ptr = &localTrackerData;

LD ptr-»out_buf I = (int) RED LASER_COLOR;
LM ptr-»colorlimits = LD ptr-rout buf I;
LD ptr-»in_buf I = LM_ptr->colorLimits;

Figure 10

Once the initializations are performed, the rest of the game software can obtain the
laser coordinates by first calling the getRawLaserCoordinates() function [Laser_track.c]
with the LM and LD pointers as parameters. This function will perform the needed
memory access to extract the encoded laser positions and will then decode them (based
on the structure shown in Figure 4) before saving all of the coordinates in the
LocalTrackerData struct. After calling getRawLaserCoordinates(), the caller can directly

access the coordinates from the LocalTrackerData struct (to which LD_ptr points). The

11

example below shows how the laser coordinates can be obtained in the rest of the game

software (Figure 11).

getRawLaserCoordinates(LM ptr, LD ptr); //Getting the Coordinates
if (LD ptr-»X pos_1 !=0 8& LD ptr->»Y pos 1 !=0 && LD ptr-»X pos_1 < 15
{ | |

\ X coordinate of Laser 1 (integer)

Figure 11

3.2.3 Setup and Calibration Module (video_setup.c)

Below is the flow-diagram for this software module:

Draw “X” on top - -
left hand corner of Wait until dot
playing area. Wait at top left

configuration stabilize at (0,0)

till RAW J\ position
Video decoder coordinates stabilizes

Save these Wait until dot Draw “X” on
RAW at top left bottom right
coordinates of position hand corner of
the two spots stabilizes. playing area

and start game.

Figure 12

12

This module first sets up the video decoder module. This was done with existing code
taken from the 2010 virtual pong project. Configuration constants are read and sent to

the video decoder one by one through the IIC bus.

The goal of this algorithm is to obtain the coordinates of the top left hand corner and
the bottom left of corner of the screen as seen by the camera. With these values, we are
able to convert the coordinates of the laser dot from the camera’s domain to the

domain of the game with the following formula:

Let

- X_vid_cam/Y_vid_cam = raw coordinates of the laser as the video camera sees it

X_ul/Y_ul = coordinates of the upper left hand corner of the playing area found
during the calibration stage
- X_Ir/Y_Ir = coordinates of the lower right hand corner of the playing area found
during the calibration stage

- X/Y_Game = coordinates relative to the game.

X_Game = (X_vid_cam — X_Ir)/(X_ul = X_Ir)*640
Y_Game = (Y_vid_cam —Y_Ir)/(Y_ul = Y_Ir)*480

3.2.4 Object Modules (Objects.h, Objects.c, star.h, evilbomb.h, smiley.h)

The object module contains the definitions for various structs that do not belong in
other area of the program. Amongst them is the struct definition for the Target object
(for a full struct breakdown see Appendix A.1). Any object that is to be drawn to the
screen is an instance of the Target struct. Additionally, Objects.h/.c contains other struct

definitions such as Vector2, IntVector2, and IntVector4 (see Appendix A.2) as well as

13

functions for operating on the Vector structs. Vector structs are used throughout the
program to group together related ints/floats, primarily to indicate points or movement

direction.

Also contained as part of this module are a series of static arrays that store the RGB
value of various bitmap images. These static arrays are used for drawing the various
objects to the screen using the images represented by these arrays as their
representation (See Appendix A.3 for an eample of a BMP RGB array). The individual
objects are stored in separate header files along with a set of constant static ints the
rest of the program uses to determine the object’s size and other properties. This allows
changes to objects to be made quickly and easily with only the header file and possibly

the object generator function needing to modified.

3.2.5 Game Module (Game() in Game.c)

The primary function in the project, the Game function takes over after the initial
hardware setup has been completed. The Game function has a set of local variables
used for keeping track of the games state/game events. When first called, Game() will
set these state/event variables to their initial state. Afterwards, the game enters what is
essentially an infinite loop that Fetches the user input (laser coordinates), updates the
objects and then draws the objects before starting again. It is modeled after the
standard operation of a game loop (see Figure 13). The various functions called by Game
are capable of modifying the game state, so Game() is primarily responsible for
enforcing any high level events/state properties in addition to executing the primary

loop.

14

Game()

Call
Update Call Call Draw() If necessary Call Call Update/
il | SetuP el > Laser ~ —Jp ClearScreen —p> Update(.) el —» forEach call ~J» DrawLSwipe =p» Draw()
Setup Variables) Each Live . . .
Coordinates () . Live Object GenTargets() Line() Score
Object
f Game Loop

Figure 13 Game execution flow

Function Definition:

laser pointers currently are.

3.2.7 Draw Target Module (Game.c)

DrawTarget once per target per loop iteration.

3.2.6 Update Laser Coordinates Module (Game.c)

coordinates and then stores these values in resCoords

void DrawTarget(struct Screen* targetScreen, struct Target* target);

This function is responsible for sampling the laser detection hardware module to get the
coordinates of the laser pointers. The laser detection module is set to store the laser

coordinates at specific locations, which can be accessed to determine the where the

Within Game.c is a variable IntVector4 resCoords. When UpdatelLaserCoords is called,
the function reads in the raw laser coordinates detected by the camera. Making use of

the calibration settings, the function scales the raw laser coordinates into in game

As the name indicates, DrawTarget is responsible for taking an in game object and
drawing it to the screen. To that end, DrawTarget accepts as parameters, the screen to

draw to as well as the target to draw. Game() iterates through each target, calling

15

The function will, using the target’s size as indexes, iterate through the RGB array
attached to the target, drawing each pixel sequentially. The drawing routine supports
the Swap property of the object and if the object is set as Swapped, the function iterates
through the target’s SwappedData RGB array. Otherwise it iterates through the target’s
ImageData RGB array. After finishing drawing the object, the function returns back into

the calling function.

3.2.8 Update Target Module (Game.c)
Function Definition:

void UpdateTarget(struct Target* target)

The UpdateTarget function is responsible for updating the game targets in response to
the laser coordinates input as well as the passage of time/loop iterations. For each

target in the game that is Alive, Game() will call Update once per loop iteration.

Because it exists inside Game.c, this function has access to the resCoords and
LoopCount variables which will give it access to the laser coordinates and the Loop

iteration count respectively.
The first action performed by the function is to determine if the target has been killed

by the laser input coordinates. For information on how hits are determined, see 3.2.10

HitDetection Module.

If the object is killed by the hit detection modules, the UpdateTarget function will return

to the calling function. Otherwise, the UpdateTarget function continues execution.

16

After the hit check, the function checks the targets lifetime. If the target’s Timed
property is set and the current Loop Iteration is greater than the target’s ExpiryTime
property, the object is killed and the game is set to generate a new target. Since this
form of kill was not triggered by the player, they are awarded no points and additional

effects are not activated.

Next the function checks if the target’s Swap property is set. If Swap is set and the
current loop iteration is greater than the target’s LastSwap + SwapSpeed, the object’s
Swapped property is inverted. The target’s Swapped value is used to determine which of

its RGB arrays are used to draw the target.

Finally, the UpdateTarget function updates the targets position based on the target’s
speed. If the new Position of the target/speed of the target will put it out of the playing

area, Update reflects the target’s speed to force it back into the playing area.

3.2.9 Generate Targets Module (Game.c)

Whenever a target is killed, the killing function is responsible for setting the Game
variable readyForGen to true. Inside the main game loop, the game checks if this
property is set to true. If it is true, the game calls the GenTargets function;

Function Definition:

void GenTargets(struct Target* TargetArray, int GenAmount);

The function takes as inputs an array of targets, and the maximum amount of targets to
generate. The functions will iterate through the array and for each target in the array
that is not marked as Alive, it will regenerate that target into a new target. A random
number generator is used to determine what the target should be regenerated into. As
part of the generation module, a separate function is used for each of the possible
things the target can be regenerated into. The current Generative functions are:

void MakeSmiley(struct Target* target);

Makes the basic target type worth 25 points on kill.

17

void MakeEvilBomb(struct Target* target, int Currentlteration);

Makes a bad target that when killed reduces score by 500. The target expires after

Targets[0]
Targets[1]
Targets[2]
]
]

Targets|3
Targets[4

Targets[N-2]
Targets[N-1]

Targets[N-2
Ali'-;eg: 1'[]

Position = 225, 213;
Speed =22, 11,

Size = 16, 16;

Score = 200;

ExpiryTime = 60,

Timed = 1;

TargType = Star;
ActivatesPowerlJp = 1;
PowerUpDuration = 160;
Swaps = 1;

LastSwap = 0;
SwapSpeed = 5;
ImageData = &yellowstar;
SwappedData = &redstarl

Targets[N-2]

Alive = 0;

Position = 335, 212
Speed =10, &5

Size =20, 20

Score = 25

Expiry Time = -1
Timed = 0;

TargType = Smiley;
ActivaesPowerlp = 0;

PowerlpDuration = -1;

Swaps = 0,

LastSwap = -1;
SwapSpeed = -1;
ImageData = &smiley;

SwappedData = NULL;

i

void MakeStar

Figure 14 Generating Star Target from dead target

several iterations

void MakeStar(struct Target* target, int

Currentlteration);

Makes a special target type that is worth 200
points when killed. Also activates temporary
invincibility from bombs upon being killed.

Expires after a few iterations.

After generating the new target, it is given a

&

s

random position on the playing field as well as a

random, but upper and lower bounded, speed.

Finally, the number of targets generated is

increased by one. As long as the end of the array

hasn’t been hit and the number of generated

targets is less than GenAmount, the function will continue to iterate and generate new

targets from dead targets.

An example of the generative functionality is shown in Figure 14. The Generator
determines that Targets[N-2] is Dead, so after a random number generation, the

function determines it should turns it into a star object using the void MakeStar()

function. After passing through the function, the target has been regenerated into a star

target and will be included into the game on the next iteration. Each function is

responsible for setting the necessary data of the target. This follows a factory design

18

pattern, where each function is responsible for assembling the target into the desired

target type.

3.2.10 Hit Detection Module (Game.c)
Hit detection is performed inside the Update stage of the Game. Every time Update is
called for a target, HitDetection is also called. There are two built in hit detection
schemes based on the game’s current mode;
1. Point Based Detection (for GameMode = Points)
For each set of laser Coordinates, checks if the coordinates are with a certain
distance of the target’s position. The distance in defined inside Game.c using the
LASER_EFFECTIVE_RADIUS variable. If the laser coordinates are within that
distance, the target is killed and the game is set to generate a new target. The
players score is incremented by a multiple of the target’s Score property. The
multiple is based on the speed and size of the target that was destroyed as
faster, smaller targets are more difficult to hit with the laser pointers. Finally, if
the target activates an additional in game effect, it is triggered by a call to
ActivatePowerUps(). See 3.2.12 for information on Powerups.
2. Line Base Detection (for GameMode = Line)
For the set of laser coordinates, a line is assumed to exist between them. That
line is treated as a line segment and if the target is passed through by that line
segment, the target is killed and the game is set to generate a new target. The
player’s score is incremented by the target’s score property.
Determining if the line segment passes through a target is determined by the
function LineCutsObject. Similarly, after target destruction, if the target activates

an additional in game effect, it is triggered by a call to ActivatePowerUps().
The LineCutsObject Function is used exclusively as a Hit Detection function so it is

considered part of the Hit Detection Module.

It has the following Definition:

19

int LineCutsObject(struct Target* target, struct IntVector2* LineStart, struct
IntVector2* LineEnd);

When called, LineStart and LineEnd will form the “kill line” that, if it passes through the
target, will kill the target. In order to perform the hit test, the target’s four sides are
broken up into four line segments. The segments are tested for intersection against the
kill line using vector math (see Appendix A.4 for the intersection test code). If at least
two line segments are intersected by the kill line (one segment for entry into the target,
another segment for exiting out of the target) the target is killed. Otherwise, the

function takes no action and returns to the calling function.

3.2.11 Update Score Module (Game.c)

This function takes in the score in integer form and draws the digits onto the bottom of
the screen. The algorithm simply extracts each digit of the score and draws them onto
the bottom of the screen in the correct order. Each digit was a BMP image created with
paint, and then converted to an RGB array using the tool described in section 3.3.
3.2.12 Power Ups

Power ups are special game states that alter the way the game is played. Currently one
power up is available although at least one more will be attempted for the final product.
PowerUps are activated during the Hit Detection module. If a target is destroyed by the
lasers and the ActivatesPowerUp property is set, the Hit Detection module will call
ActivatePowerUps, passing the destroyed target as an argument.

Function Definition:

void ActivatePowerUps(struct Target* target, int Currentlteration);

The function uses a switch statement on target->targType to determine the correct
variables to set for the given target.

The function UpdatePowerUps() is also called within the main game loop.

Function Definition

void UpdatePowerUps(int Currentlteration);

20

The function compares the current iteration against the expiry iteration for any timed

powerups. If the current iteration is greater than the expiry time of the power, the

power up is deactivated and any variable set to enforce the power up are reverted to

their initial values.

Power Up Name

TargType

Symbol

Effect

Star Power

Star

While the powerup is in play, the played can
destroy any target without losing points (namely

bombs)

Nuke

Nuke

Adds a nuke to the player inventory. On use,
Destroys everything on screen and adds their kill
scores to the players scores. Ignores targets with

negative scores

Bonus Play

Bonus

Doubles the score received when killing positive

targets.

Figure 15

3.2.13 Update Score Module (Game.c)

This function takes in the score in integer form and draws the digits onto the bottom of

the screen. The algorithm simply extracts each digit of the score and draws them onto

the bottom of the screen in the correct order. Each digit was a BMP image created with

paint, and then converted to an RGB array using the tool described in section 3.3.

3.2.14 Draw "Swipe" Line Module (Laser_track.c)

This is the function that draws out a line between two points on the screen. It is used to

draw out the "swipe" line between the two lasers. The function is passed the X and Y

coordinates of both points (in addition to a desired line color) as parameters.

21

The drawing algorithm is based on a single loop that increments a counter from 0 to

DeltaX or Delta Y (Figure 16) (depending on which one is larger).

Delta ¥
X1, i)
_ el
|l
[
_.Iil"

X7, ¥y 1 |
-‘

| 1

v !

Delta X

Figure 16

In the above example, Delta X has a larger magnitude so the counter will count up to

Delta X. In each iteration of this loop, a single pixel is drawn at:

(X2 + count, Y2 + count*DeltaY/DeltaX)

Essentially, the X coordinate will always be incremented while the Y will only be
incremented at specific intervals (since the offset from Y2 is rounded off to an integer
amount). However, both the X and Y coordinates of a successive pixel can only, at most,
differ by 1 from those of the previous pixel. The end result is a continuous line (i.e. one

without breaks) (Figure 17).

22

Delta ¥

™
I
|

Delta X

Figure 17

This algorithm is slightly expanded upon in the drawSwipeLine() function in order to
account for all possible corner cases (i.e. negative deltas) and ultimately, it is able to

produce a line between any two points on screen.

Once the line is drawn, the function also draws markers at each end (which in our
application, represent the laser locations). These markers are in the form of triangles

centered at (X1, Y1) and (X2, Y2) respectively (Figure 18).

23

Laser 1 Marker

N

Laser 2 Marker

L~

@
Figure 18

3.3 Extra Tools
We created a tool to convert 24-bit color BMP images into RGB arrays. This tool was
created by modifying an existing bmp file parser found here:

http://paulbourke.net/dataformats/bmp/.

This tool takes in the bmp file as input and outputs the RGB array of the image which

can be declared in the code and used to draw the image onto the screen.

24

4 Description of Design Tree

This section provides an overview of the directory structure.

/__XPS/ — Xilinx generated directory
/blkdiagram/ — Xilinx generated directory
/data/ — Xilinx generated directory
/doc/ — Contains group report
/report.pdf — Group report
/etc/ — Xilinx generated directory
/lib/ — Xilinx generated directory
/pcores/ — Cores directory
/video_to_ram_v1_00_a/ - Laser Detector Core
(other cores in this directory not used)
/report/ — Xilinx generated directory
/sw/ — Software directory
bomb.h — bomb image array
evilbomb.h — evilbomb image array
Game.c — code for game
Game.h
Laser_Track.h — code for reading laser coordinates
Laser_Track.c
Objects.h — contains objects modules
Objects.c
Smiley.h — smiley image array
Sniper.h — sniper image array
Star.h — star image array
VGA.h — contains VGA sw modules
VGA.c
Video_setup.c — contains video initialize and initial setup code

/README — information regarding project directory

25

Appendix A — Software Constructs

A.1 Target Struct
1. struct Target
2. A
3. //Indicates whether the object should still be drawn to the screen/Can be hit
4. int Alive;
5. //X, Y coordinates indicating the objects current position
6. struct IntVector2 Position;
7. //X,Y value indicating the current velocity of the object
8. struct IntVector2 Speed;
9. //X, Y values indicating the length/height of an object
10. struct IntVector2 Size;
11. //The colour to draw the object as. Only used if ImageData is not set
12. int Colour;
13. //The change in score caused by killing this object
14. int Score;
15. //If the object is timed, how many iterations should it be kept alive for
16. int ExpiryTime;
17. //Indicates if the object will be destroyed after a number of iterations
18. int Timed;
19. //Specifies the target type. Used to generate object specific behaviour
20. enum TargetType targType;
21. //indicates if destroying this object activates an in game bonus
22. int ActivatesPowerup;
23. //Number of iterations the powerup lasts for
24, int PowerUpDuration;
25. //Indicates if the object swaps between ImageData and Swapped Data
26. int Swaps;
27. //Indicates whether the object should be drawn with ImageData or SwappedData
28. int Swapped;
29. //Iteration the most recent swap occured on
30. int LastSwap;
31. //Indicates how many iterations between swaps
32. int SwapSpeed;
33. //Points to the primary RGB array for the object
34. unsigned int* ImageData;
35. //Points to the secondary RGB array to use if the object is Swapped
36. unsigned int* SwappedData;
37. };

The full struct definition for the Target object.

A.2 — Vector Structs

1 struct Vector2 1. struct IntVector4d
2 { 2. A
3 float x; 3. int x1;
4. float y; 4. int y1;
5 }; 5. int x2;
6 6. int y2;
7 struct IntVector2 7. %}
8. {
9. int x;
10. int y;
11. };

The struct definitions for the Vector

objects used in the game

A.3 —Image Arrays

1.

static unsigned int smiley[400] = {@x@0ffffff,

26

2. Ox@0ffffff,
3. OxOffffff,

400. Ox0Offffff
401.};

Array of RGB values for a dumped BMP file

A.4 Intersection Test

int Intersects(struct IntVector2 L1_Start, struct IntVector2 L1_End, struct IntVector2 L2_Start,
struct IntVector2 L2_End)

1

2

3. {

4. struct IntVector2 E, F, G, H, Q;
5. float LimitTop, LimitBottom;

6 E.x = L1_End.x - L1_Start.x;

7 E.y = L1 _End.y - L1_Start.y;

8

9

F.x = L2_End.x - L2_Start.x;

10. F.y = L2_End.y - L2_Start.y;

dkil g

12. G.x = -E.y;

13. G.y = E.x;

14. H.x = L1_Start.x - L2_Start.x;

15. H.y = L1_Start.y - L2_Start.y;

16. LimitBottom = -F.x * E.y + E.x * F.y;
17. if (LimitBottom != 9)

18. {

19. LimitTop = -E.y * H.x + E.x * H.y;
20. LimitTop /= LimitBottom;

21. if (LimitTop >= © && LimitTop <= 1)
22. {

28 Q.x = L1_Start.y - L2_Start.y;
24. Q.y = L1_Start.x - L2_Start.x;
25, LimitTop = F.x * Q.x - F.y * Q.y;
26. LimitTop /= LimitBottom;

27. return LimitTop >= 0 && LimitTop <= 1;
28. }

29. }

30. return 0;

31. }

Limit Intersection Test. The Function computes the scale by which a line segment would need to be
multiplied by to intersect another line segment. If the Multiplier is >=0 or <=1, the lines already intersect an
no extension would be necessary. Returns 1 (true) if the segments intersect and 0 if they do not

27

Appendix B — PLB Master, Burst Write Operation

Architeciure Specificalons

128-Bit Processor Local Bus

5.1.16 Fixed-Length Burst Write Transfer

Figiire: 5-15 shows the operation of a fikedJength burst write from a slave dewvice an the PLB. During the
request phasa of the transfer, the master has continuoushy provided the length of the burst on the Mn_BE
=sgnals and is requesting to write 4 words. The slave uses this length value 1o count the number of transfers
and assert the SI_wrBTesm signal n the cycle before the last assertion of the S1_wrDAck signal.

Figure 5-15. Fixed-Length Burst White Transfer

twele [0 1 [2]a[4]s[s]7[8fs]

sespwck O]] L LT L LI,
Transfer Quabliers
Mr_repiesl EXN
Mn_prontyE:1) VA
Mr_ousLock |
Wn_RNW] L
Mn_BE(D) o | ; ; :
Mn_size(D2) i Aoy C !
Min_hype{liz) 00 . . :
Mn_ABL=:3) ; :
PLB_FAVaid VT et R PAval I ANE W Pavaid
S1_scdrck T Nt R Addracks | 4 NAd W AdarAd
Wirita Dfa Bas ' !
Min_wrDBLssi: 1) ’
Sl wrDick CEinmiEn ¥
Sl_arComp : . I
I wiSTem — }"
Mn_wiBarst { M.
Read Data Bus
SI_rdDBus-31) i
S1_rd\¥iAddr) 000
1_riDAck
Si_ritomp
Mir_reBurst

LY
-

28

