& XILINX.
Appendix B

Interrupt Management

This appendix describes how to set up interrupts in a Xilinx® embedded hardware system.
Also, this appendix describes the software flow of control during interrupts and the
software APIs for managing interrupts. To benefit from this description, you need to have
an understanding of hardware interrupts and their usefulness.

Hardware Setup

You must first wire the interrupts in your hardware so the processor receives interrupts.

The MicroBlaze™ processor has a single external interrupt port called Interrupt. The
PowerPC® 405 processor and the PowerPC 440 processor each have two ports for handling
interrupts. One port generates a critical category external interrupt and the other port
generates a non-critical category external interrupt, the difference between the two
categories being the priority level over other competing interrupts and exceptions in the
system. The critical category has the highest priority.

¢ On the PowerPC 405 processor, the critical and non-critical interrupt ports are named
EICC405CRITINPUTIRQ and EICC405EXTINPUTIRQ respectively.

* On the PowerPC 440 processor, the critical and non-critical interrupt ports are named
EICC440CRITIRQ and EICC440EXTIRQ respectively.

There are two ways to wire interrupts to a processor:

¢ The interrupt signal from the interrupting peripheral is directly connected to the
processor interrupt port. In this configuration, only one peripheral can interrupt the
processor.

* The interrupt signal from the interrupting peripheral is connected to an interrupt
controller core which in turn generates an interrupt on a signal connected to the
interrupt port on the processor. This allows multiple peripherals to send interrupt
signals to a processor. This is the more common method as there are usually more
than one peripheral on embedded systems that require access to the interrupt
function.

Figure B-1, page 236 illustrates the interrupt configurations.

Embedded System Tools Reference Manual www.xilinx.com 235
UG111 (v14.6) June 19, 2013 l_‘se”d__]FeedbaCk

Appendix B: Interrupt Management & XILINX.

Processor Processor

Programmable
Timer

Interrupt
Port

Interrupt
Port Interrupt
Controller

Programmable
Timer

Interrupts without an Interrupts with an
Interrupt Controller Interrupt Controller

Ethernet MAC

X11017

Figure B-1: Interrupt Configurations

Software Setup and Interrupt Flow

Interrupts are typically vectored through multiple levels in the software platform before
the application interrupt handlers are executed. The Xilinx software platforms (Standalone
and XilKernel) follow the interrupt flow shown in Figure B-2.

Final peripheral level or application
level interrupt handling happens here.

Application Interrupt
Handler

Vectoring of individual interrupts to
final handlers happens here.

e ~ Acknowledges to the interrupt

I/ Optional Interrupt \ : controlle;r:r;dlsztzgisttiié::scolIection
I\Controller Vector Code) P .

~N e e — — — e

Save and restore of register context
happens here.

Software Platform/OS
Level Interrupt Vector

Located at an address that is either
fixed statically or fixed at run - time.
Usually, just a branch to the next
level vectoring code.

Lowest Level Interrupt
Vector

X11018

Figure B-2: Interrupt Flow

236 www.xilinx.com Embedded System Tools Reference Manual
I_,SE”d,_]FeedbaCk UG111 (v14.6) June 19, 2013

& XILINX.

Software Setup and Interrupt Flow

Interrupt Flow for MicroBlaze Systems

MicroBlaze interrupts go through the following flow:

1.

Interrupts have to be enabled on MicroBlaze by setting appropriate bits in the Machine
Status Registers (MSR).

Upon an external interrupt signal being raised, the processor first disables further
interrupts. Then, the processor jumps to an absolute, fixed address 0x0000_0010.

The software platform or OS provides vectoring code at this address which transfers
control to the main platform interrupt handler.

The platform interrupt handler saves all of the processor registers (that could be
clobbered further down) onto the current application stack.

The handler then transfers control to the next level handler. Because the next level
handler can be dependent on whether there is an interrupt controller in the system or
not, the handler consults an internal interrupt vectoring table to determine the
function address of the next level handler. It also consults the vectoring table for a
callback value that it must pass to the next level handler. Finally, the actual call is
made.

* On systems with an interrupt controller, the next level handler is the handler
provided by the interrupt controller driver. This handler queries the interrupt
controller for all active interrupts in the system. For each active interrupt, it
consults its internal vector table, which contains the user registered handler for
each interrupt line. If the user has not registered any handler, a default do-nothing
handler is registered. The registered handler for each interrupt gets invoked in
turn (in interrupt priority order).

* Onsystems without an interrupt controller, the next handler is the final interrupt
handler that the application wishes to execute.

The final interrupt handler for a particular interrupt typically queries the interrupting
peripheral and determines the cause for the interrupt. It does a series of actions that are
appropriate for the given peripheral and the cause for the interrupt. The handler is also
responsible for acknowledging the interrupt at the interrupting peripheral. After the
interrupt handler is finished, it returns back and the interrupt stack gets unwound all
the way back to the software platform level interrupt handler.

The platform level interrupt handler restores the registers it saved on the stack and
returns control back to the Program Counter (PC) location where the interrupt
occurred. The return instruction also enables interrupts again on the MicroBlaze
processor. The application resumes normal execution at this point.

Xilinx recommends that interrupt handlers be kept to a short duration and the bulk of
the work be left to the application to handle. This prevents long lockouts of other
(possibly higher priority) interrupts and is considered good system design.

Figure B-3, page 238 shows a MicroBlaze interrupt flow without an interrupt controller,
and Figure B-4, page 238 shows a MicroBlaze interrupt flow with an interrupt controller.

UG111 (v14.6) June 19, 2013

Embedded System Tools Reference Manual www.xilinx.com [Send Feedback] 237

Appendix B: Interrupt Management

& XILINX.

User Program

INTR et 0x000_0008 microblaze_interrupt_handler.c
- __interrupt_handler()
—_— user or peripheral
N Branchto OS | interrupt handler
0x000_00 10 | INTR handler Lookup the function
seoon interrupt handler
0x000_00 18 registered with
the OS and jump
a___ to .
0x000_00 20
MB_lInterruptVector
Table { User or peripheral
’ interrupt handler
registered directly with
the OS layer
X11019
Figure B-3: MicroBlaze Interrupt Flow without Interrupt Controller

User Program

microblaze_interrupt_handler.c
__interrupt_handler()
xintc.c
- Xintc_DevicelnterruptHandler()

@ >
INTR | "°°°° 0x000_0008
— Branch to OS
""" 0x000_00 10 INTR handler
..... 0x000_00 18
G 0x000_00 20

Xintc_DevicelnterruptHandler()

—

registered with the
OS Layer

Lookup the
interrupt handler
registered with
the OS and jump

For each active
interrupt, call

user or peripheral
interrupt handler
function

Y

toit. the registered
interrupt
\ J handler. L
) h
A

MB_InterruptVector
Table {

HandlerTable {

~—

User or peripheral
interrupt handlers
registered with the
interrupt

controller driver

X11020

Figure B-4: MicroBlaze Interrupt Flow with Interrupt Controller

238

| Send Feedback I

www.xilinx.com

Embedded System Tools Reference Manual
UG111 (v14.6) June 19, 2013

& XILINX.

Software Setup and Interrupt Flow

Interrupt Flow for PowerPC Systems

Interrupts on the PowerPC processors go through the following flow:

1.

Interrupts must be enabled on the PowerPC processor by setting appropriate bits in
the Machine Status Registers (MSR). Depending on whether critical or non-critical (or
both) interrupts are being used, appropriate bits must be set.

Upon the external interrupt signal being raised, the processor first disables further
interrupts. The processor then calculates an address for the interrupt type and jumps
to that address. The calculation varies between the PowerPC 405 processor and the
PowerPC 440 processor.

* The PowerPC 405 processor consults the software-set value of the Exception
Vector Prefix Register (EVPR) and adds a constant offset to this value (depending
on the interrupt type) to determine the final physical address where the vector
code is placed.

* The PowerPC 440 processor has independent offset registers for each interrupt
type (labeled IVOR0-IVOR15). Each offset register contains a value that is
appended to the Interrupt Vector Prefix register (IVPR) to obtain the final physical
address of the interrupt vector code.

The processor jumps to the calculated interrupt vector code address.

Each interrupt vector location contains a platform interrupt handler that is appropriate
for the interrupt type:

* For external critical and non-critical interrupts, the handler saves all of the
processor registers (that could be clobbered further down) onto the current
application stack.

* The handler then transfers control to the next level handler. Because this can be
dependent on whether there is an interrupt controller in the system, the handler
consults an internal interrupt vectoring table to determine the function address of
the next level handler.

¢ The handler also consults the vectoring table for a callback value that it must pass
to the next level handler. Then, the handler makes the actual call.

* On systems with an interrupt controller, the next level handler is the handler
provided by the interrupt controller driver. This handler queries the interrupt
controller for all active interrupts in the system. For each active interrupt, it
consults its internal vector table, which contains the user-registered handler for
each interrupt line.

If no handler is registered, a default do-nothing handler is registered. The
registered handler for each interrupt gets invoked in turn (in interrupt priority
order).

¢ On systems without an interrupt controller, the next handler is the final interrupt
handler that is executed by the application.

The final interrupt handler for a particular interrupt typically queries the interrupting
peripheral and determines the cause for the interrupt. It usually does a series of actions
that are appropriate for the given peripheral and the cause for the interrupt. The
handler is also responsible for acknowledging the interrupt at the interrupting
peripheral. When the interrupt handler completes its activity, it returns back and the
interrupt stack gets unwound back to the software platform level interrupt handler.

The platform level interrupt handler restores the registers that it saved on the stack and
returns control back to the Program Counter (PC) location where the interrupt occurred.

UG111 (v14.6) June 19, 2013

Embedded System Tools Reference Manual www.xilinx.com [Send Feedback] 239

Appendix B: Interrupt Management & XILINX.

The return instruction also enables interrupts again on the PowerPC processor. The
application resumes normal execution at this point.

It is recommended that interrupt handlers be of a short duration and that the bulk of the
interrupt work be done by application. This prevents long lockouts of other (possibly
higher priority) interrupts and is considered good system design.

Figure B-5 shows a PowerPC processor interrupt flow without an interrupt controller.

User Program xvectors.S
9:) section .vectors
Branch to
INTR | =°°*" critical intr vectoring code
----- Interrupt Vectoring Code
others
— | ... - Branch to user or peripheral
_____ external intr vectoring code interrupt handler
Lookup the function
interrupt handler
G others registered with

the OS for the
current interrupt
type and jump to it.

XExc_VectorTable {

User or peripheral
interrupt handlers
registered directly
with the OS layer

X11021

Figure B-5: PowerPC Processor Interrupt Flow without Interrupt Controller

Figure B-6 shows a PowerPC processor interrupt flow with an interrupt controller.

User Program xvectors.S
~ D) section .vectors
Branch to
INTR | critical intr vectoring code
others Interrupt Vectoring Code
—| - Branch ©© ~ xintc.c
external intr vectoring code Xlntc_DevicelnterruptHandler()
""" Lookup the e ~ user or peripheral
interrupt handler interru& hapndler
a others registered with function
the OS for the For each active
current interrupt interrupt, call
type and jump to it. the regi:
interrupt
handler.
XExc_VectorTable {
><Intc,De_/icelnlerryptHandler() —_— HandlerTable { User or peripheral
registered with the s interrupt handlers
OS layer |-~—— registered with the
interrupt
controller driver
5

X11022

Figure B-6: PowerPC Processor Interrupt Flow with Interrupt Controller

240 www.xilinx.com Embedded System Tools Reference Manual
I_,SE”d,_]FeedbaCk UG111 (v14.6) June 19, 2013

& XILINX.

Software APIs

Software APIs

This section provides an overview of the software APIs involved in handling and
managing interrupts, lists the available Software APIs by processor type, and provides
examples of interrupt management code.

Note: This chapter is not meant to cover the APls comprehensively. Refer to the interrupt controller
device driver documentation as well as the reference documentation for the Standalone platform to
for all the details of the APIs.

Interrupt Controller Driver

The Xilinx interrupt controller supports the following features:

Enabling and disabling specific individual interrupts
Acknowledging specific individual interrupts

Attaching specific callback function to handle interrupt source
Enabling and disabling the master

Sending a single callback per interrupt or handling all pending interrupts for each
interrupt of the processor

The acknowledgement of the interrupt within the interrupt controller is selectable, either
prior to calling the device handler or after the handler is called. Interrupt signal inputs are
either edge or level signal; consequently, support for those inputs is required:

Edge-driven interrupt signals require that the interrupt is acknowledged prior to the
interrupt being serviced to prevent the loss of interrupts which are occurring close
together.

Level-driven interrupt input signals require the interrupt to be acknowledged after
servicing the interrupt to ensure that the interrupt only generates a single interrupt
condition.

API Descriptions

int XIntc Initialize (XIntc * InstancePtr, ul6 DeviceId)

Description

Parameters

Initializes a specific interrupt controller instance or driver. All the fields of the XIntc
structure and the internal vectoring tables are initialized. All interrupt sources are disabled.

InstancePtr is a pointer to the XIntc instance.

DeviceIdisthe unique id of the device controlled by this XIntc instance (obtained from
xparameters.h). Passing in a DeviceId associates the generic XIntc instance to a
specific device, as chosen by the caller or application developer.

Embedded System Tools Reference Manual www.xilinx.com [Send Feedback] 241

UG111 (v14.6) June 19, 2013

Appendix B: Interrupt Management & XILINX.

int XIntc_Connect (XIntc * InstancePtr, u8 Id, XInterruptHandler
Handler, void * CallBackRef)

Description Makes the connection between the Id of the interrupt source and the associated handler that
is to be run when the interrupt occurs. The argument provided in this call as the
CallBackRef is used as the argument for the handler when it is called.

Parameters InstancePtr is a pointer to the XIntc instance.

Id contains the ID of the interrupt source and should be in the range of 0 to
XPAR_INTC_MAX_ NUM_INTR_INPUTS - 1 with 0 being the highest priority interrupt.
Hand] er is the handler for that interrupt.

CallBackRef is the callback reference, usually the instance pointer of the connecting driver

The handler provided as an argument overwrites any handler that was previously connected.

void XIntc Disconnect (XIntc* InstancePtr, u8 Id)

Description Disconnects the XIntc instance.

Parameters InstancePtris a pointer to the XIntc instance.

Id contains the ID of the interrupt source and should be in the range of 0 to
XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being the highest priority interrupt.

Void XIntc_ Enable (XIntc * InstancePtr, u8 Id)
Description Enables the interrupt source provided as the argument Id. Any pending interrupt condition for
the specified Id occurs after this function is called.

Parameters InstancePtr is a pointer to the XIntc instance.

Id contains the ID of the interrupt source and should be in the range of 0 to
XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being the highest priority interrupt.

void XIntc Disable (Xintc * InstancePtr, u8 Id)

Description Disables the interrupt source provided as the argument Id, such that the interrupt controller
does not cause interrupts for the specified Id. The interrupt controller continues to hold an
interrupt condition for the Id, but does not cause an interrupt.

Parameters InstancePtr is a pointer to the XIntc instance.

Id contains the ID of the interrupt source and should be in the range of 0 to
XPAR_INTC_MAX NUM_INTR_INPUTS - 1 with O being the highest priority interrupt.

242 www.xilinx.com Embedded System Tools Reference Manual
Send Feedback UG111 (v14.6) June 19, 2013

& XILINX. Software APIs

int XIntc_Start (XIntc * InstancePtr, u8 Mode)

Description Starts the interrupt controller by enabling the output from the controller to the processor.
Interrupts can be generated by the interrupt controller after this function is called.
Parameters InstancePtr is a pointer to the XIntc instance.

Mode determines if software is allowed to simulate interrupts or if real interrupts are allowed
to occur. Modes are mutually exclusive. The interrupt controller hardware resets in a mode that
allows software to simulate interrupts until this mode is exited. It cannot be re-entered after it
has been exited. Mode is one of the following valued:

XIN_SIMULATION_MODE enables simulation of interrupts only.
XIN_REAL_MODE enables hardware interrupts only.

This function must be called after Xintc initialization is completed.

void XIntc_Stop (XIntc * InstancePtr)

Description Stops the interrupt controller by disabling the output from the controller so that no interrupts
are caused by the interrupt controller.

Parameters InstancePtr is a pointer to the XIntc instance.

Hardware Abstraction Layer APls

The following is a summary of exception functions, which can run on MicroBlaze,
PowerPC 405, and PowerPC 440 processors.

Header File

#include "xil_exception.h"

Typedef

typedef void(* Xil_ExceptionHandler) (void *Data)

This typedef is the exception handler function pointer.

void Xil ExceptionDisable()

Description Disable Exceptions. On PowerPC 405 and PowerPC 440 processors, this function only disables
non-critical exceptions.

void Xil ExceptionEnable ()

Description Enable Exceptions. On PowerPC 405 and PowerPC 440 processors, this function only enables
non-critical exceptions.

Embedded System Tools Reference Manual www.xilinx.com 243
UG111 (v14.6) June 19, 2013 l_‘se”d__]FeedbaCk

Appendix B: Interrupt Management & XILINX.

void Xil ExceptionInit ()

Description Initialize exception handling for the processor. The exception vector table is set up with the stub
handler for all exceptions.

void Xil_ ExceptionRegisterHandler (u32 Id, Xil_ExceptionHandler Han-
dler,void *Data)

Description Make the connection between the ID of the exception source and the associated handler that runs
when the exception is recognized. Data is used as the argument when the handler is called.
Parameters Parameters:

Id contains the identifier (ID) of the exception source. This should be XIL_EXCEPTION_INT
or be in the range of 0 to XIL_EXCEPTION_LAST. Refer to the xil_exception.h file for further
information.

Handler is the handler for that exception.
Data is a reference to data that is passed to the handler when it is called.

void Xil ExceptionRemoveHandler (u32 Id)

Description Remove the handler for a specific exception ID. The stub handler is then registered for this
exception ID.

Parameters Idcontains the ID of the exception source. It should be XIL_EXCEPTION_INT or in the range of
0 to XIL_EXCEPTION_LAST. Refer to the xil_exception.h file for further information.

Interrupt Setup Example

/‘k****k************************ Include Files *k***********************/

#include "xparameters.h"
#include "xtmrctr.h"
#include "xintc.h"
#include "xil_exception.h"

/********************** Constant Definitions ***********************/
/ *
* The following constants map to the XPAR parameters created in the
* xparameters.h file. They are only defined here such that a user can
* easily change all the needed parameters in one place.
*/
#define TMRCTR_DEVICE_IDXPAR_TMRCTR_O_DEVICE_ID
#define INTC_DEVICE_IDXPAR_INTC_O_DEVICE_ID
#define TMRCTR_INTERRUPT_IDXPAR_INTC_O_TMRCTR_O0_VEC_ID

* The following constant determines which timer counter of the device
* that is used for this example, there are currently 2 timer counters
* in a device and this example uses the first one, 0, the timer numbers
* are 0 based

244 www.xilinx.com Embedded System Tools Reference Manual
I_,SE”d,_]FeedbaCk UG111 (v14.6) June 19, 2013

& XILINX.

Software APIs

*/
#define TIMER_CNTR_O O

* The following constant is used to set the reset value of the timer
* counter, making this number larger reduces the amount of time this
* example consumes because it is the value the timer counter is loaded
* with when it is started
x/
#define RESET VALUE 0xF0000000

/‘k***k*******k*‘k*******‘k Function Prototypes *************************/

int TmrCtrIntrExample (XIntc* IntcInstancePtr,
XTmrCtr* InstancePtr,
ul6 Deviceld,
ul6é IntrId,
u8 TmrCtrNumber) ;

void TimerCounterHandler (void *CallBackRef, u8 TmrCtrNumber) ;

/********************** variable Definitions ************************/

XIntc InterruptController; /* The instance of the Interrupt Controller
*/

XTmrCtr TimerCounterInst; /* The instance of the Timer Counter */

/*
* The following variables are shared between non-interrupt processing
* and interrupt processing such that they must be global.
*/

volatile int TimerExpired;

RS R SR SRS ESEEE RS RS
/ /
/‘k*k

* This function is the main function of the Tmrctr example using

* Interrupts.
*

* @paramNone.

* @returnXST SUCCESS to indicate success, else XST FAILURE to indicate
* a Failure.

* @noteNone.
*

******k**k*****k*****************************k***************************/

int main(void)

{
int Status;

/*
* Run the Timer Counter - Interrupt example.
*/
Status = TmrCtrIntrExample (&InterruptController,
&TimerCounterInst,
TMRCTR_DEVICE_ID,

UG111 (v14.6) June 19, 2013

Embedded System Tools Reference Manual www.xilinx.com [Send Feedback] 245

Appendix B: Interrupt Management & XILINX.

TMRCTR_INTERRUPT_ID,
TIMER_CNTR_O) ;
if (Status != XST_SUCCESS) {
return XST_FAILURE;

return XST_SUCCESS;

/**/

/‘k*

*

*

*

*

*

This function does a minimal test on the timer counter device and
driver as a design example. The purpose of this function is to
illustrate how to use the XTmrCtr component. It initializes a timer
counter and then sets it up in compare mode with auto reload such that
a periodic interrupt is generated.

This function uses interrupt driven mode of the timer counter.

@paramIntcInstancePtr is a pointer to the Interrupt Controller
driver Instance

@paramTmrCtrInstancePtr is a pointer to the XTmrCtr driver Instance

@paramDeviceId is the XPAR <TmrCtr_instance>_DEVICE_ID value from
xparameters.h

@paramIntrId is

XPAR_<INTC_instance>_<TmrCtr_instance>_INTERRUPT_INTR

*

*

*

*

*

*

value from xparameters.h
@paramTmrCtrNumber is the number of the timer to which this
handler is associated with.

@returnXST_SUCCESS if the Test is successful, otherwise XST_ FAILURE

@noteThis function contains an infinite loop such that if interrupts
are not working it may never return.

***/

int TmrCtrIntrExample (XIntc* IntcInstancePtr,

XTmrCtr* TmrCtrInstancePtr,
ulé Deviceld,

ul6é IntrId,

u8 TmrCtrNumber)

int Status;
int LastTimerExpired = 0;

/*
* Initialize the timer counter so that it's ready to use,
* gpecify the device ID that is generated in xparameters.h
*/
Status = XTmrCtr_Initialize (TmrCtrInstancePtr, DeviceId);
if (Status != XST SUCCESS) {
return XST FAILURE;

/*

* Initialize the interrupt controller driver so that

* it's ready to use, specify the device ID that is generated in
* xparameters.h

246 www.xilinx.com Embedded System Tools Reference Manual
I_,SE”d,_]FeedbaCk UG111 (v14.6) June 19, 2013

& XILINX. Software APIs

*/
Status = XIntc_Initialize(IntcInstancePtr, INTC_DEVICE_ID) ;
if (Status != XST_ SUCCESS) {

return XST_FAILURE;

/*
* Connect a device driver handler that will be called when an
* interrupt for the device occurs, the device driver handler performs
* the specific interrupt processing for the device
*/
Status = XIntc_Connect (IntcInstancePtr, IntrId,
(XInterruptHandler)XTmrCtr_InterruptHandler,
(void *)TmrCtrInstancePtr);

if (Status != XST_SUCCESS) {
return XST_FAILURE;

/*

* Start the interrupt controller such that interrupts are enabled for
* all devices that cause interrupts, specific real mode so that

* the timer counter can cause interrupts thru the interrupt

* controller.

*/
Status = XIntc_Start(IntcInstancePtr, XIN_REAL_MODE) ;
if (Status != XST_SUCCESS) {

return XST_ FAILURE;

/*
* Enable the interrupt for the timer counter
*/

XIntc_Enable(IntcInstancePtr, IntrId);

/*
* Initialize the exception table.
*/

Xil_ExceptionInit () ;

/*
* Register the interrupt controller handler with the exception table.
*/
Xil_ ExceptionRegisterHandler (XIL_EXCEPTION_ID_INT,
(Xil_ExceptionHandler)
XIntc_InterruptHandler,
IntcInstancePtr) ;

/*
* Enable exceptions.
*/

Xil_ExceptionEnable () ;

if (Status != XST_ SUCCESS) {
return XST_ FAILURE;

/*
* Setup the handler for the timer counter that will be called from the
* interrupt context when the timer expires, specify a pointer to the

Embedded System Tools Reference Manual www.xilinx.com 247
UG111 (v14.6) June 19, 2013 Lse”d_]FeedbaCk

Appendix B: Interrupt Management & XILINX.

* timer counter driver instance as the callback reference so the
* handler is able to access the instance data
*/
XTmrCtr_SetHandler (TmrCtrInstancePtr,
TimerCounterHandler,
TmrCtrInstancePtr) ;

* Enable the interrupt of the timer counter so interrupts will occur
* and use auto reload mode such that the timer counter will reload
* itself automatically and continue repeatedly, without this option
* it would expire once only
*/
XTmrCtr_SetOptions (TmrCtrInstancePtr, TmrCtrNumber,
XTC_INT_MODE_OPTION | XTC_AUTO_RELOAD_OPTION) ;

/*
* Set a reset value for the timer counter such that it will expire
* earlier than letting it roll over from 0, the reset value is loaded
* into the timer counter when it is started
*/

XTmrCtr_SetResetValue (TmrCtrInstancePtr, TmrCtrNumber, RESET_VALUE) ;

/*
* Start the timer counter such that it's incrementing by default,
* then wait for it to timeout a number of times
*/

XTmrCtr_Start (TmrCtrInstancePtr, TmrCtrNumber) ;

while (1) {

/*
* Wait for the first timer counter to expire as indicated by the
* shared variable which the handler will increment
*/

while (TimerExpired == LastTimerExpired) {

}

LastTimerExpired = TimerExpired;

/*

* If it has expired a number of times, then stop the timer counter
* and stop this example

x/
if (TimerExpired == 3) {

XTmrCtr_Stop (TmrCtrInstancePtr, TmrCtrNumber) ;
break;

/*
* Disable the interrupt for the timer counter
*/

XIntc_Disable (IntcInstancePtr, DeviceId);

return XST_SUCCESS;

/**/

/‘k*k

248 www.xilinx.com Embedded System Tools Reference Manual
I_,SE”d,_]FeedbaCk UG111 (v14.6) June 19, 2013

& XILINX.

Software APIs

*
*

*

This function is the handler which performs processing for the timer
counter. It is called from an interrupt context such that the amount
of processing performed should be minimized. It is called when the
timer counter expires if interrupts are enabled.

This handler provides an example of how to handle timer counter
interrupts but is application specific.

@paramCallBackRef is a pointer to the callback function
@paramTmrCtrNumber is the number of the timer to which this
handler is associated with.

@returnNone.

@noteNone.

***/

void TimerCounterHandler (void *CallBackRef, u8 TmrCtrNumber)

{

XTmrCtr *InstancePtr = (XTmrCtr *)CallBackRef;

* Check if the timer counter has expired, checking is not necessary
* gsince that's the reason this function is executed, this just shows
* how the callback reference can be used as a pointer to the instance
* of the timer counter that expired, increment a shared variable so
* the main thread of execution can see the timer expired

*/

if (XTmrCtr_IsExpired(InstancePtr, TmrCtrNumber)) ({
TimerExpired++;
if (TimerExpired == 3) {
XTmrCtr_SetOptions (InstancePtr, TmrCtrNumber, 0);
}

Embedded System Tools Reference Manual www.xilinx.com 249
UG111 (v14.6) June 19, 2013 Lse”d_]FeedbaCk

