Using the Embedded MicroBlaze Processor

Acknowledgement

This module is derived from labs developed by Xilinx.

Goal

* Use the Vivado tool to build a basic MicroBlaze system. This will consist of a MicroBlaze

processor, on-chip memory, GPIO, and a UART.
* Beable to use a C program in the SDK to interact with the processor.

* Use some software debugging tools in an embedded processor environment.

Requirements

* Xilinx Vivado software
* Xilinx SDK software
* Xilinx Nexys 4 DDR board and a programming cable

* Enough disk space for the project files

Background

Soft processors, such as MicroBlaze, are implemented using programmable logic (FPGA LUTs and
registers) and can be custom configured to suit the software application they run. In contrast, hard
processors, such as the Intel 17 CPU, are implemented as application-specific integrated circuits
(ASICs), and their functions are fixed after manufacture. Soft processors are common in embedded
systems built with FPGAs, and they usually provide high-level control logic for the system. They can
be quickly and easily programmed with a C-based language, and have the advantage of customization.

For example, the user can choose between various instruction and data caches, as well as choose to

include custom instructions for faster execution of an application.
Introduction

In this tutorial you will create a simple MicroBlaze system for an Artix-7 FPGA using the Vivado IP
integrator.

The MicroBlaze system includes native Xilinx IP such as the:

. MicroBlaze processor

. AXI Timer

. UARTLite

. Debug Module (MDM)

. Proc Sys Reset
. Interrupt Controller
. Local memory bus (LMB)

These are the basic building blocks used in a typical MicroBlaze system.

In addition to creating the system described above, this tutorial also describes the development of a
small application that you develop in the Xilinx Software Development Kit (SDK) in the Vivado
Design Suite. The application code developed in the SDK prints “Hello World” on a terminal.

This tutorial targets the Xilinx Nexys 4 DDR FPGA Evaluation Board, and uses the 2014.1 version of
Vivado Design Suite. To test your system on a Nexys 4 board, you must use a terminal emulation

program such as TeraTerm, Hyperterminal, minicom or the Terminal in the SDK. You must also ensure

that you have the device drivers for the board installed correctly.

1. Create a Project

1. Invoke the Vivado IDE
2. From the Getting Started page, select New Project

3. In the Project Name dialog box, type the project name and location.

4. In the Project Type dialog box, select RTL Project.
5. In the Add Sources dialog box, ensure that the Target language is set to Verilog.
6. Choose xc7al100tcsg324-1 in the Default Part dialog box.

7. Click Finish to finish creating the project.

2. Create an IP Integrator Design

1. From Navigator > IP Integrator, select Create Block Design

Flow Navigator « Project
A = = Sources
n [0 pd
4 Project Manager __LR =
& Project Settings LR gz:
&% Add Sources _ . Siny

1F IP Catalog &

4 [P Integrator

-
4

4% Create Block Design

Open Block De

Create Block Design

2. Specify the design name and click OK.

3. Right click anywhere in the Diagram and select Add IP.

Ctrl+E
Delets
Cirl+C
. Ctrl+V
k Select All Cirl+ A
£ Add IR, Ctrl+1
Crej:ti Hierarchy..
Create Comment
Create Fort. Crrl+K
Create Interface Port... Ctrl+L
B Save as PDF File..

4. In the Search field, type microblaze to find the MicroBlaze IP, then click Enter.

Search: | C- micr (3 matches)

&1 w2
Name Version

i d
{F MicroElaze MCS .0

Customize the MicroBlaze Processor

1. In the IP canvas, double-click the MicroBlaze Processor diagram. The Re-customize IP dialog box

opens up.

2. Leave everything in page 1 as default, and click Next.

3. On page 2 of the Re-customize IP dialog box:

* Check the Enable Barrel Shifter option.

* From the pulldown menu, in option Enable Floating Point Unit select BASIC.

* From the pulldown menu, in option Enable Integer Multiplier select MUL32 (32-bit).
* Check the Enable Integer Divide option.

* Check the Enable Branch Target Cache option.

* Click Next.

o Re-customize IP

MicroBlaze (9.3) '
il Documentation (5 IP Location ¥ Advanced
IP Symbol Resources Component Name |mbisystemim\crob\azeioio \
Frequency General
B Area
B Ferformance Instructions
Resource Estimates [# Enable Barrel Shifter
Enable Floating Foint Unit |BASIC =
100.0 Resource Graph nakle Floating Foint Uni
Enable Integer Multiplier |MUL32 -
S0.0
[Enable Integer Divider
80.0
70.0 [1 Enable additional Machine Status Register Instructions
& 60.0 [Enable Pattern Comparator
=
<
g 50.0 [¥] Enable Reversed Load/Store and Swap Instructions
o
40.0 [Enable Additional Stream Instructions
30.0
Optimization
20.0
[select implementation to optimize area (with lower instruction throughput)
10.0T—
[Enable Branch Target Cache
0.0
0.0 Branch Target Cache Size |DEFAULT -
Resource Usage Fault Tolerance
(@) Auto Enable Fault Tolerance Support
BRAM: DSPABEL: SHES U 2
1 5

| =Back Mext = Page 2 of 4
‘ 0K | Cancel

4. On Page 3 of the Re-customize IP dialog box, ensure that the MicroBlaze Debug Module is enabled
(i.e. BASIC), and click Next.

© Re-customize IP

MicroBlaze (9.3) ‘

il Documentation [IP Location ¥4 Advanced

IP Symbol Resources Cormponent Name \mbisystemimi:roblazeioio |
Freguency Debug
B Area
B Ferformance MicroBlaze Debug Module Interface |BASIC -
Resource Estimates Hardware Breakpoints
Nurmber of PC Breakpoints [0..8]
10/Resource Graph Number of Write Address Watchpoints I:l [0..4]
90.0 Numnber of Read Address Watchpoints l:l [0..4]
O Performance Monitoring
70.0 Number of Performance Monitor Event Counters [0..48]
gl 60.0 Number of Performance Monitor Latency Counters [0..7]
=
g 50.0 Performance Monitor Counter Width 32 "
&
40.0 Trace & Profiling
30.0 Trace Buffer Size |SkB -
20.0 Profile Buffer Size [NONE ~
10.0T—
0.0
0.0
Resource Usage
BRAM: DSPABEL:
1 5

[=Back | Page 3 of 4
| 0K ‘ Cancel

Note: The MicroBlaze Debug Module core enables JTAG-based debugging of one or more MicroBlaze

processors.

5. On Page 4 of the Re-customize IP dialog box, ensure that the Enable Peripheral AXI Data Interface

option is checked, and click OK to re-configure the MicroBlaze processor

B Re-customize IP

MicroBlaze (9.3) '

! Documentation [IP Location ¥ Advanced

IP Symbol Resources Component Name \mbisystemimlcroblazeioio |

Frequency Buses
Bl frea
B Ferformance Local Memary Bus Interfaces

Resource Estimates [¥] Enable Local Memory Bus Instruction Interface
[¥] Enable Local Memory Bus Data Interface
100.0

90.0 A3 and ACE Interfaces

80.0 Select Bus Interface A~

70.0 [Enable Peripheral AXI Instruction Interface
g
= 60.0 [l Enahle Peripheral A% Data Interface
3
E 0.0 Stream Interfaces

40.0 Number of Stream Links [] [0.18]

Other Interfaces

[Enable Trace Bus Interface

10.09 Lockstep Interface |NOME e

Resource Usage

BRAM: DSP4BEL:
1 5

| =<pgack | Wext= | Pagedof4
| OK ‘ Cancel
|

Now, the MicroBlaze processor diagram should look the figure below.

microblaze_0

e

—|||==INTERRUPT DLMB & ||—

e Micro3iaze 1L < [F—

——Reset

MicroBlaze

6. Click Run Block Automation.

i Diagram X | B Address Editor X |

"]| 1—?; mb_subsystem

Q¢ @ Designer Assistance available. Run Block Automation Run Connection Automation

< ¥ /microblaze_1

o nr& microblaze_1

: MB <

. [|| - INTERRUPT DItM; i
- [EVETIN ¥ (RS, 7 St i

The Run Block Automation dialog box opens up.

- Run Block Automation

| MicroBlaze connection automation generates local memory of selected size, and caches
* can be configured, MicroBlaze Debug Module, Peripheral AXl interconnect, Interrupt
Controller, a clock source, Processor System Reset are also added and connected as
needed.
Instance: /microblaze_0
Local Mermory: 54KB -
| Local Memory ECC: MNone -

| Cache Configuration: |None ~

Debug Only - |

Cebug Module:

Beripheral AX Port: |Enabled -

Interrupt Controller: [

Clock Connection: [New Clocking Wizard (100 MHz) ~

[oK HI Cancel H

7. From the pulldown menu, set Local Memory to 8 KB.
8. Leave the Debug Module option to its default state Debug Only.
9. Leave the Peripheral AXI Port option as Enabled.

Note: By enabling the AXI Port, an IP called AXI Interconnect will be added during Block
Automation. The IP connects one or more AXI memory-mapped Master devices to one or more

memory-mapped Slave devices.
10. Check the Interrupt Controller option.

11. Select the Clock Connection option of New Clocking Wizard(100 Mhz). This will create a clock

signal in the block design.

The generated basic MicroBlaze system should now look like below.

microblaze 0 =
= microblaze 0_local_memory
L +
- @t S 8.
M i s} ;
icra3iaze” | -l —
Siwiiad | LMB ik
LMB_Rst
MicroBlaze -
mdm_1
MEDEBUG 0 - :
Debug_SYS_Rst| rst_clk_wiz_1_100M
MicroBlaze Debug Module (MDM) | :_syne_clk mb_reset 2 = ’
dk u:iz 1 —lext_reset_in bus_struct_reset[0:0] — microblaze.0_axl-perph
== —aux_reset_in peripheral_reset[0:0] i SOD ax
|||-FELKINL B clk putl L——mb_debug_sys_rst interconnect_aresetn[0:0] T .:ELK =
reset locked dem_locked peripheral_aresetn[0:0] -l RESETH #
Clocking Wizard) Processor System Reset S00_ACLK MDD _AX] - £
) ARESETN
MOD_ACLE -« microblaze_0_axi_intc
MOD_ARESETN -
i +:[-ps_axl
microblaze_0_xlconcat s_axi_aclk
s AXl Interconnect -axl-armm
In0[0:0; SR intt t-}
00] o 1:0) intr(0:0] i —
In1[0:0]
processor_clk
Concat processor_rst

AXI Interrupt Controller

Add peripherals: AXI Uartlite, GPIOs
1. Right click anywhere in the block diagram, Add IP and search for and select the AXI Uartlite.

2. Repeat step 1 but search for AXI GPIO.

3. Repeat step 2 so that you have two GPIO blocks in your design. The reason why there is two GPIO

blocks is that one of them is for switches and another one is for leds so that you can control the leds by

switches.
t Search: [C- uart | (2 matches) Search: |CL.- gpio | (1 match)
Name T | Narmne L WLNY
iF AX] UART16E550 ilinx com..) i{LF AXI GPIO ixilinx.com..,
ik AXl Uartlite dxiline, com..,
| N Do Ll (R—TT IO
Select and press ENTER or drag and drop, ... |5elect and press ENTER or drag and drop, ...

4. Right click one of the GPIO block and click Block Properties. Change the name to gpio_led.

5. Right click the other GPIO block and click Block Properties. Change the name to gpio_switch.

microblaze_0 .
= microblaze_0_local_memary
._I <JANTERRUPT ek "
|| DEBUG M' ms’ 5 S hi L e—— | L]
= aze ILME: 2
' i -] L ——— ||]
[c M_AXILDP. 2 Ili2
- MB_Ok
st
MicroBlaze =
mdm_1
MEDEBUG_0.]+ || jr——
Debug_S¥5_Rst
MicroBlaze Debug Module (MDM)
axi_uartlite_0 micmoblaze_0_axi_periph
i.7:500_AX1
¢——— ALK *
ESETH
rst_clk_wiz_1_100M S00_ACLK MOD_AKI i
doviest sync_clk mi Smicille
S At moo_acik |-k microblaze_0_axi_intc
i —lext_reset_in bus_struct_rese|0:0]
clk_wiz_1 A _ARESETHN -
—taux_reset in peripheral_resetji:0] m T
[l ek mn o ax eun b_delug_sys_rst interconnect_aresetn(0:0] T T } s axiack
eaat lock: _locked heral_aresetni0:0] o Laxiaresetn u
J inte[0:0] i
Clocking Wizard Processor System Heset | o
pr "
1 ! processor_rst
gpia_led AX| Interrupt Control
microblaze_0_xlconcat
0:0]
e dout{1:0]

In110:0]

gpio_switch

Concat

= axiack RO L[|
, axi_aresetn

Troro | Block: gpio Swiiﬁm
Make Connections

1. Connect the interrupt signal of the AXI Uartlite to the In0 signal of Concat, which connects to the

interrupt input of the interrupt controller. Concat is used to concatenate individual signals into a bus

signal.

Move the mouse to the interrupt signal and left click on it, drag it to In0 and release the mouse. You'll

see a green check mark when you do it. That means you can make the connection.

Note that there is one input of the Concat block that is not connected and there is no other input to
connect to the block. Leaving the unconnected input open will result in critical warnings and
ultimately an error when you reach the SDK. There are several ways to deal with this particular
situation. Can you suggest some? Double click on the Concat block and change the number of ports to

1 in the Re-customize IP window. Click OK.

2. Double click the Clocking Wizard and change the Source of Primary clock input to Single ended
clock capable pin. The clock supplied to the FPGA will use a single wire instead of a differential

signal requiring two wires, which is more often used for very high speed clocks. Click OK.

Component Name | mb_system_clk_wiz_1_0

Clocking Options Output Clocks MMCM Settings Port Renaming Summary

Primitive

@ MMCM O PLL

Clocking Features litter Optimization
¥ Frequency Synthesis [Minimize Power ® Balanced
[¥] Phase alignment []spread Spectrum O Minimize Output Jitter

[Dynamic Recanfig [Dynamic Phase Shift D D g Jidkey il g

[safe Clock Startup

Dynamic Reconfig Interface Options

@ Axldlite O DRP

Input Cleck Information

Input Clock Input Frequency(MHz) Jitter Options Input Jitter Source
Primary () Aute) [100.000] |10.000 -800.000 (8l ~ [0.010 Single ended clock capable pin - =
[| Secondary TS 100.000 0.010 Single ended clock capable pin

3. Click on Run Connection Automation and choose clk_wiz_1/clk_inl. Make the input clock

external.

4. Click on Run Connection Automation and choose clk_wiz_1/reset. Make the clock reset active

high.

5. Click on Run Connection Automation and choose rst_clk_wiz_1_100M/ext_reset_in. This makes

the external reset external.

6. Click on Run Connection Automation and choose axi_uartlite_0/S_AXI. Leave the clock

connection as Auto. Click OK.

This connects the interface signals on uartlite to the microblaze signals.

' Run Connection Automation

o Connect Slave interface (faxi_uartlite_0/5_AX1) to a selected Master address space.

Master: imicroblaze_0 (Periph}

Clock Connection (for unconnected clks): |auto -

|| oK ||| Cancel J

7. Click on Run Connection Automation and choose axi_uartlite_ 0/UART. Click OK. This makes

the UART interface external.

8. Double click on gpio led and a configure box pops up. Check All Qutputs options and this makes
the external signals all outputs. Change the GPIO Width to 2 as we only need to use 2 leds for this lab.

If you need more leds, you can change the width to the value you wish.

Re-customize IP

I AXI GPIO (2.0) ‘

Eﬁ') Documentation |2 IP Location

[show disabled ports Componeant Mame |mb_system_a}{i_gpio_0_0 |
[=]
i GFIO
i 1Al Inputs
] Al Outputs
|
P10 wich .32
Default Output Value |0x00000000 [0%00000000, O<FFFFFFFF]
| Default Tri State Walue |0:FFFFFFFF | [0:00000000,0xFFFFFFFF]

[] Enahle Dual channel
GRIC||

| GPIO 2
| O &l Inputs
|

O &l outputs
i GPIO Wicth [1..32]
i Default Output Walue [0x00000000 | [0x00000000, DxFFFFFFFF]
i Default Tri State Value [0xFFFFFFFF | [0x00000000, DxFFFFFFFF]

[] Enable Interrupt

[+]

LI+

|___ox I cancel |

8. Double click on gpio_switch and a configure box pops up. Check All Inputs options and this makes
the external signals all inputs. Change the GPIO Width to 2 as we only need to use 2 switches to

control 2 leds.

9. Click on Run Connection Automation and choose gpio_switch/S_AXI. Leave the clock

connection as Auto. Click OK.

10. Click on Run Connection Automation and choose gpio_led/S_AXI. Leave the clock connection

as Auto. Click OK.

11. Expand the GPIO port on gpio_switch by clicking the plus sign. Right click on gpio_io_i and

choose make external.

12. Expand the GPIO port on gpio_led by clicking the plus sign. Right click on gpio_io_o and choose
make external.

13. Click on [} to validate your design. Or simply just press F6. If you followed every step

above, it should say validation successful shown below.

)

Walidation successful. There are no errors or critical warnings in this design.

The entire design should look like below except that the blocks may be in different positions.

microblaze 0_axi periph

microblaze 0 axi intc

microblaze 0 xiconcat
System Met: axi_uartlite_0_interrupt} axi_vartlite 0
Toncal =D uart nl
microblaze 0 AXi Uarllite
" DLME et
rst_clk_wiz 1 1001 3 s :
LB [microblaze_0_local_memory
Micra3laze | w4 i .
reset_rtl 0 [I Can il “DLMB
chk_vilz_1 Microblaze (-
clock_rtl [T 1 —::Im
reset_rtl [T =
gpio switch
gpio_jo_if1:0] O
> apio o _ol1:0]

AN GPIO

Memory-Mapping

1. Click on Address Editor to map the address. Expand all lines.

2. Map your memory as follows. Make sure that your local memory starts at 0x00000000 and memory

size 1s 8KB. Otherwise, it will complain after you transfer your design to the SDK.

Z= Diagram X @ Address Editor x

Y cell | Interface Pin | Base Name |Offset Address| Range | High Address
= | 1F microblaze_ 0
= M Data (32 address bits : 4G)
E == microblaze_0_axi_intc S_axi Reg 0x41200000 G4k Ox 41 20FFFF
= = microblaze_0_local_memory/dimb_b... SLMB Mem 0% 00000000 8K 0x0O001FFF
. = gxi_uartlite_0 S_AX] Reg 0x 40600000 B4k Ox 4060FFFF
= gpio_led 5_AX Reg Ox40000000 54K Ox4000FFFF
m gpio_switch S_AXl Reg 0x 40010000 G4k Ox 400LFFFF
M Instruction (32 address bits : 4G)
L == microblaze_0_local memoryfilmb_br... SLME Mem 0% 00000000 3K 0x0O001FFF

Creating Constraints

1. Click on Add Sources in the Flow Navigator box and choose Add or Create Constraints then click

Next.

2. Click on Create File and give it a name. Click OK and then Finish.

3. Open up the constraint file you just created and copy the code below, then save it. You can find the

file in the Sources tab under Constraints. Double click on the file name to edit it.

Clock signal

set_property -dict { PACKAGE_PIN E3
#I0_L12P_T1_MRCC_35 Sch=clkl100mhz

IOSTANDARD

create _clock -add -name sys_clk pin -period 10.00

##Switches

set_property -dict { PACKAGE_PIN J15
#I0_L24N_T3_RS0_15 Sch=sw([0]

set property -dict { PACKAGE_PIN L16
#I0 _L3N_TO DQS_EMCCLK_14 Sch=sw[1]

set_property -dict { PACKAGE_PIN T18
#IO_L7N_T1_D10_14 Sch=sw[5]

set_property -dict { PACKAGE_PIN U18
#I0 L17N_T2_Al3 D29 14 Sch=sw[6]

LEDs

set property -dict { PACKAGE_PIN H17
#I0 L18P T2 A24 15 Sch=led[0]

set _property -dict { PACKAGE_PIN K15

IOSTANDARD

IOSTANDARD

IOSTANDARD

IOSTANDARD

IOSTANDARD

IOSTANDARD

LVCMOS33 } [get_ports { clock_rtl }];

-waveform {0 5} [get_ports {clock rtl}];

LVCMOS33 } [get ports { gpio_io i[0] }];

LVCMOS33

LVCMOS33

LVCMOS33

LVCMOS33

LVCMOS33

[get _ports { gpio_io i[1l] }];

[get_ports { reset_rtl 0 }];

[get_ports { reset_rtl }];

[get_ports { gpio_io o[0] }];

[get_ports { gpio_io o[1l] }];

#I0 L24P_T3_RS1 15 Sch=led[1]
##USB-RS232 Interface

set property -dict { PACKAGE_PIN C4 IOSTANDARD LVCMOS33 } [get_ports { uart_rtl rxd }];
#I0_L7P_T1_AD6P_35 Sch=uart_txd_in

set_property -dict { PACKAGE_PIN D4 IOSTANDARD LVCMOS33 } [get ports { uart_rtl txd }];
#I0_L11N_T1_SRCC_35 Sch=uart_rxd_out

Note that the reset signals are switch 5 and 6 on the board.

Wrap the Design

1. In the Sources box, click IP Sources. Right click your design and choose Create HDL Wrapper to

wrap your design. In this example, the design is called mb_system so right click on mb_system.

P—

Sources — O ¥
Q= |2ad
@—= Block Designs (1

L mb_system

Hierarchy IP Sources Libraries 4 » B

2. A window pops up as shown below. Leave the options as default then click OK.

8 Create HDL Wrapper

| You can either add or copy the HDL wrapper file to the project. Use copy
~ option if you would like to modify this file.

Options

) |Copy generated wrapper to allow user edits

@ Let Vivado manage wrapper and auto-update

[Ok, | | Cancel

3. Navigate through the hierarchy of the design in the Hierarchy tab. You will notice that a top-level
verilog file is created by the HDL wrapper.

4. Click on Run Synthesis.
5. Click on Run Implementation.

6. Click on Generate Bitstream.

3. Export to SDK

After generating the bitstream, click on File on the top and choose Export, then choose Export
Hardware for SDK. Make sure you check Include bitstream. If the option is gray, simply open your
Implemented Design under Implementation in the Flow Navigator and do the export again. Also make

sure you check Launch SDK so that after export, the SDK program will launch automatically.

0 Export Hardware for SDK

6_ Export hardware platform far SDE.

Options
Source: | f mb_system. bd - |
Export to |o I =lLocal to Project= hd |
Workspace: |o | =Local to Project= - |

[#] Export Hardware

[#] Include bitstream (Mote: an implemented design must be loaded)

[l|Launch SDK|

[Ok]l Cancel]

After the SDK first launches, double click system.xml and you should see something like below.

[n kg @ @y @- (-0 Q- | % |0 HEE | S| S - B B/

[Project Explorer % = B/ | g system.xml & = 8|8oux " @ma] =3

B & ¥ ° | hw_platform_0 Hardware Platform Specification FrerirE A,
v 8 hw_platform_0
[2 mb_system_wrapper_bd.bmm
[mb_system_wrapper.bit

Design Information

Target FPGA Device: 73100t
Created With: Vivado 2014.1

B svstemaml Created On: FriJun 611:55:142014
Address Map Ffor processor microblaze_0
axi_uartlite_0 0
gpio_led 0
gpio_switch ¢
microblaze_0_axi_intc 0
microblaze_0_local_memory_dlmb_bram_iF_cntlr ©
microblaze_0_local_memory_ilmb_bram_if_cntlr 0
1P blocks present in the design
axi_uartlite 0 axi_uartlite 20
clk_wiz_1 clk_wiz 5.1
gpio_led axi_gpio 20
gpio_switch axi_gpio 2.0
mdm_1 mdm 31
microblaze_0 microblaze 93
microblaze_0_axi_intc axi_intc 41
microblaze_0_axi_periph_xbar axi_crossbar 24
microblaze_0_local_memory_dlmb_bram_if_cntlr Imb_bram_if_cntlr 4.0
microblaze_0_local_memory_dimb_v10 Imb_v10 30
microblaze_0_local_memory_ilmb_bram_if_cntlr Imb_bram_if_cntlr 4.0
microblaze_0_local_memory_ilmb_v10 Imb_v10 3.0
microblaze_0_local_memory_Imb_bram blk_mem_gen 8.2
rst_clk_wiz_1_100M proc_sys_reset 5.0
i Target Connections & =0
' N
Overview| Source
4 Local [default]
[Problems 32 . &) Tasks| Bl Console| = Properties| $ Terminal ~ = B/ |E sbKkLog 2 B &=O
oitems

11:55:23 INFO : Processing command line option -hwspec /home/
Description Resource Path Location Type

Creating a Hello World program

1. Right click on hw_platform_0 in Project Explorer -> New -> Project

2. Xilinx->Application Project->Next

New Project

Select a wizard p—
Wizards:

| |
» = General

(= CfC++

k= Java

¥ = Xilinx

& application Project

if: Board support Package
[£4 Hardware Platform Specification

@ < Back m | Cancel | Finish

3. Enter the Project name and choose the OS Platform to be standalone. Click Next.

. New Project

Application Project

Create a managed make application project. &

Project name: |mb_simple|]

[Use defaulk location

Target Hardware

Hardware Platform | hw_platform_o

s | | New
Processor microblaze_0 =
Target Software
Os Platform standalone 2
Language ® C) C++
Board Support Package @ create New |mb_simple_bsp
@ < Back Next > Cancel Finish

4. Choose Hello World as your template. Click Finish.

5. Connect your board to the computer and turn it on.
6. Click Xilinx Tools at the top -> Program FPGA to program your board.

Note: Make sure you switch on sw5 when you program the FPGA. sw5 is the reset in this design and

SDK will give you an error saying the design is under reset if you do not turn it on.

Program FPGA

Program FPGA
specify the bitstream and the ELF files that reside in BRAM memory

Hardware Configuration

Hardware Platform: | hw_platform_0 =

Connection: | Local = | New |

Device: | Select |
Bitstream: |mb_system_wrapper.bit | I_Search...| | Browse.. |
BMM/MMI File: |.mb_system_wrapper_bd.bmm | |Search...| | Browse.. |

Software Configuration

Processor ELF File to Initialize in Block RAM
mb_system_i/microblaze 0 bootloop

® Cancel || P

Connect to UART

1. Click on Terminal View Settings:
View Title: |.Terminal 3] |
2. Click on 1 in the terminal window to choose serial encoding: 150-8859-1 v |
connection. Connection Type:
| serial =
3. Change Connection Type to Serial and leave others as et
default. Click OK. Port: [/dev/ttysol | ~ |
Baud Rate: | 9600 =
Now the program is connected to the board through serial Data Bits: |8 -]
connection. Stop Al <)
Parity: | None =

Serial: (/dev/ttyS0, 9600, 8, 1, None, None - CONNECTED) - Encoding: (1ISO-8859-1) Flow Control: | None =

Timeout (sec): |5 |

| cancel | (NG

Run a C Program

1. Click on Run on the top -> Run Configurations to create a new run session.

2. Choose Xilinx C/C++ application(GDB) and click new on the top left corner to create a new

launch.

3. In Target Setup, search for your bitstream file. When you search, there will be two bitstream files.

One is wrapper.bit and other one is download.bit. Choose wrapper.bit and click Ok.

0 Run Configurations

Create, manage, and run configurations

@ [Application]: Application path is empty.

= B
CEx B 3p-

@ | || (@ Target Setup . FJ Application| % STDIO Connection| k? Profile Options | E Common

[E] ¢fc++ Application
[€] ¢/c++ Remote Application
& Launch Group
A Remote ARM Linux Application
iETarget Communication Framew
v £ Xilinx ¢/C++ application (GDB)
£ New_configuration

Filter matched 7 of 10items

@

Name: \mb_simple

Debug Type: | Standalone Application Debug %

Connection: | Local

Device:

Hardware platform:
Processor:

Bitstream File:

Reset Processor

2 || New
Select

hw_platform_0

microblaze_0

mb_system_wrapper.bit

Summary of operations to be performed

1. Reset processor.

Following operations will be performed before launching the debugger.

W

\Search... Browse...

Apply | Revert

Close

4. In Application, browse the Project Name and choose your project. In this example, it is mb_simple.

You will notice that the Application file is automatically selected under Debug folder.

(> Run Configurations

Create, manage, and run configurations @

-+

& X B 3~ Name: |[mb_simple

[iie

@| || [® Target Setup (7] Application . ¥’ STDIO Connection| k¢ Profile Options| = Common

[E] ¢/c++ Application
[E] ¢/C++ Remote Application
Launch Group
& Remote ARM Linux Application
[ETarget Communication Framew
v & Xilinx C/C++ application (GDB)
% New_configuration

Project Name: \mb_simple Browse...

Application: |Debug/mb_simple.elf Search... Browse...

"] Do not download program to memory

Data Files to download before launch

File Address Add
Remove
Relative
Appl Revert
Filter matched 7 of 10items = PPy
@ Close [Run

5. In STDIO Connection, check Connect STDIO to Console if you want to see your program output

in the Console instead of Terminal windoe. If you do, choose your USB port.

Note: The USB port depends on your computer. It might be /dev/ttyUSB1 or /dev/ttyUSBO. If you don't
see any USB port, check your console where you ran your program. If something like 'Could not create
LCK...ttyUSBI1 because it already exists' shows up, delete the file and then do Run Configuration

again.

x Run ConFigurations

)

Create, manage, and run configurations

CExXx B3~ Name: |mb_simple
@i [® Target Setup [Appii_(ation Y’ STDIO Connection |y P_ro_fiie _Op_tions. E Common|

[E] ¢/C++ Application [[Connect STDIO to Console|

[E] ¢/c++ Remote Application

Launch Group Port: | /dev/ttyUSB1 =)

& Remote ARM Linux Application | | BAUD Rate: | 9600 =

[ETarget Communication Framew)

v &

& Xilinx C/C++ application (GDB)
%, New_configuration

Appl
Filter matched 7 of 10 items l PO N |

®

Revert

Close [Run |

6. Leave everything else as default and click Run.

You will see Hello World is printed in the Console.

! Problems | ¥ Tasks | Bl Console &2 E Properties | ;
<terminated=> mb_simple [Xilinx C/C++ application (GDB)]

Hello World

Controlling LEDs using Switches

1. Open up your helloworld.c file under source file

5§ system.xml |l"m system.mss | lgl helloworld.c 22

- S
¥ (& hw_platform_o0
download.bit
mb_system_wrapper_bd.bmm
mb_system_wrapper.bit
& system.xml
¥ £ mb_simple
> 4 Binaries
» il Includes
» = Debug
¥ &= 5IC
» [n] platform_config.h
> [g platform.c
+ [n platform.h
& Iscripk.ld
» M mb_simple_bsp

@ * Copyright (c) 2009-2012 Xilinx, Inc. All rights reserved.[]

=1 /*
helloworld.c: simple test application

This application configures UART 16550 to baud rate 96600.

*
*
*
* PS7 UART (Zyng) is not initialized by this application, since
* bootrom/bsp configures it to baud rate 115200

*

¥ e e e e e e e e e e e e e m e mmm————————— = -

¥ uartnss5@ 9600

* uartlite Configurable only in HW design
* ps7 uart 115280 (configured by bootrom/bsp)
¥

#include <stdio.h>
#include "platform.h"

void print(char #*str);
=int main()
. init platform();
print("Helle World\m\r");

return @;

2. Copy the following code to helloworld.c

#include <stdio.h>

#include "platform.h"

volatile unsigned int * led = (unsigned int *)0x40000000;
volatile unsigned int * swt = (unsigned int *)0x40010000;

void print(char *str);

int main()

{
init_platform();
print("Hello World\n\r");

while(1)
*led = *swt;
return O;

}
In this example, the base address of the leds is 0x40000000 and the base address of the switches is

0x40010000. The infinite while loop keeps checking the value of the switches and assign them to the

leds. This way you can control the leds by switches.

3. Click Run.
4. Change the value of the switches and see the changes of leds.
Note: Make sure you have gcc compiler installed in your computer otherwise the program will not

compile after you change the code.

