Nexys 4 DDR External Memory

Acknowledgement

This tutorial is derived from a tutorial from Digilent Inc.

Goal
* Use IP integrator to connect and configure the external memory controller
* Beable to use a C program in SDK to interact with the external memory
* Use some software debugging tools in an embedded processor environment.

Requirements

¢ Xilinx Vivado software

Xilinx SDK software

Xilinx Nexys 4 DDR board and a programming cable

Nexys 4 Board Files

* Enough disk space for the project files

Background

The external memory on the The Nexys4 DDR board is available in two forms: volatile DRAM and
non-volatile flash. This tutorial will focus on using the faster DRAM module as an AXI peripheral.

Since the DRAM is external to the FPGA, logic must be created to communicate with the memory in
the form of a memory controller. This memory controller generates a clock for the RAM as well as

manages the transfer of data on both edges of the clock for double data-rate operation. In addition, it

presents a simple interface for the rest of the system to access the memory.

The Micron MT47H64M16HR-25 DDR2 module on the Nexys 4 DDR is a 1 Gb (gigabif) or 128 MB
(megabyte) memory with 16-bit wide data bus. This provides much more memory capacity than is
available on the FPGA itself, but the bandwidth is somewhat limited since all data must pass through
the 16 data pins connecting the two devices.

1. Import the Board Package

The Xilinx memory interface generator is highly configurable and requires detailed information about
the memory to function correctly. To simplify this process, the settings have been packaged in a board
file by Digilent.



1. Unzip the board_files.zip file.

2. Invoke the Vivado IDE.

3. Bring up the Tcl Console at the bottom of the window and enter:
set_param board.repoPaths<path-to-board-files>/board files/

replacing <path-to-board-files> with the location of the unzipped directory. The board file will have all
the pin connections defined for the switches, LEDs, memories, etc. defined so that you do not have to
manually build the constraints file to define the pin locations.

2. Create a Project
1. Create a New Project.
2. At the Default Part dialog, specify Boards and select the Nexys 4 DDR board.

3. Finish creating the project.

Default Part

Choose a default Xilink part or board for vour project. This can he '
changed later.

Select: & Parts

4 Filter

1

1

vendaor: |AII

Display Hame: |AII

Eoard Rew |Latest =
Feset All Filters |
Search: | |
Display Mame | wendor | Board Rew
B MNerysad DDR digilentinc.com C.1
B ZedBoard Zyngq Evaluation and Development Kit em.avnet.com d
B Arti-7 AC701 Evaluation Platform Hilirs cam 1.1
B Kintex-7 KCFO0S Evaluation Platform wilit, corm 1.1
B virtex-7 WL 707 Evaluation Platform sl carm 1.1
B virtex-7 WwC 708 Evaluation Platform Hilinx com 1.0
B Z¥NQ-7 ZC702 Evaluation Board Hlirne com 1.0 [~]
[»]

= Back || Menxt = ] | Cancel |




3. Create an IP Integrator Design

1. From Naviator > IP Integrator, select Create Block Design.

Basic MicroBlaze System
1. Right click anywhere in the Diagram and select Add IP and add a MicroBlaze block to the design

2. Run Block Automation for the MicroBlaze and use the default settings and press OK

MicroBlaze connection automation generates local memory of selected size, and
caches can be configured, MicroBlaze Debug Module, Peripheral A4 interconnect,
Interrupt Controller, a clock source, Processor System Reset are also added and
connected as needed,
Instance: /microblaze_0

Local Mermory: SKB

Local Mermory ECC: Mone -

Cache Configuration: |Mone -~

Debug Only - |

Debug Module:

Eeripheral AX Port: Enabled =

Interrupt Controller: [

Clock Connection: |New Clocking Wizard (100 MHz) = |

(]34 J | Cancel

Clock Customization

The processing system will operate at 100 MHz, but the memory controller requires a 200 MHz input
clock to generate the appropriate clock for the external DRAM. We will create this next.

1. Double click the Clock Wizard (clk wiz 1) block to re-customize it.

2. Under the Board tab, and Associate IP interface with board interface. Use the Board Interface
pull-down menu for IP Interface CLK_IN1 and select sys clock.



Component Mame |design_1_c|k_wi2_l_ﬂ

Board Clocking Options  Output Clocks MMCM S 4 ¢ B

Aszociate P interface with board interface

IP Interface Board Interface

CLE_IM1 sys clock -
CLE_INZ Custom .
EXT _RESET IN Custom -

4. Select the Output Clocks tab.
5. Check the radio box for Output Clock clk_out2 and enter a requested clock frequency of 200.

6. While in the Output Clocks tab, change the Reset Type to Active Low.



Companent Name |design_1_c|k_wi2_l_D

Board Clocking Options

Output Clocks MMCM Settings

Port Renarming  Sum

The phase is calculated relative to the active input clock,

Phose Uempees)
__El___gl_k_u.l.tl——— Tentonng —-AQD_QQ_C_L-‘ 0.000 0
{rIZ] clk_out2 200,000 200,000 > 0,000 B
E‘Enz:amg__ 100,000 L 0.000 B
Oclk_out4 100,000 0,000 B
Oclk_outs 100,000 0,000 B
Oclk_outé 100,000 0,000 B
O elk_out? 100.000 0.000 B

(] USE CLOCK SEQUENCING

Clocking Feedback

Source

Output Clock

Sequence Number

V] reset [ power_down

Enable Optional Inputs / Outputs

¥ locked [ clkfbstopped

UART and Memory Controller

1. Right click anywhere in the Diagram and select Add IP and add an AXI Uartlite block to the

design.

[l input_clk_stopped

@ Automatic Contral On-Chip
O Automatic Contral Off-Chip
O User-Cantrolled On-Chip

O User-Controlled off-Chip

Reset Type

O Active High

(@ Active Low

2. Repeat the process to search for and add a Memory Interface Generator (MIG) peripheral.



Search: |C- memory interface | {1 match)

| MNarme 1 LMW
{LF Memory Interface Generator (MIG 7 Serieg) iHlinxcomipimig_7series: 2.0

A ] [+]O]

Select and press ENTER or drag and drop, ESC to cancel

3. Run Block Automation for the memory controller (/mig_7series 0) component. This configures the

block for the DRAM on the Nexys 4 DDR board. Error [BD 41-1273] may appear during automation,
but can be safely ignored.

microblaze 0

microblaze_0_local_memory

dm_1
morn._ ||| 4 INTERRUPT
MBDEBUG_0+4- ||j——x||| 4 DEBUG - = ~ oLMe 4 || [||+oLma
B o MicreSBlaze wei———iigime
B T : M_AXI_DPdp fi: LMB_Clk
MicroBlaze Debug Module (MDM) LMB_Rst
axi_uartlite_0 Microblaze
rst_clk_wiz_1_100M
Kk wiz 1 owest_sync_clk mb_reset
AXl Uartlite CWZ =ext_reset in bus_struct reset[0:0]
mia 7series 0 =—aux_reset_in peripheral_reset[0:0] m
9. = mb_debug_sys_rst interconnect_aresetn[0:0] s
DDR2 d locked ipheral tn[0:0
s A d +t | em_locke peripheral_aresetn[0:0] s
ul_c Sync_rs!
Bt Sy Clocking Wizard
ui_clk =

Processor System Reset
mmem_locked

init_calib_complete

Memory Interface Generator (MIG 7 Series)

At this point you should have a design similar to:

Making Connections

Automatically make connections in your design |
the left to display its configuration options on tF

Q, ¢ Al Automation (6 out of & selected)
o IF axi_uartlite_0
i 5 _Axl
{F UART
e IF clk_wiz_1
L = clk_inl
& {F mig_7series_0
{5 _Axl
= 5ys st
o IF rst_clk_wiz_1_100M
L] = ext_reset_in

ik k4

1. Run Connection Automation and select All Automation

2. Connect the resetn of the clock wizard to the reset on the diagram. You can drag a wire from the pin
to the reset signal.



AX| Uartlite

reset

sys_clock [_5—

Connect from 'resetn’ port to 'reset 1' nek

CIK_ WIZ_1

locked

Clocking Wizard

3. Connect the clk_out2 of the clock wizard to the sys_clk_i of the memory interface generator.

clk_wiz_1

clk_outl
clk_out2

clk_in1
resetn

Clocking

rTy{_?serles_O
= DDR24p
= argl AXI ) I
g ui_clk_sync_rst
s_rst ~ul 2
‘£ = . ui_clk
sys_clk_i
mmcm_locked -
aresetn . o
init_calib_complete
Connect from ‘clk_out2' port t

e—— s_clk_i' port i
Memory |ﬂterf' \S_Y\_._\..lf_li?\..luLul YT SerIES)

4. Select the DDR2 bus on the memory controller, right click and select Make External. To propagate
these signals to the pins of the FPGA.



Va
: S |
e = Block Interface Properties... Ctri+E
5 I:II:II:I S_AXI . X Delete Delste
.- ui_clk sync rst=  copy ik
- SYS I'St B Paste Ctrlv
. . &, Search... Cirl+F
. UI—C”( & select all Chria
Sys_clk_l i Add P, Ctrl+
mmcm_locked [ = wmake Btemal CtraT
e a resetn Q'Validate Design F&
|n|t Calib com plete Start Connection Mode Ctri+H
- — Make Connection...
Disconnect Pin
Dizconnect Pin Inside Hierachy
Memory Interface Generator (MIG 7 S¢  create Herarchy..
Create Comnment

mig_7series 0

Build the bitstream

=
1. Click on ¥ to validate your design

6,, Validation successful. There are no errars or critical warnings in this design.

Your design show resemble the following:

mdm_1

MBDEBUG_0 2 ey

rst_mig_7series_0_81M

Processor System Reset

N[0:0] o

——500_ARESETN(0:0]

b—i00_aresemio0) |

H—

M01_ARESETN[0:0]

microblaze_0_axi_periph

MOO_AXI &
MO1AXIZ -

AXI Interconnect

mig_7series_0

—[> DDR2

Mgmory Interface Generator (MIG 7 Sdrfes)

MicroBlaze Debug Module (MDM)

Debug_SYS F ‘ ‘
T

microblaze_0 I L

| & TERRUPT
il

rst_clk_wiz_1_100M

UG

—=clk

sys_clock
reset

Microslaze ‘sl

DLMB ||

||| DLme

M_AX|_DPh i

MicroBlaze

) Clk

Processor System Reset

AXI Uartlite

 Rst[0:0]

axi_vartlite_0

microblaze_0_local_memory

[—— usB_uart

rrupt

2. In the Sources box, click IP Sources. Right click your design and choose Create HDL Wrapper.

Let Vivado manage the wrapper and auto-update.

3. Click on Generate Bitstream. If you haven't saved the project yet, a dialog will appear prompting



you to save. A second dialog will appear stating that no implementation results are available, click Yes

to run through synthesis, implementation and bitstream generation.

=} There are no implementation results available. 0K to launch synthesis and implementation?
o 'Generate Bitstream' will automatically start when synthesis and implementation completes,

[] Don't show this dialog again

Note: Warnings during implementation about the pin constraints may be safely ignored.

4. Test the Memory

The connection automation steps mapped the AXI peripherals on to the address space of the
MicroBlaze processor. This can be viewed in the Address Editor tab of IP Integrator

B Address Editor X = Diagram X

a, Cell | Interface Pin | Base Mame [oOffset Address| Range | High Address |
= | §-1F microblaze_0
=] Bl Data (22 address hits : 4G)
=] = microblaze_0 local_memory/dimb_b... SLME Meam [epgelelelelelelele 8K ~ (xQOQ0LFFF
= gxi_uartlite 0 S Aax Reg O 40600000 Gk ~ GxA0S0FFFF
= mig_Yseries_0 S A memaddr ergetelelelelelele] 128M  ~ OuB7FFFFFF
M Instruction (32 address hits : 4G)
L= microblaze 0 local_memeryilmb_br... SLME Meam [epgelelelelelelele =14 ~ [xQOQ0LFFF

Note that the external memory is mapped with a range of 128 MB at starting address 0x80000000 in
this example. Also notice that the external memory is accessible from the Data port but not Instruction.
In this design we chose to have the AXI data port (M_AXI DP) connected as the master to the
memory. Thus we cannot use the external RAM to store instructions. To use the DDR for instructions,
Enable Peripheral AXI Instruction Interface should be selected and the M AXI IP port should be
connected to the memory slave. This example will use the external RAM only for data storage.

Export the Design to SDK

1. Once the bitstream is generated, open the implemented design

2. Select File > Export > Export Hardware

3. Export the hardware and Launch SDK (File > Launch SDK)



Export hardware platform for software
development tools.

[+ Include bitstream

Export to: |0 =Local to Project= - |

(0] H Cancel |

4. In SDK, Create a New Application Project and give it a name

5. Select Hello World as the Template and Finish the wizard

Creating a Test Program

In this test we will be using the Block RAM (BRAM) on the FPGA to run the program on the
MicroBlaze. This is the microblaze 0 local memory in the block design.

1. Open the ldscript.ld for your hello world program, in this example it is called “test”

v =test

b 34 Binaries

b wl Includes

b = Debug

¥ [ SrC
el helloworld.c
bl platform_config.h
b le platform.c
bl platform.h

[

The linker script describes where certain parts of the program should be mapped. At the top you should
see two memory regions visible to the MicroBlaze, the local BRAM and the external DDR:



Available Memory Regions

Name Base Address Size
microblaze 0 local memory ilmb_bram_if cntl Ox00000050 O0x00001FBO
mig_7series O 0x80000000 0x08000000

Since we want the program to run just on the local use the drop down boxes under Section to Memory
Region Mapping to assign all Sections to the local memory:

Section to Memory Region Mapping

Section Mame Mermory Region

text microblaze O local memory ilmb_bram _if cntlr_microblaze
JAnit microblaze O local_memory ilmb_bram _if cntlr_microblaze
Sfini microblaze O local_memory ilmb_bram _if cntlr_microblaze
.ctors microblaze O local memory ilmb_bram if cntlr microblaze
.dtors microblaze O local memory ilmb_bram _if cntlr_microblaze
rodata microblaze O local memory ilmb_bram _if cntlr_microblaze
.sdataZ microblaze O local memory ilmb_bram _if cntlr_microblaze
.sbss2 microblaze O local memory ilmb_bram _if cntlr_microblaze
.data microblaze O local_memory ilmb_bram _if cntlr_microblaze
.got microblaze O local_memory ilmb_bram _if cntlr_microblaze
.gotl microblaze O local_ memory ilmb_bram if cntlr_microblaze
.gotZ microblaze O local memory ilmb_bram _if cntlr_microblaze
.eh_frame microblaze O local memory ilmb_bram _if cntlr_microblaze
Jer microblaze O local memory ilmb_bram _if cntlr_microblaze
.gcc_except_table microblaze O local_memory ilmb_bram _if cntlr_microblaze
.sdata microblaze O local_memory ilmb_bram _if cntlr_microblaze
.sbss microblaze O local_memory ilmb_bram _if cntlr_microblaze
tdata microblaze O local memory ilmb_bram if cntlr microblaze
thss microblaze O local memory ilmb_bram _if cntlr_microblaze
bss microblaze O local memory ilmb_bram _if cntlr_microblaze
heap microblaze O local memory ilmb_bram _if cntlr_microblaze

microblaze O local_memory ilmb_bram _if cntlr_microblaze




2. Change the helloworld.c program to the following:

#include <stdio.h>

#include "platform.h"

#include "xparameters.h”

// Read/Write 16384 words or 64kB
#define TEST_SIZE 16384

void print(char #*str);

// Pointer to the external memory
volatile unsigned int * memptr = (unsigned int*) XPAR_MIG_7SERIES_0_BASEADDR;
// Thomas Wang's 32-bit mix hash
inline unsigned int hash(unsigned int key)
{
key += ~(key << 15);
key *= (key >> 10);
key += (key << 3);
key *= (key >> 6);
key += ~(key << 11);
key *= (key >> 16);
return key;
3
int main()

{
init_platform();

int i, errors;

// Write TEST_SIZE words to memory
print("BEGIN WRITE\n\r");
for (1 = @; i < TEST_SIZE; i++)
{
memptr[i] = hash(i);
3

// Read TEST_SIZE words to memory and compare with golden values
print("BEGIN READ\n\r");
errors = 0;
for (i = @; i < TEST_SIZE; i++)
{
if (memptr[i] != hash(i))
errors++;

3

// Print Results
if (errors != 0)
print("ERROR FOUND\n\r");
else
print("ALL GOOD!\n\r");

return 0;

This program writes 64kB of values to the beginning of external memory and reads them back, note
this is eight times more memory than was allocated to the MicroBlaze BRAM. Is this test
comprehensive?



Run the example
1. Use Xilinx Tools > Program FPGA to program the hardware design onto the FPGA

2. Create a Run Configuration with your test program as in previous labs

You should see:

BEGIN WRITE
BEGIN READ
ALL GOOD!

Appear on your Terminal or Console tab



