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Overview 

Xilinx Zynq-7000 All Programmable SoC devices offer 
architectural features which offer designers an 
advanced ARM based processing system, coupled 
with a flexible region of Programmable Logic.  The 
Xilinx Vivado tool suite offers the designer a powerful 
and flexible design environment, including support 
for designing and testing custom IP blocks which can 
be used, and re-used, in multiple designs. 
 
The Processing System (PS) includes two Cortex-A9 
processor cores, a dedicated DDR memory controller, 
and a wide selection of IO peripherals.  The 
Programmable Logic (PL) is based on the Xilinx 7-
Series FPGA fabric and offers the designer the ability 
to implement their own custom logic which can work 
alongside the software running on the processor cores.  The two areas of the device, PS and 
PL, are linked by a series of interfaces which adhere to the AXI4 interconnect standard.  
These interfaces allow the designer to implement custom logic in the PL which can be 
connected to the PS and extend the range of peripherals which are available and visible in 
the processor’s memory map.  One of the most common uses of this technology is to create 
a block of custom logic in the PL, and then add control and status monitoring capabilities by 
using memory mapped registers which the processors can access via the AXI4 interconnect.  
The high performance of dedicated custom logic can then be utilised in the system, without 
sacrificing the flexibility of software for control and status monitoring tasks. 
 
The AXI4 (Advanced eXtensible Interface) protocol has been designed to offer different 
variants of the interconnect.  The full AXI4 specification offers a diverse range of powerful 
features including variable data and address bus widths, high bandwidth burst operations, 
advanced caching support, out of order transaction completion, and various transaction 
protection and access permissions.  Although this specification provides the user with 
enormous flexibility and control, it is often desirable to implement a much simpler peripheral 
which uses only a subset of these features.  For that reason, a reduced feature variant of the 
AXI4 specification exists in the form of “AXI4-lite”.  This subset of the specification supports 
uses cases where only basic interconnect transactions are required, and removes some of 
the more advanced capabilities of the interconnect such as cache support, burst support, and 
variable bit widths for the address and data buses.  The AX4-lite interconnect is therefore 
perfect for applications where simple control and status monitoring capabilities are required 
for a custom built IP block.  This guide discusses how to build a custom IP block in the PL, 
implement memory mapped registers, and make them available via the AXI4-lite 
interconnect so that they are visible to the processor.  This guide will also discuss the 
creation of some basic device drivers, showing how software can be written to access the 
registers on the custom peripheral. 
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AXI4-lite Protocol; The Five Channels 

The AXI4-lite protocol has been written with a modular design flow in mind. There are five 
channels which make up the specification; the read address channel, the write address 
channel, the read data channel, the write data channel, and the write acknowledge channel. 
It is important to understand the function of each of these channels before starting to 
develop the custom IP block.  For the purposes of clarity, this guide discusses the concepts 
of read and write transactions from the processor’s perspective. 
 
The read address channel allows the processor to signal that it wishes to initiate a read 
transaction.  As the name suggests, this channel carries addressing information and some 
handshaking signals.  The read data channel carries the data values that are transferred 
during a transaction, along with their associated handshaking signals.  Together, these two 
channels contain everything that is needed for a successful read transaction. 
 

 
 
The write address channel allows the processor to signal that it wishes to initiate a 
write transaction. It is identical to the read address channel in every other way.  The 
write data channel performs an equivalent function to be read data channel, except 
that the data flows in the opposite direction (i.e. towards the slave).  For write 
transactions an additional channel is used in the form of the Write Response 
Channel. This last channel is used to allow the slave peripheral to acknowledge 
receipt of the data, or to signal that an error has occurred. 
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The next important aspect of AXI4-lite that must be understood is the handshaking signals. 
These signals are consistent across the five channels, and offer the user a simple yet 
powerful way to control all read and write transactions.  The signals are based on a simple 
“Ready” and “Valid” principle; “Ready” is used by the recipient to indicate that it is ready to 
accept a transfer of a data or address value, and “Valid” is used to clarify that the data (or 
address) provided on that channel by the sender is valid so that the recipient can then 
sample it. 
 
Taking the example of the Write Address Channel, the following signals are used: 
 

AXI4-lite Read Address Channel 
Signal Name Size Driven by Description 

S_AXI_ARADDR 32 bits Master 
Address bus from AXI interconnect to slave 
peripheral. 

S_AXI_ARVALID 1 bit Master 
Valid signal, asserting that the 
S_AXI_AWADDR can be sampled by the 
slave peripheral. 

S_AXI_ARREADY 1 bit Slave 
Ready signal, indicating that the slave is 
ready to accept the value on 
S_AXI_AWADDR. 

 
It is important to understand that a “Valid” signal can be asserted before the recipient is 
ready to receive it, but when this scheme is used the value presented by the sender must be 
held in the “Valid” state until the receiver is ready to proceed with the transaction.  It is 
equally acceptable for the receiver to indicate a “Ready” state before the sender makes a 
value “Valid”.  In this latter case, the sender can be assured that the transfer will complete 
within one clock cycle, because it has forewarning of the receiver’s readiness. 
 
A frequently misunderstood use of the Valid and Ready signals, and one which often results 
in incorrect and illegal implementations of the AXI4-lite protocol, is the assumption that the 
sender can/must wait for “Ready” to be asserted by the receiver before it asserts its “Valid” 
signal.  This is an illegal use of the handshaking signals and can result in a deadlock situation 
arising.  Ready can be asserted before Valid, but the sender must never wait for Ready as a 
pre-condition to commencing the transaction. 
 
This important aspect of the AXI4-lite protocol can be easily remembered by applying the 
“Assert and wait” rule.  Never use the “Wait before Assert” approach, because this is illegal. 
 

“Assert Ready and wait for Valid”   
 

“Assert Valid and wait for Ready”   
 

“Wait for Ready before asserting Valid”   
 

 

The use of the Ready / Valid handshaking scheme is identical across all five AXI4-lite 

channels. 

This is an important learning point.  Make sure that this concept 

of handshaking is clearly understood before continuing. 
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Read Transactions 
Starting with the example of a read transaction, the signals belonging to the Read Data 
channel can now be examined. 
 

AXI4-lite Read Data Channel 
Signal Name Size Driven by Description 

S_AXI_RDATA 32 bits Slave 
Data bus from the slave peripheral to the 
AXI interconnect. 

S_AXI_RVALID 1 bit Slave 
Valid signal, asserting that the 
S_AXI_RDATA can be sampled by the 
Master. 

S_AXI_RREADY 1 bit Master 
Ready signal, indicating that the Master is 
ready to accept the value on the other 
signals. 

S_AXI_RRESP 2 bits Slave 
A “Response” status signal showing whether 
the transaction completed successfully or 

whether there was an error. 

 
The transaction in this example is one of the Master (e.g. the processor) reading a data 
value from the Slave (e.g. the peripheral).  The important difference to recognise here is that 
the roles of driving Valid and Ready have now been reversed.  For the purposes of data flow, 
the sender is now the Slave and the receiver is now the Master.  Therefore, the Slave should 
provide the data value on S_AXI_RDATA and assert S_AXI_RVALID to qualify it.  A new 
signal is introduced at this stage, S_AXI_RRESP, which is a status signal that describes 
whether or not the transaction has completed successfully.  The Master can then assert 
S_AXI_RREADY to indicate that it is ready to accept the data (or, optionally, the Master 
could assert S_AXI_RREADY prior to the assertion of S_AXI_RVALID, indicating that it is 
ready to receive the data as soon as S_AXI_RVALID is asserted by the slave). 
 
The coding of the S_AXI_RRESP signal should be discussed at this point, so as to understand 
its purpose.  In most situations the RRESP signal will be tied to “00” because the more 
advanced features will not be needed.  However, some of the more advanced functionality of 
the RRESP signals may occasionally be useful, usually when then design of the peripheral 
needs to signal a “retry” condition due to a delay in the availability of the data. 
 

AXI4-lite Response Signalling 
RRESP 

State [1:0] 
Condition Description 

00 OKAY 
“OKAY” 
The data was received successfully, and there were no errors. 

01 EXOKAY 
“Exclusive Access OK” 
This state is only used in the full implementation of AXI4, and 
therefore cannot occur when using AXI4-Lite. 

10 SLVERR 

“Slave Error” 
The slave has received the address phase of the transaction correctly, 
but needs to signal an error condition to the master.  This often 
results in a retry condition occurring. 

11 DECERR 

“Decode Error” 
This condition is not normally asserted by a peripheral, but can be 
asserted by the AXI interconnect logic which sits between the slave 
and the master.  This condition is usually used to indicate that the 
address provided doesn’t exist in the address space of the AXI 
interconnect. 

 
The timing diagram for a complete read transaction, showing the use of the Read Address 
and Read Data channels, is shown below.  In this example the Valid signals are asserted 
before the Ready signals on both channels, and it can be clearly seen that the transaction on 
each channel completes one clock cycle after Ready is asserted.  If the Ready signals were 
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pre-emptively asserted by the receiver in each case, the entire transaction could feasibly be 
shortened by two clock cycles, leaving the Valid signals asserted for just one clock cycle 
each.  The use of the “00” AXI_RRESP state can also be clearly seen, indicating that the 
transaction completed successfully. 
 

 
 

Write Transactions 
Write transactions are almost identical to the Read transactions discussed above, except that 
the Write Data Channel has one signal that is different to the Read Data Channel.  The 
S_AXI_WSTRB (Write STRoBe) controls which of the bytes in the data bus are valid and 
should be read by the Slave.  For example, if the Master is performing an 8 bit write 
transaction to the slave then not all 32 bits of the data bus will be relevant.  In the case of 
an AXI4-lite transaction the data bus is 32 bits wide, and therefore the WSTRB signal is four 
bits wide with each bit representing one byte (8 bits) of data. 
 

AXI4-lite Write Data Channel 
Signal Name Size Driven by Description 

S_AXI_WDATA 32 bits Master 
Data bus from the Master / AXI interconnect 
to the Slave peripheral. 

S_AXI_WVALID 1 bit Master 
Valid signal, asserting that the 
S_AXI_RDATA can be sampled by the 
Master. 

S_AXI_WREADY 1 bit Slave 
Ready signal, indicating that the Master is 
ready to accept the value on the other 
signals. 

S_AXI_WSTRB 4 bits Master 
A “Strobe” status signal showing which bytes 
of the data bus are valid and should be read 
by the Slave. 

 
The write strobe signals can often be a source of confusion, specifically around which strobe 
signals relate to which bits of the data bus.  The AXI specification describes this using an 
accurate and unequivocal formula “WSTRB[n] corresponds to WDATA[(8 × n) + 7:(8 × n)]”, 
but sadly this is not always easy to comprehend at first glance.  The following table serves to 
illustrate some practical examples of strobe usage.  For the purposes of these (non 
exhaustive) examples, the “active” bits are shown as logic 1, and the “inactive” bits are 
shown as logic 0. 
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S_AXI_WSTRB signals 
S_AXI_WSTRB 

[3:0] 
S_AXI_WDATA active bits [31:0] Description 

1111 11111111111111111111111111111111 All bits active 

0011 00000000000000001111111111111111 Least significant 16 bits active 

0001 00000000000000000000000011111111 Least significant byte (8 bits) active. 

1100 11111111111111110000000000000000 Most significant 16 bits active 

 
During a write transaction, the last of the five AXI channels (The Write Response Channel) is 
also used because the Slave needs a way to signal to the Master that the data was received 
correctly.  The same Ready / Valid handshaking style is used as in the other channels.  A 
simple 2 bit response system is used to signal a successful transaction or an error, coded in 
the same way as with the other RESP signals (e.g. “00” for a successful transaction, and 
similar codings for the error status conditions). 
 

AXI4-lite Write Response Channel 
Signal Name Size Driven by Description 

S_AXI_BREADY 1 bit Master 
Ready signal, indicating that the Master is 
ready to accept the “BRESP” response signal 
from the slave. 

S_AXI_BRESP 2 bits Slave 
A “Response” status signal showing whether 
the transaction completed successfully or 
whether there was an error. 

S_AXI_BVALID 1 bit Slave 
Valid signal, asserting that the S_AXI_BRESP 
can be sampled by the Master. 

 
A timing diagram of a complete AXI4-lite write transaction is shown below, showing the use 
of the three AXI write channels.  In this example the value of 0x00000008 is being written to 
address 0x30000000.  Note that this is a 32 bit write, and all four write strobe (WSTRB) 
signals are asserted.  The use of the handshaking signals on all three channels is shown 
below, using the same “valid before ready” scheme on the address and data channels, and a 
“ready before valid” scheme on the write response channel.  The two different handshaking 
schemes are not used here for any specific reason, other than to demonstrate an example of 
each style.  Both are perfectly acceptable, and can be used in combination across the five 
AXI4-lite channels. 
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AXI4-lite Signal Names 

The AXI4-lite signal names are completely flexible from the point of view of the VHDL 
design.  During the creation of a Xilinx IP block, the Vivado tools can be used to map each 
AXI signal onto the signal name 
that the designer used when 
creating the IP.  However in 
order to make the life of the 
designer much easier, the signal 
names shown here are 
recommended when designing a 
custom AXI slave in VHDL.  
Using these signal names will 
allow the Vivado design tools to 
automatically detect the signal 
names during the “create and 
package IP” step (described 
later on).  This will save time, 
effort, and confusion when 
debugging the design. 

Address Decoding 

Another important concept to understand before creating an AXI4-lite custom slave 
peripheral is the address decoding.  In previous versions of the Xilinx design flow (where PLB 
and OPB peripherals were typically used) it was necessary for each IP peripheral connected 
to the processor to individually decode all transactions that were presented by a master on 
the bus.  This was due to the PLB and OPB buses being designed with so-called “multi-drop” 
architectures.  In essence, all of the address, data, and handshaking signals in the previous 
PLB/OPB implementation were routed in parallel to each slave IP connected to the bus, and 
it was the responsibility of each peripheral to accept or reject each bus transaction 
depending on the address that was placed on the address bus.  With AXI4-lite, the 
interconnect does not use a multi-drop architecture, but uses a scheme where each 
transaction from the master(s) is specifically routed to a single slave IP depending on the 
address provided by the master.  This premise permits a completely different design 
methodology to be adopted by the creator of a slave IP, in that any transactions which reach 
the slave’s interface ports are already known to be destined for that peripheral.  As such, it is 
not necessary for functionality to be added to each slave IP to reject AXI4-lite transactions 
that are outside the addressable range of the slave IP.  The designer merely needs to 
decode enough of the incoming address bus to determine which of the registers in the slave 
IP should be read or written. 
 
An example of how this might be coded in VHDL is provided here for reference, showing how 
the incoming S_AXI_AWADDR bus might be decoded to assert a series of write enable 
signals for a large number of other registers in the design (98 registers in this example), 
without requiring large quantities of VHDL code to be written. 

  

-- Clock and Reset 

S_AXI_ACLK : in std_logic; 

S_AXI_ARESETN : in std_logic; 

-- Write Address Channel 

S_AXI_AWADDR : in  std_logic_vector(31 downto 0); 

S_AXI_AWVALID : in  std_logic; 

S_AXI_AWREADY : out std_logic; 

-- Write Data Channel 

S_AXI_WDATA : in  std_logic_vector(31 downto 0); 

S_AXI_WSTRB : in  std_logic_vector(3 downto 0); 

S_AXI_WVALID : in  std_logic; 

S_AXI_WREADY : out std_logic; 

-- Read Address Channel 

S_AXI_ARADDR : in  std_logic_vector(31 downto 0); 

S_AXI_ARVALID : in  std_logic; 

S_AXI_ARREADY : out std_logic; 

-- Read Data Channel 

S_AXI_RDATA : out std_logic_vector(31 downto 0); 

S_AXI_RRESP : out std_logic_vector(1 downto 0); 

S_AXI_RVALID : out std_logic; 

S_AXI_RREADY : in  std_logic; 

-- Write Response Channel 

S_AXI_BRESP : out std_logic_vector(1 downto 0); 

S_AXI_BVALID : out std_logic; 

S_AXI_BREADY : in  std_logic; 
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Implementing Addressable Registers 

Using the address decoding scheme above, it is extremely simple to implement registers in 
VHDL which can receive data values written by a master on the AXI4-lite interconnect.  The 
following extract of code shows how an individual register can be quickly and easily 
implemented (in this case mapped to BASEADDR + 0x00, as has been coded in the previous 
VHDL snippet). 

For read transactions, the data stored in the registers has to be routed back to the 
S_AXI_RDATA bus, and this can also be achieved very easily in VHDL.  Here is an example 
showing how to implement read transactions from a series of registers, and the associated 
address decoding that is required to do so. 

local_address <= to_integer(unsigned(S_AXI_AWADDR(31 downto 0))); 

 

address_range_analysis : process (local_address) 

begin 

 manual_mode_control_register_address_valid <= '0'; 

 manual_mode_data_register_address_valid <= '0'; 

 servo_position_register_address_valid <= (others => '0'); 

 low_endstop_register_address_valid <= (others => '0'); 

 high_endstop_register_address_valid <= (others => '0'); 

     

 case (local_address) is 

  when 0 => manual_mode_control_register_address_valid <= '1'; 

  when 4 => manual_mode_data_register_address_valid <= '1'; 

  when 128 to 252 => 

   servo_position_register_address_valid((local_address-128)/4) <= '1'; 

  when 256 to 380 => 

   low_endstop_register_address_valid((local_address-256)/4) <= '1'; 

  when 384 to 508 => 

   high_endstop_register_address_valid((local_address-384)/4) <= '1'; 

  when others => NULL; 

 end case; 

end process; 

manual_mode_control_register_process : process (S_AXI_ACLK) 

begin 

 if (S_AXI_ACLK'event and S_AXI_ACLK = '1') then 

  if Local_Reset = '1' then 

   manual_mode_control_register <= (others => '0'); 

  else 

   if (manual_mode_control_register_address_valid = '1') then 

    manual_mode_control_register <= S_AXI_WDATA; 

   end if; 

  end if; 

 end if; 

end process; 

send_data_to_AXI_RDATA : process ( send_read_data_to_AXI, local_address, 

servo_position_register_array, 

manual_mode_control_register, manual_mode_data_register, 

low_endstop_register_array, high_endstop_register_array) 

begin 

    S_AXI_RDATA <= (others => '-'); 

    if (local_address_valid = '1' and send_read_data_to_AXI = '1') then 

        case (local_address) is 

            when 0 =>  

                S_AXI_RDATA <= manual_mode_control_register; 

            when 4 => 

                S_AXI_RDATA <= manual_mode_data_register; 

            when 128 to 252 => 

                S_AXI_RDATA <= X"000000" & servo_position_register_array((local_address-128)/4); 

            when 256 to 380 => 

                S_AXI_RDATA <= low_endstop_register_array((local_address-256)/4); 

            when 384 to 508 => 

                S_AXI_RDATA <= high_endstop_register_array((local_address-384)/4); 

            when others => NULL; 

        end case; 

    end if; 

end process; 
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Controlling the AXI Transactions 

With all of the aforementioned building blocks in place, it simply remains to implement some 
logic to control the AXI transactions.  This can be achieved by the use of a finite state 
machine.  Here is an example of a (simplified) state machine, showing the implementation of 
some of the states, and showing how a read transaction might be handled in the design.  
The example is not designed to cover all of the states required to implement read and write 
transactions, but should help to illustrate a style of coding suitable for creating the FSM. 

 

  

state_machine_update : process (S_AXI_ACLK) 

    begin 

        if S_AXI_ACLK'event and S_AXI_ACLK = '1' then 

            if Local_Reset = '1' then 

                current_state <= reset; 

            else 

                current_state <= next_state; 

            end if; 

        end if; 

    end process; 

 

state_machine_decisions : process (current_state, combined_S_AXI_AWVALID_S_AXI_ARVALID, S_AXI_ARVALID, 

S_AXI_RREADY, S_AXI_AWVALID, S_AXI_WVALID, S_AXI_BREADY, local_address, ...{signals removed}... ) 

begin 

case current_state is 

 when reset => 

  next_state <= idle; 

 when idle => 

  next_state <= idle; 

  case combined_S_AXI_AWVALID_S_AXI_ARVALID is 

   when "01" => next_state <= read_transaction_in_progress; 

   when "10" => next_state <= write_transaction_in_progress; 

   when others => NULL; 

  end case; 

   

 when read_transaction_in_progress => 

next_state <= read_transaction_in_progress; 

S_AXI_ARREADY <= S_AXI_ARVALID; 

S_AXI_RVALID <= '1'; 

S_AXI_RRESP <= "00"; 

if S_AXI_RREADY = '1' then 

next_state <= complete; 

end if; 

 

case (local_address) is 

when 0 => S_AXI_RDATA <= manual_mode_control_register; 

when 4 => S_AXI_RDATA <= manual_mode_data_register; 

when others => 

                    if (local_address >=8 and local_address < (8+((NUMBER_OF_SERVOS-1)*4))) then 

                       S_AXI_RDATA <= servo_position_register_array((local_address-8)/4) & 

                                      servo_position_register_array((local_address-8)/4) & 

                                      servo_position_register_array((local_address-8)/4) & 

                                      servo_position_register_array((local_address-8)/4); 

                    else 

                        S_AXI_RDATA <= (others => '0'); 

                    end if; 

            end case; 

 ... {additional code removed from here} ... 

when complete =>  

  case combined_S_AXI_AWVALID_S_AXI_ARVALID is 

   when "00" => next_state <= idle; 

   when others => next_state <= complete; 

  end case; 

   

  

when others => next_state <= reset; 

end case; 

end process; 
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entity AXI_ADDRESS_CONTROL_CHANNEL_model is 

   PORT 

( 

 Clk     : in  STD_LOGIC; 

 resetn      : in STD_LOGIC; 

 go          : in STD_LOGIC; 

 done        : out STD_LOGIC; 

address     : in std_logic_vector(31 downto 0); 

 AxADDR    : out  STD_LOGIC_VECTOR (31 downto 0); 

 AxVALID    : out  STD_LOGIC; 

 AxREADY    : in   STD_LOGIC 

 ); 

end AXI_ADDRESS_CONTROL_CHANNEL_model; 

 

architecture Behavioral of 

AXI_ADDRESS_CONTROL_CHANNEL_model is 

 

type main_fsm_type is (reset, idle, running, complete); 

signal current_state, next_state : main_fsm_type := 

reset; 

signal address_enable : std_logic; 

 

begin 

 

AxADDR <= address when address_enable = '1' else (others 

=> '0'); 

 

state_machine_decisions : process (current_state, go, 

AxREADY) 

begin 

    done <= '0'; 

    address_enable <= '0'; 

    AxVALID <= '0'; 

     

    case current_state is 

        when reset => next_state <= idle; 

     

        when idle => 

next_state <= idle; 

        if go = '1' then 

            next_state <= running; 

        end if; 

         

        when running => 

            next_state <= running; 

            address_enable <= '1'; 

            AxVALID <= '1'; 

            if AxREADY = '1' then 

                next_state <= complete; 

            end if; 

                         

        when complete =>  

            next_state <= complete; 

            done <= '1'; 

            if go = '0' then 

                next_state <= idle; 

            end if; 

         

        when others => next_state <= reset; 

    end case; 

end process; 

Testing and Debugging 

During the development of an AXI peripheral, it is essential to make sure that the AXI 
protocol is being implemented by the custom IP.  If an incorrectly behaving IP is connected 
to an operational AXI interconnect within a Zynq device, the user may notice completely 
unpredictable behaviour from the interconnect.  For example, if transactions are not correctly 
completed using the response signals, the interconnect may wait for long periods of time 
before timeout  or retry conditions are met.  It is almost impossible to trace the source of 
such problems inside the running silicon, because the user will have no visibility of the fault.  
A common mistake is for the user to quickly write some software to test the new peripheral, 
thinking that it will be a reliable testbench.  Unfortunately the software might also have 
faults / bugs which need to be corrected, or there might be any one of a dozen system 
configuration settings which may have been forgotten.  A situation can therefore easily arise 
where the user knows that a problem exists but doesn’t know where to look to fix it, and 
simply makes the debugging task harder by introducing more complexity into the task. 
 
A much better approach is to 
check for the correct operation 
of the peripheral before the 
additional complexity of 
software is bought into the 
equation.  Keeping the test and 
debugging effort as simple as 
possible is a vital step when 
embarking upon the task of 
custom peripheral debugging.  
The easiest way to achieve this 
is to use a simple HDL 
simulation model which can be 
configured to generate AXI 
transactions and then observe 
the behaviour of the custom 
peripheral in the simulation 
waveform viewer.  Common 
faults can be very quickly 
identified, and overall 
development time can be 
massively reduced. 
 
The modular nature of the AXI 
protocol can be hugely 
beneficial when generating 
testbench models, because 
each of the five AXI channels 
can be implemented 
separately.  An example of the 
VHDL code required to 
implement a model for the AXI 
read address channel is shown 
for reference.  The code shown 
is not complete, but offers guidance of how the model could be implemented.  Similar 
models can be written for the other AXI channels, and then be incorporated into a full 
testbench.  
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Completing the Testbench 

In this example, the five HDL models for the AXI channels have been instantiated inside a 
top level HDL wrapper file.  An additional state machine to control all of the five channel 
models has been added, to enable them to work in unison.  This method of implementation 
also allows the user to write very simple test stimulus in their test environment, and the AXI 
models will generate reliably correct interconnect transactions automatically.  The following 
code shows an example of how the five AXI models can be controlled to work together.  
Each model has a “go” and a “done” signal, allowing them to be controlled and monitored.  
The user simply provides values on signals called “address”, “go”, and “RNW”, and the data 
is transferred on “read_channel_data” and “write_channel_data” signals. 

 
 

 

state_machine_decisions : process (current_state, read_transaction_finished, 

write_transaction_finished, go, RNW, address, write_data, read_channel_data) 

 

begin 

 

write_channel_data <= write_data; 

transaction_address <= address; 

start_read_transaction <= '0'; 

start_write_transaction <= '0'; 

send_write_data <= '0'; 

busy <= '1'; 

done <= '0'; 

 

case current_state is 

when reset => 

next_state <= idle; 

 

when idle => 

next_state <= idle; 

busy <= '0'; 

if go = '1' then 

case RNW is 

when '1' => next_state <= read_transaction; 

when '0' => next_state <= write_transaction; 

when others => NULL; 

end case; 

end if; 

 

when read_transaction => 

next_state <= read_transaction; 

start_read_transaction <= '1'; 

if read_transaction_finished = '1' then 

next_state <= complete; 

end if; 

 

when write_transaction => 

next_state <= write_transaction; 

start_write_transaction <= '1'; 

send_write_data <= '1'; 

if write_transaction_finished = '1' and write_data_sent = '1' then 

next_state <= complete; 

end if; 

 

when complete => 

next_state <= complete; 

done <= '1'; 

if go = '0' then 

next_state <= idle; 

end if; 

 

when others => 

next_state <= reset; 

end case; 

end process; 
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Generating AXI Transactions in the Testbench 

With the structured five channel AXI model in place, wrapped by a top level testbench, it is 
now possible to easily generate AXI transactions in order to test a custom peripheral IP.  The 
following VHDL code shows how easily each AXI transaction can be generated, making 
testing of the custom peripheral a much simpler task.  The two transactions shown here are 
intended to show both a read and write transaction.  The behaviour of the custom peripheral 
can be observed in the simulation waveforms viewing in the usual fashion, and problems can 
quickly be found. 

 
 

stimulus : process 

begin 

 

-- Set an idle state 

address <= X"00000000"; 

write_data <= X"00000000"; 

rnw <= '0'; 

go <= '0'; 

 

wait for simulation_interval; 

 

 

-- Generate a write transaction to the Manual Mode Control Register 

address <= X"30000000"; 

write_data <= X"DEADBEEF"; 

rnw <= '0'; 

go <= '1'; 

wait for AXI_ACLK_period; 

wait until done = '1'; 

go <= '0'; 

wait for AXI_ACLK_period; 

address <= X"00000000"; 

 

wait for simulation_interval; 

 

-- Generate a read transaction from the Manual Mode Control Register 

address <= X"30000000"; 

write_data <= X"00000000"; 

rnw <= '1'; 

go <= '1'; 

wait for AXI_ACLK_period; 

wait until done = '1'; 

go <= '0'; 

wait for AXI_ACLK_period; 

address <= X"00000000"; 

 

wait for simulation_interval; 

 

{... add additional stimuli here ...} 

 

-- End of Stimuli.  Give some time to finish up. 

wait for simulation_interval; 

 

sim_end <= true; 

wait; 

 

end process stimulus; 
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Packaging the IP 

The next step of the design process is to package the IP to put it into a format that can be 
understood by the Xilinx Vivado block diagram GUI.  By this stage you have probably got a 
set of source files in the Xilinx Vivado source window which look similar to the following 
screenshot. 

 
In the Vivado tools, when the user is creating an IP the entire Vivado project becomes the 
level at which the IP can be managed.  When the user is ready to package up the IP, the 
“Create and Package IP” menu item can be chosen from the “Tools” menu at the top of the 
screen.  This menu option starts a tool within the 
Vivado suite called the “IP Packager”, which will 
take all of the design sources within that project, 
and start a design wizard which will provide 
access to all of the configuration settings needed 
for the IP to be created.  The first stage of the 
wizard asks whether the user wants to create an 
IP using existing source files, or whether it 
should create a template for a new IP.  This 
guide details how to create IP from scratch, and 
therefore the template option is irrelevant for this 
document.  It is usual for the “Package Your 
Project” option to be chosen at this stage.  The 
location of the output files for the packaged IP 
are also chosen at this stage, and it is often 
common practice for a dedicated folder to be established by the user for their own collection 
of custom IP / peripherals so that a library of IP can be created in the same place.  The IP 
Packager wizard has 
deceptively few 
configuration options 
at this stage, so the 
user should just click 
“Finish”.  When the IP 
Packager wizard exits, 
a control file for the 
packaged IP 
(component.xml) will be generated in the chosen directory, and automatically added to the 
Vivado project in a source folder called “IP-XACT”.  A new screen will also be shown in the 
Vivado project, and this is where the bulk of the IP configuration takes place.  The first tab is 
called “IP Identification” and allows the user to specify a name for the IP, and set vendor 
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information, version numbers,  and a Library name to which the IP belongs.  There is also a 
very important “Category” selection button on this screen which is frequently overlooked, but 
allows the user to set where the custom IP will appear in the hierarchical IP selection feature 
within the Block Diagram GUI.  For the type of IP being discussed here, the category 
selection would most likely be “Embedded_Processing  AXI_Peripheral  
Low_Speed_Peripheral”.  The next tab contains the “IP Compatibility” settings.  This is a 
simple way for users to allow their IP to be compatible with different Xilinx device 
architectures, and to specify which levels of support are available for each architecture.  For 
example, the designer of the IP might have tested it to a production standard for the Zynq 
architecture, but may have only performed Beta levels of testing on Virtex 7 devices.  
Furthermore, the IP can offer no 
support for some other device 
architectures, for example if certain 
silicon features are not available.  This 
section of the GUI allows the use to 
communicate these levels of readiness 
to end users when the IP is packaged, 
allowing the user to see only IPs in the 
catalogue which are suitable for their 
project. For very specific cases where 
specialised IP is being developed, it is 
also possible to lock down the support 
for specific devices / part numbers, allowing the IP creator to permit usage where only 
certain devices resources are available.  An example of this would be where an IP used a 
large number of one specific type of resource in the device, such as Block RAMs, DSP slices, 
or high speed serial transceivers.  If only certain members of a device family had sufficient 
numbers of these resources that were needed by the IP, then the IP designer could specify 
compatibility with only the suitable members of that device family. 
 
The next tab, “IP File Groups” allows the user to review whether they have correctly 
assigned each source file to be relevant to the synthesis and / or simulation flows.  This is a 
feature of the Vivado tools which is often overlooked, and when packaging an IP core it is 
important to ensure that the relevant design sources are added to the synthesis design flows 
only when they are required.  Given that an IP provider is adding files to the design flow of 
an end user, it is important that testbenches or simulation models should not be added to 
the synthesis flow of their final design.  Common module / entity names such as “adder” and 
“counter” are frequently used in simulation models, and it would be irresponsible to have 
untested code synthesised into an end users design flow, simply because a common name 
was used and the supplied source files were not correctly marked for simulation only.  This 
tab also allows additional directives to be specified for each source file, such as their 
synthesis order, dependency on other sources.  A textual description of each file can also be 
added here, to enable greater clarity and to assist the end user. 
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The “IP Customization 
Parameters” tab allows 
the user to specify some 
parameters in the custom 
IP which can be adjusted 
from the Vivado tools by 
the end user.  An example 
of this in VHDL is the use 
of a Generic on the top 
level entity declaration.  
Using parameters, the 
custom IP can be made flexible and allows the 
designer to offer the user a much more customizable 
peripheral.  In the example shown here, the 
parameters allow the user to pass down some timing 
information which is used by a clock divider and a 
state machine within the VHDL code of the custom IP.  
The example also shows a parameter which allows the 
user to choose the number of output channels on the 
custom IP, and this is linked to a generate loop 
statement within the VHDL.  To the end user, a vastly 
different IP can be generated by simply adjusting the 
number of channels by way of a parameter.  The 
effect of this is that the implemented size of the IP 
core will vary because the Vivado tools will synthesise the appropriate number of instances 
of logic buried deep within the peripheral.  For each parameter, further information can be 
added to restrict the values which may be passed by the user to that IP.  In the example 
shown here, the number of channels (servos) is flexible, but constrained to be within 1 and 
32. For advanced users, it is also possible to make parameters dependant on each other, and 
even to implement rules for the setting of parameters based on TCL scripted expressions 
that can be added to the IP.  To aid the user, a “Parameter Import Dialog” is provided as a 
link at the top of the tab which can be clicked to import the parameters from generics found 
in the VHDL code.  An important parameter to set in this tab is the 
“C_S_AXI_ADDR_WIDTH” parameter; this tells the Vivado tools how many bits of the 
address bus are required to decode all of the addressable registers in the IP’s address space.  
In the case of the example, there are more than 32 but less than 64 addressable locations in 
the IP, and therefore 6 address bits are required (26 = 64).  The importance of this 
parameter cannot be overstated, because the correct routing of transactions over the AXI 
interconnect in the rest of the Vivado design depends upon this parameter being set 
correctly. 
 
The “IP Ports” and “IP Interfaces” tabs are extremely simple, and usually require no 
adjustment by the user.  If, as was suggested at the beginning of this guide, the IP 
developer has used the recommended port names for the AXI signals in their source code, 
then the Vivado tools will read the VHDL / Verilog and automatically populate this tab of the 
IP Packager. If different signal names have been used, the designer will need to identify 
each of the AXI signals and map them to match the names of the AXI signals that the Vivado 
tools are expecting. 
 
The “IP Addressing and Memory” tab is usually pre-configured by the Vivado tools and 
should require no user intervention.  Assuming that the IP does not have a complex address 
space (e.g. areas of memory with a break / gap in the middle) then the configuration of this 
tab is extremely simple and usually automatic.  The number of required address bits, 
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C_S_AXI_ADDR_WIDTH, that was previously specified in the “IP Customization Parameters” 
tab will be used to create the correct settings by the Vivado tools using a ‘raise to the power’ 
equation in the form of “pow(2,(C_S_AXI_ADDR_WIDTH - 1) + 1)”.   
The penultimate tab, “IP GUI Customization Layout”, allows the IP designer to choose how 
the configuration options for their IP will appear in the Block Diagram editor.  This is of 
particular value when a lot of user configurable parameters have been included in the IP, 
and allows the designer to create their own layout and presentation for those parameters.  
Parameters can be grouped together and made to appear on different pages / tabs in the 
Block Diagram editor.  This can promote better usability for the end user of the IP, allowing 
them to configure the IP more easily.  A wizard is provided in this last tab, making the 
arrangement of the parameters quick and easy.  A symbol showing how the IP will appear in 
the Block Diagram can also be previewed in this tab. 
 
The last tab, “IP licensing and security”, allows the user to specify some advanced features 
relating to IP security and payment based licensing.  If the IP is to be distributed and 
restricted in some way for the user until a payment is received, this tab will allow the 
relevant features to be added and tie them to a paid licence system.  These features are 
beyond the scope of this guide, but are mentioned here simply for completeness. 
 
When all of the required settings and customizations have been completed, the IP designer 
should select the “Review and Package” tab.  A brief summary of the IP features is shown on 
this tab, but the main feature is at the bottom of the tab in the form of the “Package IP” 
button.  The IP will then be automatically packaged and a control file generated / updated 
with the name of “component.xml”.  This file can be found in the IP-XACT sources folder 
which will be automatically added to the Vivado project.  If changes and modifications to the 
IP settings are required at a later time, the designer can double-click the XML file, and the IP 
Packager settings GUI will be re-opened.  This completes the packaging process of the IP, 
making it available to other Vivado projects. 

Adding the IP to a Vivado Project 

With the packaged IP now complete and ready to be used, a 
new Vivado project can be created and we can test adding 
the new IP core to it. 
Create a Vivado project, targeting a device architecture that 
was included in the list of supported architectures in your IP.  
Open the “IP Catalog” by clicking its link in the Project 
Manager pane in the top left of the screen.  Browse down to 
the category of IP that you chose when you packaged your 
IP.  In the example shown in this guide, we chose Embedded 

Processing  AXI Peripheral  Low Speed Peripheral.  Note 
that the standard list of low speed IP peripherals are listed, 
but your custom IP does not appear.  This is because we 
have not yet added your IP project as a repository, so your 
test Vidado project has no visibility of it at this time.  On the 
left of the list of IPs is a small button for the “IP Settings”, 
represented by some coloured cogs / gears.  This button 
opens a configuration screen and allows the user to define 
some repositories for user IP.  Click the “Add Repository” 
button and then browse to the location of the project where 
the custom IP was developed.  The previously packaged IP 
will then be listed in the bottom pane of this configuration 
screen.  Click “OK” and the IP Catalog will now show the 
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custom IP in the Embedded Processing  AXI Peripheral  Low Speed Peripheral folder.  
Close the IP Catalog, using the “X” icon in the tab title at the top of the pane. 

Creating a Block Diagram Including a Custom IP 

Click to “Create Block Design” from the “Flow Navigator  IP Integrator” menu on the left of 
the screen, giving the block diagram a name of your choosing.  Add whatever IP you feel is 
necessary for the integration testing of your custom IP; in our example we will use a Zynq 
Processing System 7 tile, and an instance of the custom servo controller IP. If you have 
correctly packaged the custom IP block, the Vivado tools should offer the usual “connection 
automation” designer assistance features at the top of the block diagram.  A block diagram 
can be quickly assembled, and the Vivado tools will connect all of the AXI connections, 
clocks, and resets automatically.  In our example we have assigned the output of the custom 
IP to external pins.  Be sure to note the base address of the custom IP in the Address Editor 
tab of the Block Diagram; you will need this later on.  In the example shown here, the base 
address is 0x43C00000. 

 
When the block diagram has been created to match the needs of the IP testing, follow the 
usual flow in Vivado to create an HDL wrapper, allocate user IO pin constraints, and then 
synthesise, implement, and create a bitstream for the design.  Open the implemented 
design, and then export the design to the Software Development Kit (SDK) in preparation to 
write some test software code for the custom IP. 

Writing Your First Lines of Test Software Code 

Before writing any test code, it is necessary to create a standalone BSP for your software 

development.  Create this in the usual way using File  New  Board Support Package.   
 
To begin the integration testing of the custom IP, create an software application project 
using the File  New  Application Project menu item, and choose the “Empty Application” 
template.  Then create a C source file by right-clicking on the “src” folder of your new 

project and choosing New  Source File, and giving the file a name with a .c extension. 
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To verify that everything is working properly on the board, start with some simple software 
code and execute it on the board.  In our example we have created a simple application 
which uses a printf statement to print a line of text to the UART.  The purpose of this is 
simply to prove that the board is executing our software correctly before we continue 
developing any further code. 
 

#include <stdio.h> 
 
int main (void) 
{ 
 printf("Test Project\n\r"); 
 
 return 0; 
} 

 
Create a suitable linker script to link this code to the area of memory that suits your needs, 
and then run it on the board.  Verify that your code is running on the board, remembering to 
download the bitstream to the board as appropriate. 
 

The Beginnings of a Driver 

Using the supplied Xilinx IO driver functions is a great way to start when writing your own 
drivers.  The “xil_io” driver provides some useful IO functions which can read and write data 
values to registers in the programmable logic, and these are perfect when the user wishes to 
design a driver for a custom IP.  Xil_io is easy to use, and can be included in any project 
using a simple #include statement in the C code.  The most commonly used functions calls 
are Xil_Out32() and Xil_In32(), but similar functions exist for 16 bit and 8 bit data transfers. 
 
Modify your test code to include a write to a register in the custom IP.  In the example 
shown, we are writing a data value of 0xEE to the third 32 bit register in the custom IP’s 
address map, which has an address of 0x43C00008 (base address + 8). 
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#include <stdio.h> 
#include "xil_io.h" 
 
int main (void) 
{ 
 printf("Test Project\n\r"); 
 
 printf("Writing to a custom IP register..."); 
 Xil_Out32(0x43C00008, 0xEE); 
 printf("Done\n\r"); 
 
 return 0; 
} 

 
It is wise to start your testing by writing to a register that will have a measurable effect on 
the output of the custom IP.  Real life observable feedback is very reassuring during the 
early stages of testing your own IP.  It is much harder to test the functionality of a system 
where the effect of a modified register cannot easily be observed.  Re-run the code on the 
board and observe the effect.  Your results should hopefully match the testing that you 
performed earlier in simulation. 
 
Writing your drivers with a hierarchical structure is considered to be good design practice, 
and will save you a lot of time when you need to debug the design.  Once you have verified 
that you have some measurable results by writing to one register, you can then move on to 
testing some of the others.  It is advisable to create a function that can be re-used in your 
code, because this will form the basis of your driver hierarchy.  Modify the code to create 
two functions; one that writes to the custom IP registers, and one that reads from them. 
 

void set_custom_ip_register(int baseaddr, int offset, int value) 
 { 
 Xil_Out32(baseaddr + offset, value); 
 } 
 
int get_custom_ip_register(int baseaddr, int offset) 
 { 
 int temp = 0; 
 temp = Xil_In32(baseaddr + offset); 
 return (temp); 
 } 

 
In these examples, we have implemented the use of offsets from the base address, rather 
than using hard-coded addresses each time.  Another good coding practice is to use #define 
statements to specify names for commonly used hex values, enabling the user to quickly 
identify which register is being addressed without having to constantly cross-reference 
everything to the address map of the IP.  The code shown below demonstrates how a simple 
application can be written that uses the driver functions that we’ve written.  Note the use of 
the function prototypes, which will be added later to a header file when we move the driver 
functions to their own source file. 
 

#include <stdio.h> 
#include "xil_io.h" 
 
#define CUSTOM_IP_BASEADDR 0x43C00000 
#define REGISTER_1_OFFSET 0x00 
#define REGISTER_2_OFFSET 0x04 
#define REGISTER_3_OFFSET 0x08 
#define REGISTER_4_OFFSET 0x0C 
 
// Function prototypes 
void set_custom_ip_register(int baseaddr, int offset, int value); 
int get_custom_ip_register(int baseaddr, int offset); 
 
 
int main (void) 
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{ 
 int temp3; 
 int temp4; 
 
 printf("Test Project\n\r"); 
 
 printf("Writing to third register..."); 
 set_custom_ip_register(CUSTOM_IP_BASEADDR, REGISTER_3_OFFSET, 0xEE); 
 printf("Done\n\r"); 
 
 printf("Writing to fourth register..."); 
 set_custom_ip_register(CUSTOM_IP_BASEADDR, REGISTER_4_OFFSET, 0xBB); 
 printf("Done\n\r"); 
 
 temp3 = get_custom_ip_register(CUSTOM_IP_BASEADDR, REGISTER_3_OFFSET); 
 temp4 = get_custom_ip_register(CUSTOM_IP_BASEADDR, REGISTER_4_OFFSET); 
 
 printf("Register 3 = 0x%02X\n\r", temp3); 
 printf("Register 4 = 0x%02X\n\r", temp4); 
 
 return 0; 
} 
 
 
void set_custom_ip_register(int baseaddr, int offset, int value) 
 { 
 Xil_Out32(baseaddr + offset, value); 
 } 
 
int get_custom_ip_register(int baseaddr, int offset) 
 { 
 int temp = 0; 
 temp = Xil_In32(baseaddr + offset); 
 return (temp); 
 } 

 

The basic functions of our software driver can now be used to create more complex and 
more useful drivers that will enhance the user’s productivity.  In our example design, the 
custom IP controls up to 32 servos.  Each servo has a position register, starting at offset 
0x08 for servo 1, offset 0x0C for servo 2, and incrementing by four bytes for each servo 
thereafter.  A user friendly function can quickly be written, using the driver functions that 
we’ve already written and tested.  Numbering schemes can also be corrected in driver 
functions; for example the user might like to think of servo numbers starting at 1 rather than 
starting at 0.  The following example shows this. 
 

void set_servo_position(int baseaddr, int servo_number, int position) 
 { 
 servo_number--; 
 if (servo_number >=0) 
  set_custom_IP_register(baseaddr, 8 + (servo_number*4), position); 
 } 
 
int get_servo_position(int baseaddr, int servo_number) 
 { 
 int temp = 0; 
 servo_number--; 
 if (servo_number >=0) 
  temp = get_custom_ip_register(baseaddr, 8 + (servo_number*4)); 
 return temp; 
 } 

 
As the driver functions become increasingly advanced, the application code benefits from 
becoming increasingly simple to read.  The following application example shows how a C 
programmer can set the position of a servo, without requiring any knowledge of the register 
offsets in the address map.  All of the offsets are handled by the driver function, removing 
the burden from users in all future coding sessions.  The application has the same 
functionality, but is easier to read and manage because we have abstracted all of the detail 
away into the driver functions. 
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#include <stdio.h> 
#include "xil_io.h" 
 
#define CUSTOM_IP_BASEADDR 0x43C00000 
 
// Function prototypes 
void set_custom_ip_register(int baseaddr, int offset, int value); 
int get_custom_ip_register(int baseaddr, int offset); 
void set_servo_position(int baseaddr, int servo_number, int position); 
int get_servo_position(int baseaddr, int servo_number); 
 
 
int main (void) 
{ 
 int servo1; 
 int servo2; 
 
 printf("Test Project\n\r"); 
 
 set_servo_position(CUSTOM_IP_BASEADDR, 1, 0xEE); 
 set_servo_position(CUSTOM_IP_BASEADDR, 2, 0xBB); 
 
 servo1 = get_servo_position(CUSTOM_IP_BASEADDR, 1); 
 servo2 = get_servo_position(CUSTOM_IP_BASEADDR, 2); 
 
 printf("Register 3 = 0x%02X\n\r", servo1); 
 printf("Register 4 = 0x%02X\n\r", servo2); 
 
 return 0; 
} 

 

Moving the Driver Routines to Separate Files 

The coding style shown above should illustrate that drivers can quickly be built to exercise 
the various features of the custom IP.  It should also be very obvious that we are starting to 
generate significant amounts of code, and we already have many functions in our source file 
which are beginning to get untidy.  To 
continue the development of the driver 
functions, we can now move the code into a 
separate file.  Specifically, we will move the 
code for the driver functions into a separate 
custom_driver.c source file, and the function 
prototypes into a custom_driver.h header file.  
To maintain visibility of the functions across 
the different files, be sure to add the line 
#include "custom_driver.h" at the top of 

your main application source file, and also to 
the custom_driver.c source file.  With this file structure in place, it is possible to quickly and 
easily continue the development of the custom IP drivers, while keeping the source code in 
the main test application tidy and manageable.  For very complex driver functions, additional 
source files can be added to the fileset to facilitate additional hierarchy in the source code. 
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Creating the Xilinx Driver File and Folder Structure 

When the driver source files have been written and tested, the next step is to put the driver 
files into a directory tree structure that the Xilinx SDK will understand.  This is a very 
important step because the Xilinx tools will expect to find files and folders with reserved 
names.  An example of the required folder structure is 
shown here; the top level folder can be called anything 
that the user chooses, and be placed anywhere that they 
choose, but must contain a sub-folder called “drivers”.  
Below that, there may be one or more folders which 
represent each driver for the custom IP.  We have just one 
driver in our example which is called 
“servo_controller_v1_00_a”.  The suffix “_v1_00_a” is 
important is denotes revisions of that driver.  The accepted notation is a major/minor 
numeric revision in decimal digits (1.00 in this example), followed by a sub-version denoted 
by a single alpha character (in this case “a”).  The accepted use of these version numbers is 
that major and minor changes to the functionality of the driver should be represented 
numerically, and bug fixes / performance improvements that do not affect the intended 
functionality should be represented by an alpha character change. 
 
Under the structure described above, three further folders are expected.  The “src” folder 
contains the .c and .h source files for the driver, in addition to a Makefile which can be 
written to describe the build process required to compile the sources in the correct order / 
dependency.  The “examples” folder contains examples of software application code, 
showing how your driver might be used in a final application.  The “data” folder contains 
control files which are specific to the operation of the Xilinx SDK tools, and which detail how 
your various source files should be used.  These control files are detailed below. 

The MDD file 
The first control file in the “data” folder is the Microprocessor Driver Definition (MDD) file.  
The filename is required to have a suffix of “_v2_1_0.mdd”, and in the case of our example 
has the full filename of “servo_controller_v2_1_0.mdd”.  The suffix relates to the version of 
the syntax that is used within the MDD file; in this case v2.10.  The contents of the file are 
relatively simple, and for most MDD files the text is identical with the exception of one or 
two lines.   
 

OPTION psf_version = 2.1; 
 
BEGIN driver rc_servo_controller 
 
  OPTION supported_peripherals = (axi_rc_servo_controller_v2_0); 
  OPTION driver_state = ACTIVE; 
  OPTION copyfiles = all; 
  OPTION VERSION = 3.0; 
  OPTION NAME = rc_servo_controller; 
 
END driver 

 
Full details of each parameter are available in document UG642 - “Platform Specification 
Format Reference Manual” (psf_rm.pdf). 
 
The “OPTION supported_peripherals” line should be updated to list the peripherals that are 
served by the custom driver.  In the example shown here there is just one peripheral which 
will be supported by the driver, but multiple peripherals can be listed, separated by a space.  
This name must match the name of the IP that you created when using the IP Packager. 



 

 Page 23 

Desiging a Custom AXI-lite Slave Peripheral 
Version 1.0, July 2014  --  Rich Griffin, Silica EMEA  
 

 
The “BEGIN driver” line should be edited to create a name for the driver that is being 
developed.  There are no specific rules for the naming convention of this parameter, but it is 
wise to create a name that will be clearly identifiable to the end user. 
 
The “OPTION driver_state” line allows the user to maintain a recognised lifespan of their 
custom driver, and list the driver as either ACTIVE, DEPRECATED, or OBSOLETE as and 
when the developer choose to supersede or retire it from service.  The effect of changing 
this option away from the “active” state, generates either warnings or errors in the driver 
compile process when it is invoked by the end user. 
 
The “OPTION depends” line allows the developer to list any dependences of their driver on 
others.  In the case shown in the example here, the “common” drivers would be required 
before the custom driver was compiled. 
 
The “OPTION copyfiles” line tells the SDK which source files in the custom driver’s “src” 
directory should be copied when the SDK generates the BSP.  In most cases this will be left 
set to “all”. 
 
The VERSION line allows the user to specify a version number for their driver.  This should 
match the directory name used previously. 

The TCL file 
The second control file in the “data” folder is the TCL file, which is used by the Xilinx BSP 
creation tools to automatically generate some parameters which can be used later by the 
software developers.  The TCL file show below is actually only 4 lines in length, including the 
final curly bracket on its own line, but lines 2 & 3 are extremely long and therefore difficult 
to re-produce clearly in this document. 
 

proc generate {drv_handle} { 
  xdefine_include_file $drv_handle "xparameters.h" "XRCSERVO" "NUM_INSTANCES" "C_BASEADDR" "C_HIGHADDR" 
"DEVICE_ID" "NUMBER_OF_SERVOS" "MINIMUM_HIGH_PULSE_WIDTH_NS" "MAXIMUM_HIGH_PULSE_WIDTH_NS" 
  xdefine_canonical_xpars $drv_handle "xparameters.h" "XRCSERVO" "NUM_INSTANCES" "C_BASEADDR" 
"C_HIGHADDR" "DEVICE_ID" "NUMBER_OF_SERVOS" "MINIMUM_HIGH_PULSE_WIDTH_NS" "MAXIMUM_HIGH_PULSE_WIDTH_NS" 
} 
 

The only lines that should be edited by the developer are lines 2 & 3 (beginning 
“xdefine_include_file” and “xdefine_canonical_xpars”), and list a number of parameters that 
will be generated automatically by the BSP generation tools before being placed into a file 
called “xparameters.h” within the automatically generated board support package.  The 
editable section of this line begins with the parameter after “xparameters.h”; in the case of 
this example the first two editable parameters are “XSERVO” and “NUM_INSTANCES”.  
These two parameters are used to create a #define statement in the “xparameters.h” file 
called “XPAR_XSERVO_NUM_INSTANCES” and assign a numerical value to it.  The Xilinx BSP 
generation tools have the ability to automatically count the number of instances of each type 
of peripheral that are added into the user’s embedded processor design.  This information 
can be of great use when the same driver is used to control multiple instances of the same 
peripheral, and provides the ability for a loop to be created in software that will automatically 
update when the number of instances of a given peripheral is increased and decreased in the 
design.  In the case of our example there is only one instance of the test peripheral so we 
need not worry about such a feature, but the line “#define XPAR_XSERVO_NUM_INSTANCES 1“ 

will be automatically added to the “xparameters.h” file when the BSP is generated.  The list 
of parameters in the TCL file on the rest of lines 2 & 3 represent additional #define 
statements that will be generated in the xparameters.h file.  Each of the #define statements 
will have a prefix related to the instance name of the IP, and a suffix copied from the text 
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string in quotes on lines 2 & 3 of the TCL file.  Each of the text strings matches the name of 
a Generic in the top level VHDL entity for the custom IP, and the value of each #define is 
populated using either the Generic’s default value in the VHDL code, or the value that the 
user has set in the Vivado 
block diagram tool to 
override that default.  In 
the case of our example, 
seven #define statements 
will be created in the 
xparameters.h file during 
BSP generation, and they 
will be populated according 
to the user’s chosen 
settings and the number of 
instances of the custom IP 
that were added to the 
user’s design.  An example 
of this automated 
integration is illustrated 
below: 
 

 
/* Definitions for driver SERVO_CONTROLLER */ 
#define XPAR_XSERVO_NUM_INSTANCES 1 
 
/* Definitions for peripheral AXI_RC_SERVO_CONTROLLER_0 */ 
#define XPAR_AXI_RC_SERVO_CONTROLLER_0_BASEADDR 0x43C00000 
#define XPAR_AXI_RC_SERVO_CONTROLLER_0_HIGHADDR 0x43C0FFFF 
#define XPAR_AXI_RC_SERVO_CONTROLLER_0_DEVICE_ID 0 
#define XPAR_AXI_RC_SERVO_CONTROLLER_0_NUMBER_OF_SERVOS 4 
#define XPAR_AXI_RC_SERVO_CONTROLLER_0_MINIMUM_HIGH_PULSE_WIDTH_NS 1000000 
#define XPAR_AXI_RC_SERVO_CONTROLLER_0_MAXIMUM_HIGH_PULSE_WIDTH_NS 2000000 
 

 
The ability to generate a software BSP which will automatically update itself based upon 
changes made to the hardware design is an incredibly powerful feature, and can save the 
software engineering team a lot of manual development effort and time.  The end user’s 
software application can then make use of these parameters, allowing the hardware and 
software teams to work completely independently, yet vastly reduce the possibility for 
software errors and bugs to occur due to any changes made in the hardware design that 
were not manually communicated to the software engineering team.  
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Configuring the Xilinx SDK 

With the driver control files 
written and placed in the 
correct folder structure, the 
final step is to configure the 
Xilinx SDK tools so that they 
have visibility of the new driver 
in the list of available driver 
repositories. 
 
In the SDK, open the 
“Preferences” dialogue by 
choosing “Window  
Preferences” from the menu 

bar.  Select the “Xilinx SDK  
Repositories” pane, as shown 
in the screenshot. 
 
Add a new repository to the list 
by clicking the “New...” button 
next to the “Local Repositories” 
list, and point to the folder that 
you created for your custom 
drivers.  The folder you choose 
here should be the level of the 
file system above the “drivers” 
folder. 
 
Click the “Rescan Repositories” button, followed by “OK”.  This setting will provide visibility 
of your custom driver to the SDK tool, and will enable your driver to be selected in the BSP 
settings.  There is an addition list shown on this screen called “Global Repositories”; this 
performs an identical function to that of adding the drivers to the “Local Repositories” list, 
with the exception that the drivers will be visible to any SDK workspace that is created or 
opened in the future.  This is a powerful feature if your goal is to create a single repository 
of custom drivers for multiple custom IPs, and still have them routinely available and visible 
to all of your SDK workspaces. 
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Selecting a Custom Driver in the BSP 

The task of creating and configuring your custom IP and custom driver is now complete, and 
the Vivado and SDK tools will now have visibility of them.  The final stage is to select your 
custom driver and allocate it to be automatically 
compiled as part of the BSP for your user 
application. 
 
Right click on the Board Support Package in the 
Project Explorer that you created earlier 
(standalone_bsp_0), and choose the “Board Support 
Package Settings” menu item from the bottom of the 
list.  Choose the “drivers” pane from the choices 
shown on the left of the window, and then identify 
the instance of your custom IP in the configuration 
table shown.  It will now be possible to select your 
custom driver from the drop down menu in the 
“Driver” column of the table.  If you had created 
multiple folders representing different versions of the 
same driver, you will also be able to choose the 
version of the driver in the “Driver Version” column. 
Click OK and the BSP will automatically be re-
generated.  If you now examine the “include” and 
“libsrc” folders in the BSP’s source tree, you will find 
that your header files and C source files have been 
automatically copied and compiled into the BSP.  
There is no longer any requirement for custom driver 
functions to be added to the list of sources for each 
application, because they are now included in the 
BSP alongside the drivers provided by Xilinx for 
supplied IP. 

Conclusion 

That’s it!  You have now created a custom IP peripheral, added it to a user design, and 
created custom drivers for the IP.  The Xilinx tools allow seamless integration of custom IP 
into the Vivado and SDK tools, offering the same levels of automation and flexibility for 
content created outside of the Xilinx catalogue. 
 

 
 Design files are supplied with this document, showing how many of the concepts 

described can be implemented.  Please visit the website to download them. 


