Using the Embedded MicroBlaze Processor

Acknowledgement

This module is derived from labs developed by Xilinx.

Goal

e Use the Vivado tool to build a basic MicroBlaze system. This will consist of a MicroBlaze processor, on-chip

memory, GPIO, and a UART.

* Beable to use a C program in the SDK to interact with the processor.

¢ Use some software debugging tools in an embedded processor environment.

Requirements

¢ Xilinx Vivado software
¢ Xilinx SDK software
¢ Xilinx Nexys 4 DDR board and a programming cable

* Enough disk space for the project files

Background

Soft processors, such as MicroBlaze, are implemented using programmable logic (FPGA LUTs and registers) and can be
custom configured to suit the software application they run. In contrast, hard processors, such as the Intel i7 CPU, are
implemented as application-specific integrated circuits (ASICs), and their functions are fixed after manufacture. Soft
processors are common in embedded systems built with FPGAs, and they usually provide high-level control logic for the
system. They can be quickly and easily programmed with a C-based language, and have the advantage of customization. For
example, the user can choose between various instruction and data caches, as well as choose to include custom instructions

for faster execution of an application.

Introduction

In this tutorial you will create a simple MicroBlaze system for an Artix-7 FPGA using the Vivado IP integrator.

The MicroBlaze system includes native Xilinx IP such as the:

o MicroBlaze processor

o AXI Timer

J UARTLite

. Debug Module (MDM)

. Proc Sys Reset

L Interrupt Controller

. Local memory bus (LMB)

These are the basic building blocks used in a typical MicroBlaze system.

In addition to creating the system described above, this tutorial also describes the development of a small application that
you develop in the Xilinx Software Development Kit (SDK) in the Vivado Design Suite. The application code developed in
the SDK prints “Hello World” on a terminal.

This tutorial targets the Xilinx Nexys 4 DDR FPGA Evaluation Board, and uses the 2016.2 version of Vivado Design Suite.

1. Create a Project

1. Invoke the Vivado IDE

2. From the Getting Started page, select Create New Project

3. In the Project Name dialog box, type the project name and location.

4. In the Project Type dialog box, select RTL Project.

5. In the Add Sources dialog box, ensure that the Target language is set to Verilog.
6. Click Next in the Add Constrains and Add Existing IP dialog box

7. Choose xc7a100tcsg324-1 in the Default Part dialog box.

8. Click Finish to finish creating the project.

2. Create an IP Integrator Design

1. From Navigator > [P Integrator, select Create Block Design

Flow Navigator «| | Project
A IS Sources
——T— 2
- & Project Settings L 0. EE:
&% Add Sources _: & Sin
1 1P Catalog @
4 P Integrator
4% Create Block D%@gn
¥ Open Block Depiba
Create Blockl Design
2. Specify the design name and click OK.
3. Right click anywhere in the Diagram and select Add IP.
B Propertizs. Ctrl+E
X Delete Delets
B Cop Cirl+C
B Paste Cirl+V
k Select All Cirl+ A
& Addie, Curi+]
aeﬁ-:- Hierarchy...
Create Comment
Create Fort. Crrl+K
Create Interface Part... Ctrl+L
1B Save as PDF File.. -

4. In the Search field, type microblaze to find the MicroBlaze IP, then click Enter.

Search: |- micr

(3 matches)

Name

2

Version

{F MicroEBlaze MCS 2.0

Customize the MicroBlaze Processor

1. In the Diagram view, click the Run Block Automation link beside Designer Assistance available

%, Run Block Automation

Automatically make connections in your design by checking the boxes of the blocks to connect.

Select a block on the left to display its configuration options on the right.

E-v Al Automation {1 out

G\ T Description
e P R Emicroblaze_0
=5 MicroBlaze connection automation generates local memory of
% selected size, and caches can be configured. MicroBlaze
Debug Module, Peripheral AXI interconniect, Interrupt
Controller, a dock source, Processor System Reset are also
added and connected as needed.
Instance: /microblaze_0
Options
Local Memory: 32KB -
Local Memory ECC: I Mone -
Cache Configuration: INone -
Debug Module: I Debug Only -
Peripheral AXI Port: I Enabled -
Interrupt Controller: [
Clock Connection: I Mew Clocking Wizard (100 MHz)
|| Fo— =]

=]
2. From the pulldown menu, set Local Memory to 32 KB.
3. Leave the Debug Module option to its default state Debug Only.
4. Leave the Peripheral AXI Port option as Enabled.

5. Check the Interrupt Controller option.

o]

Cancel

6. Select the Clock Connection option of New Clocking Wizard (100 Mhz). This will create a clock signal in the block

design.

The generated basic MicroBlaze system should look like the following:

micrablaze_0_axi_periph

E

00 ARESETN [l

0_ARESETH

erconnect

hgesern DD
LK D%umum-:- i

icroblaze_0_axd_inte

micrablaze_0 micrablaze_0 local memary
mdm_1 3 +
3 -!! & DUME]] "-nuu;
e = MicraSlaze’ »= e
it (5 =it | (8
Debug 575 _As 1o M_AKT_DP.3 i LMB_ O
MicroBlaze Debug Maod e
MicroBlaze

micrablaze_0 sdeoncat

ret_clk_wiz_1_100M e wa
SRR 1[0:0] L]
i syne,_di i et =— e
; et et in b, sruet_rese[0:0] Concat
dk_wiz 1 3 - . '_l
e reset in perpheral_reseq0:0)m
| axmip exon L—tny_cliig sps_pst aresen0 Q)
resst locked n_locked perpheral aresen[0:0

Oacking Wizard

Processor System Reset

Add peripherals: AXI Uartlite, GPIOs
1. Right click anywhere in the block diagram, Add IP and search for and select the AXI Uartlite.
2. Repeat step 1 but search for AXI GPIO.

3. Repeat step 2 so that you have two GPIO blocks in your design. The reason why there are two GPIO blocks is that one of

them is for switches and another one is for LEDs so that you can control the LEDs using the switches.

{ Search: [Ci- uart | (2 matches) Search: [Cl- gpio | (1 match)
] MName I i Mame L WLNY
{F AX¥lI UART1E550 wilimx com.., ik AXI GPIO crilinx, com..,
[k AX¥I Uartlite iwiline. com..
1[4 D& 4 I[+]00
Select and press ENTER or drag and drop, ... Select and press ENTER or drag and drop, ..

4. Right click one of the GPIO block and click Block Properties. Change the name to gpio_led.

5. Right click the other GPIO block and click Block Properties. Change the name to gpio_switch.

Block Configurations and Connections:

Interrupts

1. Connect the interrupt signal of the AXI Uartlite to the In0 signal of Concat, which connects to the interrupt input of the

interrupt controller. Concat is used to concatenate individual signals into a bus signal.

Move the mouse to the interrupt signal and left click on it, drag it to In0 and release the mouse. You'll see a green check

mark when you do it. That means you can make the connection.

Note that there is one input of the Concat block that is not connected and there is no other input to connect to the block.
Leaving the unconnected input open will result in critical warnings and ultimately an error when you reach the SDK. There
are several ways to deal with this particular situation. To reduce the number of ports, double click on the Concat block and

change the number of ports to 1 in the Re-customize IP window. Click OK.

Clock Wizard:

Component Name | mb_system_clk_wiz 1_0

Clocking Options Output Clocks

MMCM Settings

Port Renaming Summary

2. Double click the Clocking Wizard and change the Source of Primary clock input to Single ended clock capable pin.

The clock supplied to the FPGA will use a single wire instead of a differential signal requiring two wires, which is more

Primitive
® MMM O PLL

Clocking Features

¥ Frequency Synthesis [Minimize Power

¥ Phase Alignment [Spread Spectrum
[] bynamic Reconfig [bynamic Phase Shift

[] Safe Clock Startup

Cynamic Reconfig Interface Options
@ pxldLite O DRP

Input Clock Information

Jitter Optimization
® Balanced
O Minimize Output Jitter

O Maximize Input Jitter filtering

Input Clock Input Freguency(MHz) Jitter Options Input Jitter Source
Frimary () Aute) [100.000] [10.000 - 800.000 Ul ~ ||0.010 Single ended clock capable pin -~
[|Secondary ¢ [tooooo 0.010 Single ende ck capable

often used for very high speed clocks.

In the Output Clocks tab, change the Reset Type to Active Low and Press OK.

Reset Connections:

1. Click on Run Connection Automation and choose clk_wiz_1/resetn. Make the clock reset active low and press OK.

This will generate a new reset_rtl pin in the block diagram.

l Run Connection Automation

Automatically make connections in yvour design by checking the boxes of the interfaces to connect. Select an interf:
the right.

Qa, El-JE Al Automation (1 out of 9 selected)

ik B4

B-I7 {F axi_uartlite_0
I {ih 5_axI
I~ {ih uarT

OF dk_wiz_1

I~ = dk_in1
¥ = e

I_: LF gpio_led

B ﬂrst_dﬂ_-.\-izg_mum

----- I = ext_reset_in

Description

Make IP Port External: fdk_wiz_1fresetn

Options

Select Reset Polarity: IAC‘I‘I\"E_LDW -

2. Connect the ext_reset_in pin of the Processor System Reset block to the reset_rtl pin.

reset_rtl D -

dk_wiz_1

resetn clk_outl
locked

Clocking Wizard

GPIO Configuration:

rst_clk_wiz_1_100M
slowest_sync_clk mb_reset
-Gext_reset in bus_struct_reset{0:0]
Gaux_reset in peripheral_reset{0:0]
mb_debug_sys_rst interconnect_aresetn[0:0]
dem_locked peripheral_aresetn[0:0]

Processor System Reset

Double click on gpio_led to bring up the configuration window. Check the All Outputs and change the GPIO Width to 2

as we only need to use 2 LEDs for this lab. If you need more LEDs, you can change the width to the value you wish.

Double click on gpio_switch block and configure the block to accept two inputs in a similar manner.

E © Re-customize IP

{ AX1 GPIO (2.0)

Eifj Documentation [IP Location

[Show disabled ports

Z|dhs_ax
s_axi_aclk GPIods|||
5_axi_aresetn

Create GPIO Ports:

(D3|

y

Cormponent Name [mb_system_axi_gpio 0_0 |
GPIO
I All Inputs
] All Outputs
cpio et .
Default Qutput Value [0x00000000 (000000000, OXFFFFFFFF]
DefaLlt Tri State Value [D-FrrFrir | [0%00000000,0xFFFRFFRF]

[] Enable Dual channel

GPID 2
O All Inputs
2l Outputs
GPID Width [1..32]
Default Output Value [0:00000000 | [0xD0000000, O%FFFFFFFF]
Default Tri State Value [0xFFFFFFFE | [0x00000000, 0kFFFFFFFF]

[Enable Interrupt

[caneel

Expand the GPIO port on gpio_switch by clicking the plus sign. Right click on gpio_io_i and choose make external.

Expand the GPIO port on gpio_led by clicking the plus sign. Right click on gpio_io_o and choose make external.

AXI and Clock Connections:

To handle the remaining connections we will use connection automation. Click on Run Connection Automation and select

All Automation. This will connect the GPIO and UART controllers to the AXI Interconnect and create an external pin for

the clock source.

You should now have the following complete system with a MicroBlaze processor, three AXI peripherals, interrupt

controller, local memory, debug module and clock and reset generators. Ensure you can identify the function of each block

in your design.

LT

microbiaze_0 ad_perph

EEE
DXPX
EEE

an_ertie 0

micrblbaze 0

mierhlaze 0_kcal_memory

[jﬁ'MicrdSlaze"

j

12 gpi o cfzo

Select Tools > Validate Design. Or simply just press Fo6. If you followed every step above, it should say validation

successful.

Memory-Mapping

Click on Address Editor to examine the Address Map. This table shows how different peripherals are mapped into the
address spaces of different bus masters. In this design, the master is the MicroBlaze soft processor. For instance, notice
below that the gpio switch peripheral can be accessed starting from the address 0x4000 0000 from the Data port of the

MicroBlaze.

%= Diagram X @ Address Editor x

@ Cell | Slave Interface| Base Mame | oOffset Address | Range | High Address
. @ iF microblaze 0
e BHE Data (22 address bits : 4G)
= == microblaze_0_local_memory/dimb_b... sSLMB Mem Ox0000_0000 32K ~ Ox0000_7FFF
== microblaze_0_axi_intc s_axi Reg Ox4120_0000 BAK ~ Ox4120_FFFF
== @xi_uartlite_o S_axl Reg Ox4060_0000 LTS ~ Ox4060_FFFF
== gpio_switch S_axI Reg Ox4000_0000 64K ~ Ox4000_FFFF
== gpio_led S_ax Reg Ox4001_0000 54K ~ Ox4001_FFFF
B Instruction (22 address bits : 4G)
== microblaze_0_local_memonyilmb_br... SLME Mem Ox00E0_0000 32K ~ Ox0000_7FFF

Creating Constraints

1. Click on Add Sources in the Flow Navigator box and choose Add or Create Constraints then click Next.
2. Click on Create File and give it a name. Click OK and then Finish.

3. Open up the constraint file you just created and copy the code below, then save it. You can find the file in the Sources tab

under Constraints. Double click on the file name to edit it. Note that the reset signal is the CPU RESET button on the

board. You can also import the XDC file packaged with this tutorial.

Clock signal
set_property -dict { PACKAGE_PIN E3 IOSTANDARD LVCMOS33 } [get_ports { clock_rtl }1;

create_clock -add -name sys_clk_pin -period 10.00 -waveform {0 5} [get_ports {clock_rtl}];

Reset (CPU_RESET)
set_property -dict { PACKAGE_PIN C12 IOSTANDARD LVCMOS33 } [get_ports { reset_rtl }1;

##Switches
set_property -dict { PACKAGE_PIN J15 IOSTANDARD LVCMOS33 } [get_ports { gpio_io_i[0] }];
set_property -dict { PACKAGE_PIN L16 IOSTANDARD LVCMOS33 } [get_ports { gpio_io_i[l] }1;

LEDs
set_property -dict { PACKAGE_PIN H17 IOSTANDARD LVCMOS33 } [get_ports { gpio_io_o[0] }];
set_property -dict { PACKAGE_PIN K15 IOSTANDARD LVCMOS33 } [get_ports { gpio_io_ol[l] }1;

##USB-RS232 Interface
set_property -dict { PACKAGE_PIN C4 IOSTANDARD LVCMOS33 } [get_ports { uart_rtl_rxd }];
set_property -dict { PACKAGE_PIN D4 IOSTANDARD LVCMOS33 } [get_ports { uart_rtl_txd }1;

Wrap and build the design
1. In the Sources box, click IP Sources. Right click your design and choose Create HDL Wrapper to wrap your design. In

this example, the design is called mb_system so right click on mb_system.

—

Sources — O » =
A==
&= Block Designs (1)

L% mb_system

Hierarchy IP Sources Libraries 4 » B

2. A window pops up as shown below. Leave the options as default then click OK.

e Create HDL Wrapper

| You can either add or copy the HOL wrapper file to the project. Use copy
= option if you would like to modify this file,

Options

() |Copy generated wrapper to allow user edits|

@ Let vivado manage wrapper and auto-update

| ok || cancel

3. Navigate through the hierarchy of the design in the Hierarchy tab. You will notice that a top-level verilog file is created

by the HDL wrapper. As the design flow continues, HDL files will be generated for each block in the IP Integrator design.
4. Click on Run Synthesis.
5. Click on Run Implementation.

6. Click on Generate Bitstream.

3. Export to SDK

After generating the bitstream, click on File on the top and choose Export, then choose Export Hardware. Make sure you
check Include bitstream. If the option is gray, simply open your Implemented Design under Implementation in the Flow
Navigator and do the export again. Click on File on the top and choose Launch SDK so that after export, the SDK program

will launch.

Export Hardware X

Export hardware platform for software
development tools, ‘

¥ Include hitstream

Export to: |20 =Local to Project= hd

Ok] | Cancel

After the SDK first launches, double click system.hdf and you should see a description of the peripherals connected to the

MicroBlaze processor.

[milg G886 | HF-0-@- | % |0 | BEEH S &5 B |Ec/c+
5 Project Explorer 32 =0 gsystem.xml % =H|%Eoux " @mal =0
B & ¥ | hw_platform_0 Hardware Platform Specification FOELIERE G R E R
* i hw_platform_0
£ mb_system_wrapper_bd.bmm
) mb_system_wrapper.bit

Design Information

Target FPGA Device: 7a100t
Created With: Vivado 2014.1

e svstemal Created On: FriJun 611:55:142014
Address Map For processor microblaze_0
axi_uartlite_0 0
gpio_led 0
gpio_switch 0
microblaze_0_axi_inte 0
microblaze_o_local_memory_dmb_bram_if_cntlr
microblaze_0_local_memory._ilmb_bram_if_cntlr
1P blocks present in the design
axi_uartlite_0 axi_uartlite 20
clk_wiz_1 clk_wiz 5.1
gpio_led axi_gpio 20
gplo_switch axl_gpio 20
mdm_1 mdm 31
microblaze_0 microblaze 93
microblaze_0_axi_intc axi_inte 41
microblaze_0_axi_periph xbar axi_crossbar 2.1
microblaze_0_local_memory_dlmb_bram_if_cntlr (mb_bram_if_cntlr 4.0
microblaze_0_local_memory_dlmb_v10 Imb_v1o 30
microblaze_o_local_memory_ilmb_bram_if_cntlr mb_bram_if cntlr 4.0
microblaze_0_local_memory_ilmb_v10 Imb_v10 3.0
microblaze_0_local_memory_Imb_bram bk mem_gen 8.2
rst_clk_wiz_1_100M proc_sys_reset 5.0
4 Target Connections & =0

Overview| Source

4 Local [default] =
[Problems 52 . & Tasks| B console| & Properties| & Terminal ~ =0|/E sbkLog % B&-0O
Oitems 11:55:23 INFO : Processing command line option -hwspec /home/
Description Resource Path Location Type

Creating a Hello World program
1. Select File > New > Application Project

2. Enter the Project name and choose the OS Platform to be standalone. Click Next.

< New Project
Application Project

Create a managed make application project. @

Project name: |mb_simple|]

Use default location

Target Hardware

Hardware Platform | hw_platform_o0 =

: | | New
Processor microblaze_o =
Target Software
Os PlatForm standalone =
Language @ C) C++
Board Support Package @ Create New mb_simple_bsp
@ < Back Next > cancel | Finish

3. Choose Hello World as your template. Click Finish.

4. Connect your board to the computer and turn it on.

5. Click Xilinx Tools at the top -> Program FPGA to program your board.

sok Program FPGA

Program FPGA
Spedfy the bitstream and the ELF files that reside in BRAM memory

—Hardware Configuration
Hardware Platform:

Connection: ILDﬁl
Device: | Auto Detect
Bitstream: I design_1_wrapper.bit

[” Partial Bitstream

BMM/MMI File: I design_1_wrapper.mmi

Search... | Browse.. |

— Software Configuration

Processaor | ELF /MEM File to Initialize in Blodk RAM
microblaze_0 bootloop
4| | H

Program I

Cancel |

Run the C Program

1. Click on Run on the top -> Run Configurations to create a new run session.

2. Choose Xilinx C/C++ application(GDB) and click new on the top left corner to create a new launch.

Create, manage, and run configurations
@ [Application]: Application path is empty. @

fi

5 X = F - Name: |mb_simple

@ | | [@ Target Setup . 9 Application| °” STDIO Connection| k¢ Profile Options | = Common

[E] ¢/C++ Application

Debug Type: | Standalone Application Debug 3
[€] ¢/c++ Remote Application

Launch Group Connection: | Local = New
A Remote ARM Linux Application || | pevice: select
& Target Communication Framew

v % Xilinx C/C++ application (GDB)

Hardware platform: | hw_platForm_o ”
£ New_configuration

Processor: microblaze_o

Bitstream File: mb_system_wrapper.bit

Search...| Browse...

Search Browse
Summary of operations to be performed
Reset Processor -

Following operations will be performed before launching the debugger.
1. Reset processor.

Filter matched 7 of 10 items

@)

Apply Revert

Close Run

3. In Application, browse the Project Name and choose your project. In this example, it is mb_simple. You will notice that
the Application file is automatically selected under Debug folder.

3 Run Configurations
Create, manage, and run configurations @

= -
B x B &«

Mame: mb_simple

@ | ||[® Target Setup [[C) Application . *¢ STDIO Connection| k¢ Profile Options | = Common
€] ¢/c++ Application

o Project Name: \mb_simple
[€] ¢/C++ Remote Application

Browse...
B Launch Group Application: | Debug/mb_simple.elf Search... Browse...
A Remote ARM Linux Application
F@ T?r.get Communlc.atu.)n framew ["] Do not download program to memory
v & Xilinx ¢/C++ application (GDB)
g New_configuration
Data Files to download before launch
File Address Add
Remove
Relative
Apply Revert
Filter matched 7 of 10items EEY,

@

Close l Run

4. In STDIO Connection, check Connect STDIO to Console and select the largest COM port (Typically COM6). Leave
the BAUD Rate at 9600. Leave everything else as default and click Run.

You will see Hello World is printed in the Console.

=/ Problems |~?£| Tasks |'E console i3 O Properties.j

<terminated>mb_simple [Xilinx C/C++ application (GDB)]

Hello World

You may also leave the Connect STDIO to Console unchecked and instead establish a serial connection using the Terminal

tab to view the output in that window.

Controlling LEDs using Switches

1. Open up your helloworld.c file under source file

o Project Explorer 2 — O || & system.xml |l'uo, system.mss | lgl helloworld.c 22

5% v v @ * Copyright (c) 2009-2012 Xilinx, Inc. All ri-éh'ts reserved.[]

¥ & hw_platform_o =¥

E download.bit helloworld.c: simple test application

[E mb_system_wrapper_bd.bmm This application configures UART 16550 to baud rate 9600.
PS7 UART (Zyng) is not initialized by this application, since

[Z mb_system_wrapper.bit : :
bootrom/bsp configures it to baud rate 115200

LR N B A

[system.xml
¥ == mb_simple

#

» " Binaries * | UART TYPE BAUD RATE |
> & Includes * uartnsss50 9600
> = Debug * uartlite Configurable only in HW design
¥ =srC *f ps7_uart 115200 (configured by bootrom/bsp)
B helloworld.c
» [n platForm_config.h #include <stdio.h=
» [platform.c #include "platform.h"
>[5 platform.h void print(char *str);
T Iscript.ld
=~ int main()

b il mb_simple_bsp
init platform();

print("Hello Worldwn\r");

return 8;

2. Copy the following code to helloworld.c

#include <stdio.h>

#include "platform.h"

volatile unsigned int * led = (unsigned int *)0x40010000;
volatile unsigned int * swt = (unsigned int *)0x40000000;

int main()

{
init_platform();
print("Hello World\n\r");

while(1)

*led = *swt;

return 0;

In this example, the base address of the LED controller is 0x40010000 and the base address for the switches is 0x40000000.
The infinite while loop keeps checking the value of the switches and assigns them to the LEDs. This way you can control
the LEDs from the switches. Double check the addresses of your GPIO peripherals either by double clicking system.hdf in
SDK or by looking at the Address Editor in the IP Integrator tool in Vivado.

3. Click Run.

4. Change the value of the switches and see the changes of leds.

Experiment with the program and block design to implement different logic between the LEDs and switches.

	1. Create a Project
	2. Create an IP Integrator Design
	3. Export to SDK

