

University of Toronto

4/4/2011

ECE352 Digital Systems Design

Final Group Report

Project Title: Interactive Snake Game

Designers: Tang Tang

 Qiwei Wang

 Lei Wu:

Supervisor: Professor Paul Chow

Project Name: Interactive Snake Game ECE532 Digital Systems Design Final Group Report

University of Toronto, 2011 Date: 4/4/2011
Designers: Tang Tang, Qiwei Wang, Lei Wu

 i

Table of Contents
1. Overview ... 1

1.1. Goals and Motivation .. 1

1.2. Background ... 1

1.3. Description of Project ... 1

1.4. Block Diagram ... 2

1.5. Description of IP Cores and Devices ... 2

2. Outcome ... 3

2.1. Review of Original Goals ... 3

2.2. Review of Work Schedule ... 4

2.3. Final Product ... 6

2.4. Future Improvements ... 6

3. Description of Blocks ... 6

3.1. MicroBlaze Soft Processor (Software) .. 6

3.1.1. Overview ... 6

3.1.2. Shape/text Drawing .. 7

3.1.3. Execution of Game Logic ... 8

3.1.4. Interaction with the beacon detection module .. 9

3.1.5. Interaction with Timer and Interrupt Controller .. 11

3.1.6. Interaction with Sound Module .. 11

3.2. Video_to_ram ... 11

3.3. TFT Controller .. 11

3.4. MPMC & DDR Memory ... 11

3.5. PLB Bus Interface of Custom IP ... 12

3.6. Colour Detection Module ... 13

3.7. Audio Module ... 14

4. Description of Design Tree .. 14

5. Tips and Tricks ... 15

6. Conclusion ... 16

7. References .. 16

Project Name: Interactive Snake Game ECE532 Digital Systems Design Final Group Report

University of Toronto, 2011 Date: 4/4/2011
Designers: Tang Tang, Qiwei Wang, Lei Wu

 1

1. Overview

1.1. Goals and Motivation
Being the generation growing up with electrical engineering wonders such as TVs and Internet, we

have had video games being part of our lives for years. While most titles have passed by without

leaving any traces in our memories, some of the games are simply too classical to be forgotten.

Inspired by the recent uprising of motion controlled gaming, our group decided to reproduce one

classic game, Snake, with real-time motion detection as controller on Xilinx XUP Virtex II Pro

Development Board with video decoder peripheral from Digilent. [1]

This document serves as a collective documentation to our design, providing all technical

information required to understand, modify, and/or maintain it. The structure of this document

follows strictly the requirements provide by Professor Chow on the course website for ECE532:

Digital Systems Design [2].

1.2. Background
Snake is a classic single player game. In the game, the player controls a long, thin creature,

resembling a snake, to roam around a bordered plane picking up food. Each time the snake eats a

piece of food, its tail grows longer. The game ends whenever the snake’s head hits the border or

itself.

Figure 1: Pictures showing a classical Snake game interface

1.3. Description of Project
In this project, our group plans to recreate this game with added features. Our goal is to have the

player hold and move a physical object (acting as a beacon) to attract the movement of the virtual

snake, which is being projected onto a screen. The beacon used in our project is a single red light

emitting diode (LED) at the tip of an extension rod. The goal of the player is to physically move the

beacon to different positions in front of the screen to guide the snake to its food, while at the same

time avoid having the snake hitting itself or the screen border.

Project Name: Interactive Snake Game ECE532 Digital Systems Design Final Group Report

University of Toronto, 2011 Date: 4/4/2011
Designers: Tang Tang, Qiwei Wang, Lei Wu

 2

1.4. Block Diagram

Video
Decoder

Chip

Video To
Ram

Video_Out
(xps_tft)

 MicroBlaze

Beacon
Location
Detector

Memory Controller

Memory (DDR)

PLB

C
o

m
p

o
si

te
 V

id
eo

PLB

BRAM
data

BRAM
instr

LMB LMB

SV
G

A

GPIO

Custom Logic
+ Audio Codec

Sp
ea

ke
r

Legend

Custom IP

Existing IP

PLB PLB

UART
(Debugging)

GPIO to push button

Figure 2: Block diagram showing the high-level design entries and interconnections

1.5. Description of IP Cores and Devices
The following table provides a summary of all IP cores and peripheral devices used in our project.

Table 1: Summary of IP cores and devices

Block Function Origin
IP cores inside the FPGA

video_to_ram Stores digital video signal into DDR-SDRAM
through MPMC

Obtained from
course discussion
board

detector Reads video frames from memory, processes the
colour of each pixel to identify the location of
beacon, and writes the location into the memory

Group

Microblaze +
dlmb and ilmb

Processor core for setting up video_to_ram IP and
audio IP, storing game logic, and drawing the game

Xilinx IP

PLB_bus Four PLB buses are used:
1. Used by microblaze to talk to IIC, XGpio, and
memory
2. Used between video_to_ram and memory
3. Used between detector and memory
4. Used between TFT and memory

Xilinx IP

TFT_controller Reads a video frame from memory and sends to
the monitor to be displayed

Xilinx IP

MPMC_controller Multiport memory controller that regulates
memory read/write operations

Xilinx IP

Project Name: Interactive Snake Game ECE532 Digital Systems Design Final Group Report

University of Toronto, 2011 Date: 4/4/2011
Designers: Tang Tang, Qiwei Wang, Lei Wu

 3

XGpio Configures the tone_gen audio core, and adds a
hardware resets to the game

Xilinx IP

IIC Configures the video decoder Xilinx IP

Timer Controls the rate at which the snake moves Xilinx IP

Interrupt Handler Handles the interrupt request from the timer Xilinx IP

tone_gen Receives audio commands from Microblaze
through 8 parallel GPIOs (2 Audio Channels, 4
GIPOs each) and generates sound

Past Project 2010:
Human Pong

Devices outside the FPGA

DDR memory The memory stores the incoming video frame,
output video frame, and beacon location

Given

Video Camera Captures the video and outputs to the video
decode chip

Group

VGA Output video Given

Video Decode
chip

Converts the frame by frame composite video
signal captured by the camera into digital signal.
Digital signal is then fed to the video_to_ram IP
block

Given

Speakers Output audio Given

2. Outcome

2.1. Review of Original Goals
All primary design goals proposed in the proposal have been met by the time this document is

constructed. These include:

1) Basic game rules including movement of snake, scoring condition and representation (snake

growth), and game over condition detection;

2) Real-time detection and tracking of the beacon;

3) Real-time projection of snake body;

4) “Game Start” and “Game Over” screens;

5) Maintaining an acceptable frame rate so that the game is playable.

Most of the optional goals are also met. These include:

1) Detection of screen size, calibration of the system for beacon location detection;

2) Video effects, including colour and shaping of objects on screen (snake, scoring object, beacon,

screen borders, etc.)

3) Sound effects for events in game such as game start, scoring, and game over;

4) Increasing game difficulty: for every 3 scores the movement speed of snake increases by

approximately 10%;

Some optional goals are modified and/or not implemented in the current version of the system.

These include:

Project Name: Interactive Snake Game ECE532 Digital Systems Design Final Group Report

University of Toronto, 2011 Date: 4/4/2011
Designers: Tang Tang, Qiwei Wang, Lei Wu

 4

1) Additional obstacles on screen for increased difficulty: this was not implemented because during

our testing, we found the game actually quite challenging due to the real-time tracking of

beacon as well as the ability for snake make turns of arbitrary angles. Therefore there is no need

to increase the difficulty even further by placing additional obstacles on screen;

2) Difficulty level selection menu at game start screen: this was not implemented because we

found the game challenging enough by gradually increasing snake’s length as well as movement

speed, and therefore there is no need to increase the difficulty of the game further at the

beginning of each game play;

3) Numerical displaying of scoring: this was not implemented because the player’s score was

shown directly through the length of the snake: the longer the snake, the higher the score. And

there is no need to provide additional indicator of player’s score;

4) Automatic pause/resume when beacon is not detected: instead of automatic pause/resume, we

changed the rule so that if beacon suddenly disappears, the last detected beacon location is

recorded as the direction towards which snake moves. And when snake head hit the recorded

location, it stops moving, effectively pausing the game. The modification is much easier to

implement and debug because it does not require any interrupt handling from the video

processing blocks.

In conclusion, our project shows positive result in terms of meeting initial design goals: most of the

features important to game play are implemented and fully tested.

2.2. Review of Work Schedule
Throughout the development of the project, our group was able to track our initial weekly

milestones fairly well: before reading week we were even slightly ahead of the schedules on both

hardware and software. During the reading week, our progress was delayed due to an unforeseen

bug in the initialization code of the video block: in our downloaded version the address of video-to-

ram block configuration bits were not set correctly, and we were unable to test our beacon location

detection module until the problem was solved. Also we had some delay in figuring out the PLB

protocol, which collectively delayed our progress by one and a half weeks after the reading week.

After coming back from the break, we consulted the TAs actively, and slightly updated our

milestones according to the situation. Eventually because 1) we put enough buffers in the original

schedule, and 2) 2 other group members worked in parallel on other parts of the design to

compensate for the delay while 1 member debugged the problem, we were able to catch up with

the schedule by the week before demonstration.

Table 2 below provides a summary of proposed milestone and what was actually achieved at each

checkpoint:

Table 2: Comparison of proposed milestone and actual weekly progress

Dates Proposed Weekly Milestones Actual Progress
Feb. 2, 2011 Lab Test. Lab Test.

Feb. 9, 2011 VGA video output module completed, able to
output coloured screen to monitor; Basic

VGA video output module completed,
able to output coloured screen to

Project Name: Interactive Snake Game ECE532 Digital Systems Design Final Group Report

University of Toronto, 2011 Date: 4/4/2011
Designers: Tang Tang, Qiwei Wang, Lei Wu

 5

functions of memory controller (MPMC)
modules completed and tested, able to
read/write data from MicroBlaze processor.

monitor; Basic functions of memory
controller (MPMC) modules completed
and tested, able to read/write data
from MicroBlaze processor. Able to
load data from PC to on-board
memory.

Feb. 16,
2011

Able to load data from PC to on-board
memory, implemented “Game Start” and
“Game Over” screens; Start working on Video
Decoding module and Video to Ram custom
logic.

Implemented “Game Start” and “Game
Over” screens on development board;
start working on Video Decoding
module and Video to Ram custom
logic; Able to store captured frames to
memory with 2 channels going parallel
for read and write; display captured
frame on VGA output, i.e. show what’s
captured by camera on monitor.

Feb. 23,
2011

(Reading week) (Reading week)

Mar. 2, 2011 Able to store captured frames to memory with
2 channels going parallel for read and write;
display captured frame on VGA output, i.e.
show what’s captured by camera on monitor;
Beacon Location Detection module
completed; able to display location of beacon
on VGA output; Start C program for snake
game on PC.

Working on beacon location detector;
started C program for snake game on
PC; a simulation of snake game on PC is
playable using OpenGL.

Mar. 9, 2011 A preliminary game, “Game Start” screen -> a
moving snake -> “Game Over” screen, is
playable; able to detect game-over condition
(snake head hits screen border or hits other
parts of the snake).

Working on beacon location detector;
debugging and improved features of
snake game on PC simulation, including
some optional features such as scoring
and increasing snake moving speed.

Mar. 16,
2011

Audio Codec module completed and tested;
able to load sound data to memory and play
it; audio effects added to the game.

Beacon Location Detection module
completed; able to display location of
beacon on VGA output; a basic snake
game playable implemented and
tested.

Mar. 23,
2011

Optional features such as auto calibration
(software), multiple difficulty levels (snake
moving speed and/or obstacles on map),
game pause and resume (game pause and
display pause message if cannot find beacon
on screen; game resumes when beacon is
back) are added to the game; a working game
with some bugs is completed.

Audio Codec module completed and
tested; audio effects added to the
game; started other optional features
such as auto calibration; improved UI; a
working game with some bugs is
completed.

Mar. 30,
2011

ECE Design Fair; All features completed and
tested by now. The rest of the term is for
additional bug fixes and report writing.

All primary features and most optional
features completed and tested.

Apr. 4, 2011 Individual and group reports due. Individual and group reports due.

Apr. 6, 2011 Final demonstration. Final demonstration.

Project Name: Interactive Snake Game ECE532 Digital Systems Design Final Group Report

University of Toronto, 2011 Date: 4/4/2011
Designers: Tang Tang, Qiwei Wang, Lei Wu

 6

2.3. Final Product
In the end, our system turned out to be quite successful. The game is highly playable with only minor

glitches. The game is quite fun to play especially during later stages of a game – when the snake

becomes long and its movement becomes fast.

2.4. Future Improvements
There are quite a number of things that the system could improve upon.

First, currently, there is a visible lag in the beacon detection process. This drawback reduces the

playability of the game somewhat. This is certainly one area that we could improve upon. In addition,

the current beacon is a LED attached to a stick, in the future, we could replace the beacon from a

LED to a laser pointer, where laser pointer location would represent the beacon location. In that

case, the playability of the game should also increase.

The game is currently very rudimentary; there are many additional features that could be added.

Additional features could include: adding obstacles to the canvas to make the game harder, playing

music throughout the game instead of just at game start and game end, allow user to choose

different difficulty levels, etc.

In addition, the graphical user interface can be improved, showing specific instruction and directions

to aid player during the game play. Additional video effects such as background picture for game

board can also be considered.

Last but not least, one interesting feature worth exploring could be making this game multiplayer.

After all, the regular version is mostly single player because there is only one keyboard. Now after

we have made this game interactive, there is no reason why we should limit this game to single

player. We can foresee that it would be very interesting to see several snakes all chasing toward one

food. That would also make the game much more challenging and playable.

If we were to start the project over again, we would implement a different audio module. Currently

the CPU stalls when sound effect is playing because the audio module is in the same thread as the

main game, and the implementation does not include buffer to store sound data to be played. This

also made adding background music to the game impossible. A new module including FIFO buffers

storing instructions to AC’97 audio codec is certainly a plus we would like to see.

3. Description of Blocks

All descriptions provided below are based on documentations of Xilinx EDK/ISE and IP cores of

related blocks. For more information please refer to [3] and [4].

3.1. MicroBlaze Soft Processor (Software)

3.1.1. Overview
The MicroBlaze is a built-in soft processor that was created for use in the FPGA by Xilinx. The

processor is automatically included when we start a project in EDK. It is capable of executing C code.

Project Name: Interactive Snake Game ECE532 Digital Systems Design Final Group Report

University of Toronto, 2011 Date: 4/4/2011
Designers: Tang Tang, Qiwei Wang, Lei Wu

 7

Due to the nature of this project (an interactive game), we relied on MicroBlaze for many of the core

functionalities: including but not limited to:

1) Shape/text drawing;

2) Execution of game logic;

3) Interaction with the beacon detection module;

4) Interaction with the interrupt controller;

5) Interaction with the sound module.

3.1.2. Shape/text Drawing
In this project, we have set the TFT controller to read a predefined chunk of memory in DDR for

display to an external monitor. Each word within this chunk of memory defines the RGB colour of a

pixel. As a result, it is possible for us to directly alter the image to be displayed through software by

writing specific values to words at those particular memory addresses.

At the most fundamental level, we have created an API function write_pixel() which allows the rest

of the program to draw any colour at where on screen. write_pixel() is the function for which all

other drawing functions will invoke.

Clearing Screen

Clearing screen invokes write_pixel(), and the screen is cleared by drawing a white pixel at every

point on screen.

Draw Line

Bresenham’s line algorithm was used to draw a line of any orientation. Detailed description of this

algorithm can be found here: [5].

Draw Rectangle

DrawRectangle function is used to create the border in the snake game. This function invokes

DrawLine function four times, once for drawing each edge of the rectangle.

Draw Circle

Midpoint circle algorithm was used to draw a solid circle. Detailed description of this algorithm can

be found here: [6].

Draw Letter

Similar to drawing of rectangles, letters are drawn by repeatedly invoking DrawLine function, once

for each edge of a letter. Since letters only need to be displayed during game start and game over

screen, only a subset of letters (letters belonging to “GAME START” and “GAME OVER”) need to be

drawn, as a result, the program is capable of drawing only {S, T, A, R, G, M, E, O, V,}. These functions

are robust in that width and size of the letter can be arbitrary.

Draw the Snake

The snake is represented using a linked list. Each element in this linked list represents a segment of

the snake’s body. Each element contains information about the current location of the segment, as

well as pointers to the next element and the last element.

Project Name: Interactive Snake Game ECE532 Digital Systems Design Final Group Report

University of Toronto, 2011 Date: 4/4/2011
Designers: Tang Tang, Qiwei Wang, Lei Wu

 8

To make the snake move, location of the head (the first element in the linked list) changes, and then

locations of all the remaining elements will inherit locations of previous element in the linked list.

To make the snake eat, a new element is added to the beginning of the linked list, making it the new

head element.

Drawing the snake is simple. The drawing algorithm goes through all elements of the linked list in

order and draws a circle at the correct location for each segment of the snake’s body. Together

those circles make up the entire snake.

3.1.3. Execution of Game Logic

Snake Move

In contract to the regular snake game, in our implementation, besides moving horizontally and

vertically, the snake could also move in any direction. To attain that effect, the following algorithm

was implemented.

Figure 3: Diagram showing snake movement algorithm

Suppose the snake wants to move toward the beacon as shown in the above figure. And suppose

that we would want the snake to move an increment of dh=10 at a time in that direction. We can

calculate the new head location (x0’, y0’) through the following way.

Given beacon location (x1,y1) and snake head location (x0,y0), we can calculate {h,x,y} as shown in

the diagram. Then from similar triangles, we can find that the value of dx and dy are:

From there, we can calculate (x0’, y0’)

Project Name: Interactive Snake Game ECE532 Digital Systems Design Final Group Report

University of Toronto, 2011 Date: 4/4/2011
Designers: Tang Tang, Qiwei Wang, Lei Wu

 9

Food Generation

A food, represented by a green circle is generated randomly on screen. This algorithm is reinvoked

once the snake has succeeded in eating the current food.

Food Detection

There are two global variables (storing values of (x,y)) keeping track the location of the current food.

As the snake moves, the program detects whether the food is directly in front of the snake by

comparing the location of the head with location of the food. If it is, the food is considered to be

eaten. The current food will be erased and a new food will be generated.

Game-over Condition Detection

The game ends whenever the snake hits the border or itself. The program detects game over

condition by checking whether any pixel directly in front of the snake is blue since the both the

border and the snake are blue coloured.

3.1.4. Interaction with the beacon detection module

Detection

The program needs to know the location of the beacon in order to guide the movement of the snake.

The beacon detection module continuously calculates three values:

1) The sum of x coordinates of all possible beacon locations. (x_sum)

2) The sum of y coordinates of all possible beacon locations. (y_sum)

3) The number of the possible beacon locations. (count)

For details of how those values are obtained, please refer to the description of the colour detection

algorithm presented in sections that follow.

From software perspective, the location of the beacon (x,y) can be calculated:

Calibration

The location of the beacon calculated above represents a location in the camera’s frame. In order to

make the snake move toward the beacon precisely, we need to transform that location into the

screen frame.

Project Name: Interactive Snake Game ECE532 Digital Systems Design Final Group Report

University of Toronto, 2011 Date: 4/4/2011
Designers: Tang Tang, Qiwei Wang, Lei Wu

 10

Figure 4: diagram showing the frame structure during calibration

For example, in the above figure, given the location of the beacon in the camera frame (ub, vb), we

need to transform it into the correct location in the screen frame (xb,yb).

To do that, we need to first identify the transformation matrix. Before the game is playable, the

program will first calibrate itself by displaying four red circles, as shown below. Since the program

already knows the (x,y) coordinates of those red circles and the program is able to obtain the (u,v)

locations of those circles through the beacon detection module, we could obtain four (u,v) < -> (x,y)

pairs to build the transformation matrix.

Figure 5: diagram showing the calibration algorithm

Project Name: Interactive Snake Game ECE532 Digital Systems Design Final Group Report

University of Toronto, 2011 Date: 4/4/2011
Designers: Tang Tang, Qiwei Wang, Lei Wu

 11

From those pairs, we can calculate, {dx,dy} and {du,dv}. Then given a point (u,v) in the camera frame,

we can calculate its location (x,y) in the screen frame through the following transformation.

3.1.5. Interaction with Timer and Interrupt Controller
To make the playing experience consistent, we need to implement a reliable delay function. The

delay function was used partially to dictate the difficulty of the game. For example, the delay

function was used to vary the speed at which the snake would move. Interrupt was used to achieve

this purpose. Once invoked, the delay function starts an interrupt and then keeps polling on a global

variable that the interrupt handling routine will update. Once a time is reached, delay function is

exited.

3.1.6. Interaction with Sound Module
Audio APIs are called when a sound effect needs to be played. CPU gives tone information, i.e. pitch

and length of the note, to the sound module, which then creates the waveform and gives commands

to the AC’97 decoder block. For more information please refer to the description of the sound

module.

3.2. Video_to_ram
The video_to_ram IP block was obtained from the course discussion board. This block stores digital

video signal into the memory, and in our project, memory location 0x40000000 - 0x401FFFFF with

frame size of 1024 x 512, with valid pixel data frame size of 640 x 480.

3.3. TFT Controller
The XPS TFT controller is an IP block in the Xilinx IP library. It acts as the PLB master of one PLB bus

that is connected to the MPMC. It reads the video data from a range of memory locations, and in our

project, the base address is 0x41000000. It then converts these video data to VGA compatible data

that is available to display on the monitor. It also acts as a slave to the MicroBlaze, the processor

could change the base memory location that the TFT controller displays by writing to a slave register.

This speeds up the debugging process as we can either display our game or the captured video by

writing to a slave register in the XMD stub.

3.4. MPMC & DDR Memory
The MPMC (multi-port memory controller) is an IP block in the Xilinx IP library. It allows up to 8

buses to be connected to the same memory through different ports. In this project, we used a total

of 4 ports in the MPMC:

Port 0: used by the Microblaze to write hardware configurations and read important slave registers
Port 1: used by the video_to_ram IP block to write video frame to the memory.
Port 2: used by the TFT controller to display the video frame to the monitor by reading from the
memory.

Project Name: Interactive Snake Game ECE532 Digital Systems Design Final Group Report

University of Toronto, 2011 Date: 4/4/2011
Designers: Tang Tang, Qiwei Wang, Lei Wu

 12

Port 3: used by the detector (custom IP) to read incoming video frame and colour bound
configurations, and write detector location to the memory.

3.5. PLB Bus Interface of Custom IP
The custom IP uses the PLB bus to communicate with the MPMC. To ensure the correct functionality

of the custom IP, it has to be able to do both write and read operations to the memory. Two

separate finite state machines (FSM) are implemented: write FSM and read FSM. The state diagrams

for both write and read FSM are shown below. The state diagrams were created with reference for

PLB bus write and read timing diagrams shown in [7] and [8]. All states will return to the INIT state

upon system reset, which is not shown for neatness reasons. Two FSM will not request to access the

memory at the same time because of the register r_nw. A post-processing state is added after the

read complete state to update the custom logic's internal registers.

R_INIT

This is the state coming out
of system reset

R_READ_REQUEST

Issues write request to the
PLB

R_READ

Waits for the write complete
signal from the PLB

R_READ_COMPLETE

Write is completed, issues
another write only under

specific conditions

MPMC_Done_init = 1

i_S1_addrAck = 1 and
i_PLB_PAValid = 1

i_PLB_MRdDAck = 1

R_POST_READ_PROCESS
Write is completed, issues
another write only under

specific conditions

r_nw = 1

always

i_S1_addrAck = 0 or
i_PLB_PAValid = 0

i_PLB_MRdDAck = 0

r_nw = 0

MPMC_Done_init = 0

READ FSM

Figure 6: Read FSM state transition diagram for PLB bus interface

Project Name: Interactive Snake Game ECE532 Digital Systems Design Final Group Report

University of Toronto, 2011 Date: 4/4/2011
Designers: Tang Tang, Qiwei Wang, Lei Wu

 13

S_INIT

This is the state coming out
of system reset

S_WRITE_REQUEST

Issues write request to the
PLB

S_WRITE

Waits for the write complete
signal from the PLB

S_WRITE_COMPLETE

Write is completed, issues
another write only under

specific conditions

MPMC_Done_init = 1

i_S1_addrAck = 1 and
i_PLB_PAValid = 1

i_S1_wrComp = 1

r_nw = 0

i_S1_addrAck = 0 or
i_PLB_PAValid = 0

i_S1_wrComp = 0
r_nw = 1

MPMC_Done_init = 0

WRITE FSM

Figure 7: Write FSM state transition diagram for PLB bus interface

3.6. Colour Detection Module
Since the CPU requires only three values (sum of x-coordinates, sum of y-coordinates, and number

of points on the frame) at a slow refresh rate (maximum once per frame, or approximately 10

frames-per-second), the colour detection module can be implemented quite easily. The module

basically scans through the frame data provided by video-to-ram module, and counts how many

points fall within the colour range specified, while recording the x-coordinate and y-coordinate of

the points.

Specifically, the flow of the algorithm can be described as below:

1) Starting at the first pixel of the video-to-ram, initialize all register variables, which includes the 3

output values, as well as all the state-related variables;

2) Read from memory the colour upper bound and colour lower bound of the pixels to be detected.

This operation is performed once at the beginning of every frame processed to enable detection

of different colours in software, as well as to avoid confusion in cases the boundary values are

changed in the middle of a frame;

3) For all pixels in the range of video-to-ram output addresses, determine first if the pixel is a valid

pixel representing contents captured by camera. Then determine whether all three colours (red

green and blue) fall within the range specified by the colour upper bound and colour lower

bound. If so, increment pixel_count, add the current x-coordinate value to the x_cord_sum and

the current y-coordinate value to the y_cord_sum;

4) When it reaches the end of video-to-ram output range, the colour detection module outputs

three data: x_cord_sum, y_cord_sum, and pixel_count to memory location 0x49210000,

Project Name: Interactive Snake Game ECE532 Digital Systems Design Final Group Report

University of Toronto, 2011 Date: 4/4/2011
Designers: Tang Tang, Qiwei Wang, Lei Wu

 14

0x49210004, and 0x49210008 respectively. The addresses were picked arbitrarily in the unused

address range in the memory;

5) Return to the first pixel, loop back to 1).

Margin on valid pixel range to avoid noises

When determining whether a specific pixel falls within the range of valid pixels from camera, we give

some extra margin in addition to the 640-by-480 range. Specifically we count only the 630-by-470

block of pixels in the middle of each frame, throwing out 5 pixels along each screen edge. The reason

was because we observed black pixels (0x0) and sometimes even random noises along the edges

inside the frame. If the noise happens to fall within the colour detection range, the algorithm would

yield incorrect results. Given that most of the time beacon will not be at the screen edges, we decide

to put a safety margin of 10 pixels on each coordinates to improve the system performance.

Colour replacement for debugging

Our module also has hard-coded colour replacement feature for debugging purposes: instead of

processing the pixels internally, we can configure the IP core to output all pixels read, with desired

beacon colours being replace by an arbitrary value. Because in the module we use only single-beat

read and write on PLB, the refresh rate can be significantly limited when performing such colour

replacement. However by directing the video output module to display the frame after colour

replacements, we can easily debug the system by seeing whether the desired the pixels are detected

and replaced. This feature requires one addition write to PLB after each read, and therefore is

turned off in our final product to increase the refresh rate of beacon location detection.

3.7. Audio Module
The audio module is ported directly from last year’s project: Human Pong [9]. Some modifications on

software were made for better integration with our system.

The module includes two main parts: controller, or the tune generator, and the AC’97 codec. An

example of AC’97 codec with documentation of the chip used on board can be found at [10]. The

controller is connected to MicroBlaze CPU through 8 parallel GPIOs for 2 audio channels, 4 signal

lines for each channel (32-bit tone period and duration, 1-bit begin and done pins). When receiving

data from the CPU, the controller averages (essentially, performs mixing of) data from the two

channels and produces a square waveform according to the tone periods and durations given. The

produced waveform is then fed into AC’97 codec to produce sound at the audio output of the

development board.

By using parallel GPIOs, driver implementation of the audio module becomes trivial: simply sending

data over GPIO with GPIO driver does the job. A wrapper function in C is written to simplify the

process of generating sound in software.

4. Description of Design Tree

This section illustrates the content of every folder that we have submitted regarding our project. A

README file has also been included at the top level of our directory for the same purpose.

Project Name: Interactive Snake Game ECE532 Digital Systems Design Final Group Report

University of Toronto, 2011 Date: 4/4/2011
Designers: Tang Tang, Qiwei Wang, Lei Wu

 15

Table 3: Description of design tree

Folder Name Description
System This folder contains the XPS project

Our custom pcores are stored in the directory \pcores
Our C code is stored in the directory \sw

Key files include:
1. detector.v - contains the code to perform read/write operations to the
PLB bus, and custom logic to identify the beacon location by the use of color
bounds of pixels.
--> \System\pcores\detector_v1_00_a\hdl\verilog\detector.v

2. video_setup.c - configures the video decode chip
--> \System\sw\video_setup.c

3. audio_setup.c - configures the audio hardware
--> \System\sw\ audio_setup.c

4. snake.c - contains the game logic
--> \System\sw\snake.c

5. draw.c - contains the functions to display the game by writing to memory
locations
--> \System\sw\ draw.c

6. main.c - all the above c files are copied to the main function to reduce
microblaze bram usage.
--> \System\sw\ main.c

Doc This folder includes all the documentations for our project

Project Proposal: Project_proposal.pdf
Group Report: Group_report.pdf
Power Point of our presentation - Final_Presentation.pdf

5. Tips and Tricks

One thing we found particularly helpful during our design procedure was that, by making copies of

each week’s working project, we were able to maintain a series of ready-to-demonstrate projects

with incremental progresses. This was helpful especially when something goes wrong during the

coming week’s development, because it is usually difficult, and sometimes even impossible to

completely revert a change in project settings and/or compilation options. For a few times our group

had to roll back the entire design to a previously functional block to proceed in a different direction.

This may not be a good source control practice, but we found it helpful for a relatively small project

like what we are doing here.

Project Name: Interactive Snake Game ECE532 Digital Systems Design Final Group Report

University of Toronto, 2011 Date: 4/4/2011
Designers: Tang Tang, Qiwei Wang, Lei Wu

 16

6. Conclusion

This document provides a comprehensive technical documentation to our group’s design

“Interactive Snake Game” for ECE532: Digital Systems Design. Most if not all details related to our

design including concepts, decisions, methods, etc. are described and explained. Based on these

discussions, we also made conclusion to our design in general as well as suggestions for future

improvements.

7. References

[1] Paul Chow. (2011, January) ECE532S: Digital Systems Design. [Online].

http://www.eecg.toronto.edu/~pc/courses/532/2011/

[2] ECE532 Digital Systems Design. (2011, January) ECE532S Project Demos and Reports.

[3] Xilinx, Inc. (2011, April) Xilinx.com. [Online]. http://www.xilinx.com/

[4] Xilinx, Inc. (2011, April) Xilinx XUPV2P Documentations. [Online].

http://www.xilinx.com/univ/xupv2p.html

[5] Wikipedia.org. (2011, April) Bresenham's Line ALgorithm. [Online].

http://en.wikipedia.org/wiki/Bresenham's_line_algorithm

[6] Wikipedia.org. (2011, April) Midpoint Circle Algorithm. [Online].

http://en.wikipedia.org/wiki/Midpoint_circle_algorithm

[7] IBM Corp. (2007, May) IBM 128-Bit Processor Local Bus Architecture Specifications Version 4.7.

[Online]. https://www-

01.ibm.com/chips/techlib/techlib.nsf/techdocs/3BBB27E5BCC165BA87256A2B0064FFB4/$file/Pl

bBus_as_01_pub.pdf

[8] Xilinx, Inc. (2010, December) Xilinx PLBV46 Master Burst (1.01a) Documentation. [Online].

http://www.xilinx.com/support/documentation/ip_documentation/plbv46_master_burst.pdf

[9] Chris Langan, Kevin Lam, and Nancy Chong. (2011, January) ECE532 Digital Systems Design Past

Projects. [Online]. http://www.eecg.toronto.edu/~pc/courses/532/2011/pastprojects.html

[10

]

Xilinx, Inc.; Eric Gallimore; Nathaniel Smith; Mark Chang. (2006, April) AC'97 Audio Codec

Controller for Digilent XUP-V2P. [Online]. http://embedded.olin.edu/xilinx_docs/projects/audio-

v2p.php

http://www.eecg.toronto.edu/~pc/courses/532/2011/
http://www.xilinx.com/
http://www.xilinx.com/univ/xupv2p.html
http://en.wikipedia.org/wiki/Bresenham's_line_algorithm
http://en.wikipedia.org/wiki/Midpoint_circle_algorithm
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/3BBB27E5BCC165BA87256A2B0064FFB4/$file/PlbBus_as_01_pub.pdf
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/3BBB27E5BCC165BA87256A2B0064FFB4/$file/PlbBus_as_01_pub.pdf
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/3BBB27E5BCC165BA87256A2B0064FFB4/$file/PlbBus_as_01_pub.pdf
http://www.xilinx.com/support/documentation/ip_documentation/plbv46_master_burst.pdf
http://www.eecg.toronto.edu/~pc/courses/532/2011/pastprojects.html
http://embedded.olin.edu/xilinx_docs/projects/audio-v2p.php
http://embedded.olin.edu/xilinx_docs/projects/audio-v2p.php

