

“Move-O-Phone” Movement
Controlled Musical Instrument

ECE 532 Project Group Report

James Durst (
Stuart Byma (
Cyu Yeol (Brian) Rhee (
April 4th, 2011

Table of Contents
1 – Overview ... 1

1.1 – Project Motivation .. 1

1.2 – Goals ... 1

1.3 – System Block Diagram .. 1

1.4 – IP and Hardware Descriptions .. 1

2 – Outcome .. 3

2.1 – Results and Successes .. 3

2.2 – Future Work Possibilities .. 4

3 – Description of Design Blocks ... 5

3.1 – Video to RAM Block (video_to_ram) .. 5

3.2 – Point Detection Block (paddle_detector) ... 5

3.3 – Audio Core (audio) ... 5

3.3.1 – Audio Core Software Control and Hardware Description ... 6

3.3.2 – Sine Wave Generator ... 8

3.4 – Microblaze .. 8

3.5 – Video Out .. 8

3.6 – Local Memory Bus and LMB Control Blocks ... 8

3.7 – Processor Local Bus Cores .. 8

3.8 – DDR SDRAM Multi-Ported Memory Controller .. 8

3.9 – General Purpose IO .. 8

3.10 – UART ... 8

3.11 – Software ... 9

Appendix A – System Block Diagram .. 10

Appendix B – Audio Core Constrains from system.ucf ... 11

Resources .. 12

Page 1

1 – Overview

1.1 – Project Motivation
Due to the recent trend in creating devices that allow the playing of games using movement

rather than a traditional joystick, controller, or keyboard, we felt that a project that followed

this idea would be interesting. This led us to the idea of using movement to control a musical

instrument, while removing a physical instrument from the equation.

1.2 – Goals
The goal of this project was to create a system which would allow the user to control musical

tones using body movements. This was to be done by having the user wear brightly coloured

armbands so that video processing could be used to track movements. The angle formed

between the ‘line’ with the two armbands as endpoints would then be used to decide on a tone

to play, which would be created with a tone generator.

1.3 – System Block Diagram
See Appendix A for the System Block Diagram.

1.4 – IP and Hardware Descriptions
Hardware / IP Core Function Creator(s)

video_to_ram This core interfaces with the FPGA’s video
decoder chip, capturing video data from the
camera, and then stores this data frame by frame
into the DDR_SDRAM

Jeffrey Goeders,
Durwyn D’Silva, and
Chirag Ravishankar
(Group responsible for
the ECE532 2010
project “Virtual Pong”)

paddle_detector This core was modified from an existing IP to scan
the video frame data in RAM to find the first and
last instances (pixels) of two distinct colours,
which are then written to a location in RAM to be
read by the microblaze processor

Original verilog code by
the ECE532 “Virtual
Pong” group.

Edited by our group to
detect first and last
points of two colours,
rather than the last
point of two colours in
each half of the screen.

audio_0 AC97
interface

This is an interface to the onboard audio chip,
which outputs sounds to the line out port on the
board.

Embedded Computing
[1]

Page 2

audio_0 custom
hardware logic
block

This core is now primarily composed of our own
custom logic block, only using the original
interface described above. The custom logic
allows control over the frequency and volume of
a generated tone, shifting of the tone down one
octave, and adding vibrato.

Group

Microblaze Soft processor core for initializing the video
interface, GPIOs, as well as translation of
coordinates from the paddle_detector core into
angles or distances for use in simulating
instruments, control of the audio core

Xilinx.

The program running
on the processor was
implemented by the
group.

video_out System which reads the video data from the RAM
and writes it to the VGA port for output to the
screen.

Xilinx

dlmb and
dlmb_ctrl

Data memory and controller for data memory. Xilinx

ilmb and
ilmb_ctrl

Instruction memory and controller for instruction
memory.

Xilinx

plb_v46 Several PLBs which interface the Microblaze to
other IP cores in the system, including memory
and GPIO, the paddle_detector to the
DDR_SRAM, the video_out core to the
DDR_SRAM, and the video_to_ram core to the
DDR_SRAM

Xilinx

DDR_SDRAM A multiport memory controller module that
allows for multiple cores to interface with the
RAM over PLB busses

Xilinx

xps_gpio Used for reading and writing of signals between
the audio core and Microblaze

Xilinx

uart_uB A uart connection allowing the Microblaze to
communicate with a computer terminal via RS-
232 serial connection

Xilinx

Software Program running on the Microblaze. The main
portion of the code is a loop that translates
coordinate data into signals for the audio core in
various ways to simulate multiple instruments

Group

Video Daughter
Board

Allows for a video decoder interface Digilent

Video Camera Streams video data to the video daughter board
decoder via composite cable

Speakers Allow for audio output from the system from the
FPGA board’s ‘line out’ or ‘amp out’ ports

Page 3

2 – Outcome

2.1 – Results and Successes
The team considers the project a success. A fully functional system was developed which

translates user’s body motions into musical notes, enabling the user themselves to become an

“instrument”.

The system works by tracking LED lights attached to the hands or limbs of the users. Since it

works by picking up certain colors in the video stream, the LEDs were necessary to provide a

contrasting point of color that the system could detect accurately. Tracking of the points was

quite successful, with fairly smooth translations between musical notes.

At first, the system could only accommodate one movement, a waving motion, tracking points

on the user’s wrist and shoulder. The angle from the horizontal formed by the line between the

points was translated into one of eight notes on the Major scale. After the success of the newly

dubbed “Armophone”, two other mainstream instruments were emulated. A trombone,

tracking points on both hands of the user, created notes based on the distance between the

points. A guitar-like concept used a similar method, but only playing a note if one point crossed

a horizontal based on the other point (simulating a strumming motion). Additionally, covering

up one point will cause any note to stop playing.

All three instruments were successfully tested. The team proceeded to add a form of

concurrency to the system, allowing two instruments to be on the screen and playing

simultaneously. Each instrument uses different coloured LEDs so the system can differentiate

between them.

Several other features were added to the custom hardware audio core. Initially, the audio core

used different frequency PWM signals to generate the different notes to be played. This was

useful for testing purposes, but begins to hurt ones ears after a while. In order to do away with

the incredibly annoying PWM sound, a sine wave was generated in hardware using 32 data

Page 4

points. These points are fed into the AC97 audio core in a loop at the required frequency,

producing an approximate sine wave that is much more pleasing to the ear.

Additional features in the custom audio core include vibrato and octave switching. Switches on

the VirtexII board allow the user to switch between a high and low octave, allowing one to play

a large range of notes, and opening options of one instrument playing a melody and another

playing bass. Another switch allows users to play with a vibrato, achieved by slightly varying the

frequency of the sine wave going into the AC97 core. These features allow for a more diverse

musical experience.

2.2 – Future Work Possibilities
There are a few suggestions we would like to add that could be used to further improve upon

this project. One of the issues at the moment is that, due to the fact that the tones we are

producing are discreet digital signals with different sampling rates, their waveforms cannot

simply be added and output to a single channel. If the signals could be created with identical

sampling rates, or converted to analog signals and then combined, this issue could be solved.

Because the stereo audio core only has two channels, not being able to mix audio signals means

that only two instruments can be played simultaneously. Additional video processing cores

could be added to the system in order to detect more instruments, or the current core could be

expanded to detect more colours. One last area of improvement we could suggest would be the

use of pre-recorded audio clips for instruments so that theirs sounds are distinct from one

another.

Page 5

3 – Description of Design Blocks

3.1 – Video to RAM Block (video_to_ram)
This block was provided by the group responsible for last year’s “Virtual Pong” project. It was

used unedited. Full documentation is available in that group’s final report [2].

3.2 – Point Detection Block (paddle_detector)
The original version of this block was provided by the group responsible for last year’s “Virtual

Pong” project. Documentation of the original code is available in their report [2]. Although the

interface – inputs and outputs – of this hardware block were not changed, the internal workings

of it were. In its original form, this block scanned each pixel in the video data and compared its

RGB values to a set of values written into RAM by the MicroBlaze. This comparison was used to

detect the last instance of two distinct colours present in the each of the left and right halves of

the screen.

Our edit of this core causes it now to use those comparisons to instead detect the first and last

instances of each colour throughout the entire video frame. It also now requires that it sees a

sequential series of pixels of the same colour in order for the pixel to register, helping to rule

out single pixels of noise that may be present in the data. As in the original code, the four

detected coordinate points are then written to memory to be read and used by the MicroBlaze

processor at its discretion.

3.3 – Audio Core (audio)
The custom hardware audio core is used by the system to connect to the on-board AC97 audio

chip, in order to play the musical notes. The core provides two audio channels, left and right,

for a maximum of two instruments play at any given time. Functions of the core include:

1. Generating a 32 point discrete sine wave

2. Outputting the sine wave to the AC97 chip at the correct frequency as dictated by

software control registers

3. Allow the volume to be adjusted on either channel

4. Allow the user to enable vibrato

5. Allow the user to shift between high and low octaves

Page 6

The entire core is described in detail below.

3.3.1 – Audio Core Software Control and Hardware Description

The audio core is controlled by software running on a Microblaze processor through software

control registers. A GPIO block connected to the PLB bus provides the control registers. The

audio core relies on two control registers, one for the left channel (Lcontrol) and one for the

right channel (Rcontrol). Each register setup is identical.

Bit 31: Activate Bit 30..24: Unused Bit 23.. 4: Volume Bit 3..0: Note

Figure 1. Audio core software control register.

The activate signal turns the channel on or off. The note signal is a four-bit signal fed to a

frequency decoder module, which decodes the note into one of 16 different notes as a

frequency value. Octave shifting and vibrato are accomplished in separate modules taking the

frequency value as input. The Volume is a 20-bit signal that is attenuation rather than

amplification. Signals about to be output the AC97 chip are shifted (divided) by the amount

specified in Volume. Bits 30 to 24 are unused. A diagram of the audio core is provided in Figure

2 below.

The top-level file is audio.v. Module processing.v houses all of the audio processing steps. The

frequency_decoder module takes as input the Notes signal from the control registers and

translates this into one of 16 distinct notes, as a period in clock cycles. The module outputs two

signals, one for the left channel and one for the right channel. These are then fed into

octave_shift.v, which, if LOctave or ROctave is high, will divide the periods so that the

frequencies are shifted into the next octave range.

In vibrato_generator.v, if Lvibrato or Rvibrato is high, the corresponding right or left channel

signal will be varied slightly in frequency to simulate a vibrato. This is accomplished by using a

generating a PWM signal of a period of 20 million clock cycles and amplitude 3500. This is

added to the incoming frequency value, essentially compressing and stretching the sine wave

periodically to simulate a vibrato.

Page 7

Figure 2. A diagram of the custom audio core.

 The final frequency value is fed into pcm_generator.v, which generates the actual sine wave. It

is here that the activate signals from the control registers decide whether or not the sound in

either channel is to be played. If it is, the signal is attenuated by dividing (shifting) by the

amount specified in the Volume portion of the control registers. So, a volume input of zero

means full volume.

The audio_sys.v module provides a low level interface to the AC97 chip. The team acquired this

module from Embedded Computing [1]. It takes several inputs and outputs that are board level

connections, shown in the constraints file (system.ucf, shown in Appendix B). The other two

Page 8

inputs are the two channels, which are fed the 20-bit leftout and rightout signals generated by

processing.v.

3.3.2 – Sine Wave Generator

The pcm_generator module warrants some additional explanation. A discrete sine wave is

generated to do away with a simple PWM signal for sound output. A PWM is sharp and rather

annoying, while a sine wave is smoother and more pleasing to the ear. In order to generate a

continuous signal, 32 data points were calculated and hard coded into the system, with a

maximum value of 524287. This value is half of the maximum value accepted by the AC97 core

(a 20 bit signal). Since all values need to be positive for the AC97 chip, the sine wave is given a

DC offset of 524287 before being fed into the AC97 chip after volume control.

3.4 – Microblaze
An instantiation of the MicroBlaze v7.10d core from the Xilinx IP library.

3.5 – Video Out
An instantiation of the XPS TFT v1.00a core from the Xilinx IP library.

3.6 – Local Memory Bus and LMB Control Blocks
Instantiations of the Local Memory Bus (LMB) 1.0 v1.00a core and the LMB BRAM Controller

v2.10a from the Xilinx IP library.

3.7 – Processor Local Bus Cores
Instantiations of the Processor Local Bus (PLB) 4.6 v1.03a core from the Xilinx IP library.

3.8 – DDR SDRAM Multi-Ported Memory Controller
An instantiation of the Multi-Port Memory Controller (DDR/DDR2/SDRAM) v4.03a core from

the Xilinx IP library.

3.9 – General Purpose IO
Instantiations of the XPS General Purpose IO v1.00a core from the Xilinx IP library. Since the

audio core is not itself a PLB peripheral, it is connected to the MicroBlaze through a GPIO.

3.10 – UART
An instantiation of the XPS UART (Lite) v1.00a from the Xilinx IP library.

Page 9

3.11 – Software
The software which runs the system is composed of an initialization section at the beginning for

the video decoder and GPIO. Once initialization is complete, the program enters a loop where it

acquires the coordinates of the tracked points from memory. One of these sets of points is

passed to a function which calculates an angle formed by them, and writes to the GPIO to

control the audio core to produce a musical note corresponding to the angle. If the two points

are detected to be in close proximity to each other, then it is likely that in fact only point of the

LEDs is being detected, and so the audio is turned off.

The other set of points is used in one of two different ways. To act as a trombone like

instrument, the distance between the points is calculated, and a tone is generated based on

this distance. In the other case, the points act as a guitar – in this case, the tone is determined

by the horizontal distance between the points, but a tone is only generated if one of the points

is detected to have moved above or below the other, simulating the strumming action of

playing a guitar. This is done by toggling a variable which keeps track of whether the last ‘strum’

was up or down. The duration of the tone is implemented using a decrementing counter, which

is reset to a default value each time a strum is detected.

Primarily for debugging purposes, the software writes over the video frame data in memory in

order to add small coloured crosshairs at the points which it is detecting.

Page 10

Appendix A – System Block Diagram

Page 11

Appendix B – Audio Core Constrains from system.ucf
##audiocore outputs to ac97 chip
NET "audio_0_ac97_sdata_out_pin" LOC = "E8";
NET "audio_0_ac97_sdata_in_pin" LOC = "E9";
NET "audio_0_ac97_synch_pin" LOC = "F7";
NET "audio_0_ac97_bit_clock_pin" LOC = "F8";
NET "audio_0_audio_reset_b_pin" LOC = "E6";
NET "audio_0_ac97_sdata_out_pin" IOSTANDARD = LVTTL;
NET "audio_0_ac97_sdata_in_pin" IOSTANDARD = LVTTL;
NET "audio_0_ac97_synch_pin" IOSTANDARD = LVTTL;
NET "audio_0_ac97_bit_clock_pin" IOSTANDARD = LVTTL;
NET "audio_0_audio_reset_b_pin" IOSTANDARD = LVTTL;
NET "audio_0_ac97_sdata_out_pin" DRIVE = 8;
NET "audio_0_ac97_synch_pin" DRIVE = 8;
NET "audio_0_audio_reset_b_pin" DRIVE = 8;
NET "audio_0_ac97_sdata_out_pin" SLEW = SLOW;
NET "audio_0_ac97_synch_pin" SLEW = SLOW;
NET "audio_0_audio_reset_b_pin" SLEW = SLOW;

##audiocore connections to DIP switches for vibrato and octave control
NET audio_0_LVibAct_pin LOC=AC11;
NET audio_0_LVibAct_pin IOSTANDARD = LVCMOS25;
NET audio_0_LOctave_pin LOC=AD11;
NET audio_0_LOctave_pin IOSTANDARD = LVCMOS25;
NET audio_0_RVibAct_pin LOC=AF8;
NET audio_0_RVibAct_pin IOSTANDARD = LVCMOS25;
NET audio_0_ROctave_pin LOC=AF9;
NET audio_0_ROctave_pin IOSTANDARD = LVCMOS25;

Page 12

Resources
1. Embedded Computing – Audio Core:

http://embedded.olin.edu/xilinx_docs/projects/audio-v2p.php

2. “Virtual Pong” Documentation:

http://www.eecg.toronto.edu/~pc/courses/432/2010/projects/virtualpong.pdf

