ECE532 - Digital Systems Design Winter

2011 Wild West

Final Report

Linghan Li
Mengting Xie

Srinivasan Kidambi -

Table of contents

1 Project OVErVIEW ..cciuuiiiieiiieiiiieiiieiiieiiesioiescistossscsestosssosssssessossssssssosssssssssnnses 3
1.1 Project Back@round......c.coveiiiniiiiiiiiniiiiiiiieiiiiiiiieieieriisstesstcsssosascsnsssssosnsssnes 3
D 7 g 1) o A 3
1.3 BIloCK DIQ@ramcovuiiiniiiiiiiiiiiiniiiniiiieiiieteisisiercsnsssstossssssssossscsssssnssssnsssnnss 5
1.3.1 Control FIow Diagramcccceiiiiiiniiiiiiiiiiiiiiiiiiiiiiiiieieieicisstesstcesssnssonsonn 5
1.3.2 System BIocK Diagramccoeveiiiniiiiniiiniiiiiiiiniiierieiatciesssssrossscsssossscsnsscnnss 6
1.4 Description Of IPS ..c.cviiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitiiieitieteintstsiesnsssnssosnscsnssan 7
7200 1 1) T 8
BFULUIe WOrK c.vvuuiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiiiittittieeiieetetiatesessscssccsscsasessennes 8
4 BIOCK DeSCripPtiOnS ..cueiiieiiiiiiieiiiieiiietiieiiesteeeressteesscsessssssosssssessosssssssscssscsnsns 9
4.1 MicroBlaze Processor ...c.ccccceiieiiiiiieiieiiiiiieiieiiieiieiieteieciacieeciesisccssssscenccnsen 9
4.1.1 Main functionscoceiieiiiiiiiiiiiiiiieiieiiiiiietieeiietiecieetisciacenecsasenscnsnne 9
4.1.2 Graphic Drawer Alorithmcccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiciieiennnens 10
4.2 PoSItion Detectorccceiieiiiiiiiiiiieiiiiiieiieiiietietieiiecieteteratesccssssscssscsscsnsenaee 10
4.3 Video t0 RAM ..ciiiiiiiiiiiiiiiiiiiiiiiiiiiiitiiiiietietiieciateseesassscessssscssccsscsssesscnssanes 13
R\ 7 1 7 13
R @ 0 T 0 13
T N 11 41 e 13
4.7 Debug MOAUIE ...ccuviiiniiiiiiiniiiiiiiiiiiiiiiieiiieitiietiestetesssessoesscsssssstossssssssosssones 14

S Appendixe

5.1 Zip File DIFreCtOrY .uceueiiiniiineiiiniiieiiieteinreistessssssssesssosssssssossssssssssnssssssssnsons

5.2 Reference

1. Project Overview

1.1 Project Background

The inspiration for our project is from the classic video game Outlaw on Atari 2600. In the game,
players shoot as cowboys against each other. Players fight on city streets crowded with wagons and

score hits to win.

1.2 Project Goal

Our team decided to implement the classic shooting video game on a Xilinx XUP Virtex-II Pro
Development System. In the game, players shoot at each other and score hits to win. Our vision is to
make this game very interactive and intuitive by allowing players to use their hand gestures as
weapons and hand motions to fire and move the guns on screen (Figure 1). Players hold their hands,
in front of a camera, in specially coloured gloves and perform a set of predefined hand gestures
intended for three types of guns (Figure 2). These hand gestures will be mapped, by our system, to
one of three guns supported in our game, and the image will be projected onto a screen. Also,
movements will be identified to allow players to move guns up and down, rotate the guns and fire the
guns on the screen. The coloured gloves facilitate the detection of location of gun as well as special
hand motions. Players should dodge each other’s bullets by moving their guns up and down and try
to score hits on the opponent. A Cannon digital camera was used to track positions of hands and

feed video stream into Diligent Video Decoder Board (VDECI).

Block diagrams of the control flow and all the components in our system can be found in the next

section.

Game Setup

Projector

o System

/Camem\

y 2 o

Figure 1 System Setup

Tiryger

s
T i)
e

Yoy mal

Figure 2 Hand Gestures to Detect

4

1.3 Block Diagram

1.3.1 Control Flow Diagram

Video In

——

Video Decoder

ﬂ

Video_to_Ram

Memory

II

>

XPS TFT

Memory Controller
(MPMC)
Position Game
>
Detector Controller

VGA

Outnnt

Custom

HavrAdwrara

Software

1.3.2 System Diagram

Video In

—

Video Decoder

Video_to_Ram

Memory

PLB

PLB

Memory Controller

(MPMC)

PLB

Position

Detector

XPS TFT

VGA

Output

PLB

Game

Controller

1.4 Description of IPs

This section provides a brief description of the components as appearing in the system block

diagram. Further details on the blocks in the System Diagram can be found in section 3.

Name

Function

Origin

Video Decoder

Digitizes video signal from camera and stores frames into
memory

Xilinx IP

Video_to_RAM

Convert the YCbCr video stream from VDEC1 to RGB then write
every frame into MPMC

Borrowed IP

Memory Controller | Provides multiple interfaces to memory from multiple sources. Xilinx IP
Needs 2 write ports for the Video Decoder and Game Controller,
2 read ports for the Position Locator and VGA output

Position Detector Locate coordinates with specified colour based on digitized video | Custom IP
frames in memory. Custom module implemented in hardware

Game Controller FSM for controlling overall game operations. Analyse the inputs Custom IP

(Microblaze) from position detector and update the game states accordingly

VGA Output Reads modified frames stored in memory by Game Controller Xilinx IP
module, outputs to screen. This is handled by the XPS TFT core

TFT Convert video frames from MPMC into video signals for VGA to Xilinx IP
output

PLB(plb_v46) Processor Local Bus used to interfaces to IP cores Xilinx

Debug Module Debug Module used to enable XMD Xilinx

XGpio (xps_gpio) Used to write and read signals Xilinx

Video Daugher Take video stream from camera Analog Device

Card

Video Camera Capture video of player hand movement

VGA monitor Display the game for players

[1C Xlinx

dlmb Data memory controller interfaced through Local Memory Bus Xilinx

ilmb Instruction memory controller interfaced through Local Memory | Xilinx

Bus

2 Outcome

The final result of our project is successful prototype. The project takes video steam from digital
camera and draw graphics to VGA output. The game starts with two guns appearing on the left and
right sides of screen respectively and 5 points for each player. The project is able to detect a red point
on the hand of one player and a blue point on the other player’s hand. The detected points are
analysed and used to update the locations of guns on the screen. Therefore the players are able to
control the movement of the guns. The detection of triggering are not accomplished due to lack of
time. The player moves the gun to avoid being shot. Failure to avoid collision between gun and

bullets leads to losing points. The first player who loses all 5 points loses the game.

Considering the ease of calculation and implementation, graphic controller was done in software as
part of game controller. However the reading from position detector is slower than the processing
rate of position detector therefore the coordinates of detected area have to be processed to average
value in position detector. A divider module is implemented to calculate the averaging in position

detector.

3 Future Work

In the future, the Video to Ram would be modified to convert YCbCr video stream to HSV which is
less sensitive to the brightness difference because in HSV colourspace saturation is ignored.
Therefore the colour values are not affected heavily by the environment. The position detector
would be able to identify more accurate coordinates instead of average coordinates. The accurate
coordinates could be used to detect the triggering hand gesture by checking if the two detected points
are close within certain threshold value. The detected triggering hand gesture enables players to have
more control of the gun and choose when to shoot the bullets instead of shooting them automatically

and continuously.

To make the game more interesting, one more point for each hand could be used to calculate the
angle of the gun. The angular orientation of the hand changes the bullet shooting direction. Also

obstacles could be added to the middle of two players to increase the difficulty of the game.

4 Block Descriptions

4.1 MicroBlaze Processor

MicroBlaze is a 32-bit soft-processor provided by Xilinx. It runs as the Game Controller of

the entire shooting game.

4.1.1 Main functions

The main functions of Game Controller are listed below.

* Setup and configure the VDEC by reading configuration constants and sending them to
VDEC

* Configure detection point colours which are read in position detection

* Initialize the UART and flush all the data in FIFO

* Initialize VGA output variables

* Draw the background of the game

* Draw and update gun positions

* Draw and update bullet locations

* Detect collision

* Draw and update scores

4.1.2 Graphic Drawer Algorithm

The main role of Game Controller is to analyse data from Position Detector and draw
corresponding output on the screen. Initially a graphic controller was designed in hardware to
draw images to VGA output. However, it was implemented in software due to consideration of
math calculations. It is difficult to implement math calculations in hardware due to unavailability
of IP’s such as the “Cordic” Math IP, Divider IP. Our project also requires similar math

calculations, such as trigonometry, to determine bullets’ paths.

Video output is stored in a separate memory location from the video input. At the start of the
game, the game controller draws a fixed background for the game and it’s maintained throughout
the game. For drawing shapes in game screen like the guns, bullets and alphabets, the
Bresenham’s Line-Drawing algorithm is used. During the game, game controller uses the inputs

from position detector to update the positions of guns.

A collision detection algorithm is developed to detect collision between gun and bullet by
looking for intersection between areas within gun and bullet. Then the game controller calculates
and updates the scores for two players on screen. When the game ends, the game controller draws

the end game screen.

4.2 Position Detector:

This custom hardware module processes video frames from memory and determines the
coordinates of special identification points on the glove. These coordinates are used by Game
Controller to determine the position. Figure 3 shows the interface of the Position Detector

module.

10

Position Detector
Inputs Outputs
—» System Clock

> System Reset PLB Bus

> MPMC_Doen_lInit

PLB Bus

Figure 3

The Position Detector module uses the standard 100MHz system clock and system reset. It waits
for the MPMC memory controller’s initialization before the MPMC Done_Init signal comes. Then
the video frame data can be read from memory through a PLB bus to MPMC. To reduce the
bandwidth of PLB bus to MPMC, a PLB bus is used to connect Position Detector to MicroBlaze

and software accessible slave registers are used:

* Frame base address

* Run signal

* Minimum and Maximum values of point 1 colour
* Minimum and Maximum values of point 2 colour

* Registers for debug purpose

11

Figure 4 shows the flow of Position Detector.

Add color Read video Calculate the Store average

Ranges for frames and average values in slave
. . > . >

each point find pixels coordinates registers

Figure 4: Flow Diagram of Position Detector

The algorithm used for Position Detector is to find all the pixels with colours within the specified

colour ranges in a frame and store the average coordinates of the pixels. Using the RGB colour

scheme, every colour detected has Red, Blue, Green components respectively. The specified colour

ranges and frame base address are repeatedly read from Microblaze through PLB bus. The pixel is

read from memory one by one via MPMC. Position Detector keeps track of the pixel position

within a frame which is needed for find out the coordinate of it. For each pixel its Red, Green and

Blue values are compared to corresponding colour ranges to determine if the pixel has the specified

colour. To increase the accuracy, the position detector accumulates the x or y coordinate values of

every occurrence of pixel with colour that satisfies the specified colour ranges. At the end of each

frame, the average of accumulated values is calculated and stored as the detected point coordinate.

Finally the Game Controller can use the coordinates in the corresponding slave registers to update

gun positions on the screen.

12

4.3 Video to RAM:

This is a module that takes input from video decoder and stores the frame into memory; this
module is an existing [P because previous years’ projects such as [2, 3] were able to incorporate
it from Jeff Goeders’ video to ram project. According to the group who worked on the “Human
Pong” project, HSV colour space is more robust than either YUV or RGB colour space. So this

module might need to be modified to support HSV colour space representation [2].

4.4 MPMC:

The MPMC module allows multiple devices to use the memory. Specifically, it allows video
frames to be written into the memory, our Position Detector to read frames from the memory for
processing, our Graphics Controller to write a game frame into memory, and the drawn game

frame for our game to be sent through the VGA output.

4.5 XPS TFT:

The XPS TFT module is an IP core provided by the Xilinx core library. It reads video frames
from MPMC and generates signals to VGA port[2, 3]. This module will be used to output frames

generated by our game controller to either a projector or monitor connected to the VAG port.

4.6 VGA Output:

Video output to display the game screen consisting of the guns, bullets and the background.

13

4.7 Debug Module

The MicroBlaze Debug Module (MDM) was used to debug Microblaze processors through XMD
and JTAG. It allows us to debug other memory mapped peripherals by reading from and writing to

different memory addresses of the peripherals.

5 Appendixe

5.1 Zip File Directory

This section provides the directory structure.

/__XPS/ - Xilinx generated directory
/blkdiagram/ — Xilinx generated directory
/data/ — Xilinx generated directory
/drivers/ -drivers directory
/position_detector_v1_00_a / - driver files for position detector module
/doc/ — Contains group report
/GroupReport.doc — Group report
/etc/ — Xilinx generated directory
/lib/ — Xilinx generated directory
/pcores/ — Cores directory
/led_debug _mux_v1 00 _a/- core used for debugging
/position_detector_vl_00_a/ - Position detector core
/video_to_ram_v1 00_a/ - core for writing video input to memory, modified from Jeffrey
Goeders’ core.
/report/ — Xilinx generated directory
/sw/ — Software directory
/_impactbatch.log — Xilinx generated file
/bitinit.log — Xilinx generated file
/clock_generator_0.log — Xilinx generated file
/platgetn.opt — Xilinx generated file
/system.log — Xilinx generated file
/system.log.bak — Xilinx generated file
/system.make — Xilinx generated file
/system.mhs — Xilinx generated file
/system.mss — Xilinx generated file
/system.xmp — Xilinx generated file
/system_incl.make — Xilinx generated file

14

5.2 References

video_to_ram core from Jeffrey Goeders, retrieved from course discussion board.

http://en.wikipedia.org/wiki/Bresenham's_line_algorithm

15

