
EDK Training at
University of Toronto
Processor IP Team

November 2003

Implementing Processor Systems on Xilinx FPGAs Page 2

Table of Contents
Introduction and Overview Page 3
PowerPC and MicroBlaze Page 11
Processor IP Page 19
Creating a Simple MicroBlaze System with

XPS with Base System Builder Page 49
Creating a Simple MicroBlaze System with

XPS without Base System Builder Page 79
Adding I/O Peripherals to a System Page 96
Software Development with the EDK and XPS Page 110
Device Drivers & Software Infrastructure Page 119

Introduction and
Overview

Implementing Processor Systems on Xilinx FPGAs Page 4

Programmable Logic Evolution

1985

XC2000-XC3000 XC4000, Virtex® Virtex-II Pro™

1992 2000 2002

 D
ev

ic
e

Co
m

pl
ex

ity

Virtex-II

2004

• FPGA Fabric
• Block RAM
• SelectIO
• XCITE

Technology
• DCM
• Embedded

Multipliers
• PowerPC
• RocketIO

•• FPGA FabricFPGA Fabric
•• Block RAMBlock RAM
•• SelectIOSelectIO
•• XCITEXCITE

TechnologyTechnology
•• DCMDCM
•• EmbeddedEmbedded

MultipliersMultipliers
•• PowerPCPowerPC
•• RocketIORocketIO

• FPGA Fabric
• Block RAM
• SelectIO
• XCITE

Technology
• DCM
• Embedded

Multipliers

•• FPGA FabricFPGA Fabric
•• Block RAMBlock RAM
•• SelectIOSelectIO
•• XCITEXCITE

TechnologyTechnology
•• DCMDCM
•• EmbeddedEmbedded

MultipliersMultipliers• FPGA Fabric
• Block RAM
•• FPGA FabricFPGA Fabric
•• Block RAMBlock RAM• FPGA Fabric•• FPGA FabricFPGA Fabric

Glue Logic

 Block Logic

System Platform

Platform

Implementing Processor Systems on Xilinx FPGAs Page 5

Xilinx Virtex-II Pro FPGA
Setting the Standard in Programmable Logic

High performance true
dual-port RAM - 10 Mb SelectIO™- Ultra

Technology - 1200 I/O

Advanced FPGA Logic -
125,000 logic cells

Embedded XtremeDSP
Functionality - 556 multipliers

RocketIO™ High-speed
Serial Transceivers - 24

PowerPC™ Processors
400+ MHz Clock Rate - 4

XCITE Digitally Controlled
Impedance - Any I/O

DCM™ Digital Clock
Management - 12

130 nm, 9 layer copper in 300 mm wafer technology

Implementing Processor Systems on Xilinx FPGAs Page 6

Virtex-II Pro Revolution

• Up to 4 PowerPC 405 Processors
– Industry standard
– 420 DMIPS at 300 MHz

• Up to 24 Serial Transceivers
– 622 Mbps to 3.125 Gbps

Built on the Success of Virtex-II Fabric

TM

Implementing Processor Systems on Xilinx FPGAs Page 7

RocketIO™ SerDes
Leading-Edge High-Speed Serial

• Multi-Rate
– 3.125, 2.5, 2.0, 1.25, 1.0 Gbps
– 2 - 24 transceivers

• Multi-Protocol
– 1G, 10 G Ethernet (XAUI)
– PCI Express
– Serial ATA
– InfiniBand
– FibreChannel
– Serial RapidIO
– Serial backplanes…

• Key Features
– Embedded 8B/10B Coding
– 4-Level Pre-Emphasis
– Programmable Output Swing
– AC & DC Coupling
– Channel bonding

Serial
Out

On-Chip
Reference

Clock

TX Clock Generator

RX Clock Generator

De-
Serializer

Serializer

Receive

Buffer

Transmitter

Receiver

FIFO
8B/10B

Encode

10B/8B

Decode

Elastic

Buffer

Serial
In

Transmit

Buffer
TXDATA

8-32b Wide

TXDATA

8-32b Wide

RXDATA
8-32b Wide

RXDATA
8-32b Wide

Implementing Processor Systems on Xilinx FPGAs Page 8

Virtex-II Pro Device Family
Covers the Entire Design Spectrum

Implementing Processor Systems on Xilinx FPGAs Page 9

Embedded Development Kit (EDK)

• All encompassing design environment
for Virtex-II Pro PowerPCTM and MicroBlaze
based embedded systems in Xilinx FPGAs

• Integration of mature FPGA and
embedded tools with innovative
IP generation and customization
tools

• Delivery vehicle for Processor IP

Implementing Processor Systems on Xilinx FPGAs Page 10

Compiler/Linker

(Simulator)

C/C++ Code

Debugger

Data2BlockRAM

Bitstream

 ChipScope Tools

Xilinx Platform
Studio (XPS)

Standard Embedded SW
Development Flow

Standard FPGA HW
Development Flow

RTOS, Board Support Package

Synthesizer

Place & Route

Simulator

 VHDL/Verilog

code
in on-chip
memory

?
code
in off-chip
memory

?

Download to Board & FPGA

Download to FPGA

EDK System Design
Comprehensive Tool Chain

Object Code

PowerPC and
MicroBlaze

Implementing Processor Systems on Xilinx FPGAs Page 12

D-Side On-Chip
Memory (OCM)

I-Cache
(16KB)

D-Cache
(16KB)

MMU
(64 Entry TLB)

Execution Unit
(32x32 GPR,
ALU, MAC)

Fetch &
Decode

Timers
and

Debug
Logic

P
ro

ce
ss

o
r

L
o

ca
l B

u
s

(P
L

B
)

JTAG
Instruction

Trace

I-Side On-Chip
 Memory (OCM)

PowerPC 405

• 5-stage data path pipeline
• 16KB D and I Caches
• Embedded Memory

Management Unit
• Execution Unit

– Multiply / divide unit
– 32 x 32-bit GPR

• Dedicated on-chip memory
interfaces

• Timers: PIT, FIT, Watchdog
• Debug and trace support
• Performance:

– 450 DMIPS at 300 MHz
– 0.9mW/MHz Typical Power

Implementing Processor Systems on Xilinx FPGAs Page 13

What is MicroBlaze?

• It’s a soft processor, around 900 LUTs

• RISC Architecture
• 32-bit, 32 x 32 general purpose registers

• Supported in Virtex/E/II/IIPro, Spartan-III/II/E

Machine Status
Reg

Program
Counter

D
ata B

us C
ontroller

Register
File

32 x 32bit

r0
r1

r3
1

Address
side

LMB

Data Side
LMB

Instruction
Buffer

Instruction B
us C

ontroller

Control Unit

Multi
ply

Multip
ly

Add /
Subtract

Shift /
Logical Multiply

Processor

Implementing Processor Systems on Xilinx FPGAs Page 14

More on MicroBlaze ...
• Harvard Architecture

• Configurable instruction cache, data cache
• Non-intrusive JTAG debug

• Support for 2 buses:
– LMB (Local Memory Bus) - 1 clock cycle latency, connects to

BRAM
– OPB (On-chip Peripheral Bus) - part of the IBM

CoreConnectTM standard, connects to other peripheral
“Portable” IP between PPC and MB

• Big endian, same as PowerPC PPC405

Implementing Processor Systems on Xilinx FPGAs Page 15

MicroBlaze Interrupts and
Exceptions

• Interrupt handling
– 1 Interrupt port

• 32+ interrupts and masking supported through interrupt
controller(s)

• Exception handling
– No exceptions generated in Virtex-II versions
– One in Virtex/E and Spartan-II versions for MUL

instruction

Implementing Processor Systems on Xilinx FPGAs Page 16

Software Tools

• GNU tool chain

• GCC - GNU Compiler Collection
• GDB - The GNU debugger

– Source code debugging
– Debug either C or assembly code

• XMD - Xilinx Microprocessor Debug utility
– Separate Process

– Provides cycle accurate program execution data
– Supported targets: simulator, hardware board

Implementing Processor Systems on Xilinx FPGAs Page 17

Software - XMD
• Interfaces GDB to a “target”
• Allows hardware debug without a ROM monitor or reduces

debug logic by using xmd-stub (ROM monitor)
• Offers a variety of simulation targets

– Cycle accurate simulator
– Real hardware board interface via UART or MDM

• Includes remote debugging capability

XMDGDB MDM

UART

SIM

Implementing Processor Systems on Xilinx FPGAs Page 18

• JTAG debug using BSCAN

• Supports multiple MicroBlazes
• Software non-intrusive debugging

• Read/Write access to internal registers
• Access to all addressable memory

• Hardware single-stepping
• Hardware breakpoints - configurable (max 16)

• Hardware read/write address/data watchpoints
– configurable (max 8)

MicroBlaze Debug Module

Processor IP

Hardware and Software

Implementing Processor Systems on Xilinx FPGAs Page 20

Example MicroBlaze System

MicroBlaze

LMB_BRAM
IF_CNTLR

OPB_V20

OPB_TIMER OPB_EMC

SYS_Clk /
SYS_Rst

JTAG Debug OPB_INTC

P160
SRAM

External to FPGA

BRAM
BLOCK

OPB_MDM

OPB_GPIO
OPB_UART

LITE

LMB_V10

OPB_ETHERNET

Serial Port

User LED P160
Ethernet PHY

OPB_DDR

External to FPGA

DDR
SDRAM

LMB_BRAM
IF_CNTLR

LMB_V10

I-Side LMB D-Side LMB

D-Side OPBI-Side OPB

Implementing Processor Systems on Xilinx FPGAs Page 21

Example PPC405 System

Jtag

PPC405

PLB_V34

PLB2OPB
BRIDGE

OPB_V20

PROC_SYS
RESET

JTAG

DCMRef_Clk

SYS_Rst_n

PLB_DDR

PLB_BRAM
IF_CNTLR

DCR_V29

BRAM
BLOCK

OPB2PLB
BRIDGE

DCR_INTC
(critical)

DCR_INTC
(non-critical)

Serial Port

User Input/Output

OPB_ETHERNETOPB_GPIOOPB_UART
16550

External PHY

Implementing Processor Systems on Xilinx FPGAs Page 22

Processor IP (HW/SW)
Infrastructure (includes Device Drivers)
• MicroBlaze CPU

• LMB2OPB Bridge

• PLB Arbiter & Bus Structure (PLB_V34)
• OPB Arbiter & Bus Structure (OPB_V20)

• DCR Bus Structure (DCR_V29)

• PLB2OPB Bridge
• OPB2PLB Bridge

• OPB2OPB Bridge - Lite

• OPB2DCR Bridge
• System Reset Module

• BSP Generator (SW only)

• ML3 VxWorks BSP (SW only)
• Memory Test Utility (SW only)

OPB IPIF Modules (includes Device Drivers)
• PLB IPIF

– OPB IPIF-Slave Attachment
– OPB IPIF-Master Attachment
– IPIF-Address Decode
– IPIF-Interrupt Control
– IPIF-Read Packet FIFOs
– IPIF-Write Packet FIFOs
– IPIF-DMA
– IPIF-Scatter Gather
– IPIF-FIFOLink

• PLB IPIF
– PLB IPIF-Slave Attachment
– PLB IPIF-Master Attachment
– IPIF-Address Decode
– IPIF-Interrupt Control
– IPIF-Read Packet FIFOs
– IPIF-Write Packet FIFOs
– IPIF-DMA
– IPIF-Scatter Gather
– IPIF-FIFOLink

Implementing Processor Systems on Xilinx FPGAs Page 23

Processor IP (HW/SW)
Memory Interfaces (includes Device Drivers &

Memory Tests)
• PLB EMC (Flash, SRAM, and ZBT)
• PLB BRAM Controller
• PLB DDR Controller
• PLB SDRAM Controller
• OPB EMC (Flash, SRAM, and ZBT)
• OPB BRAM Controller
• OPB DDR Controller
• OPB SDRAM Controller
• OPB SystemACE
• LMB BRAM Controller

Peripherals (includes Device Drivers & RTOS
Adapt. Layers)

• OPB Single Channel HDLC Controller
• OPB<->PCI Full Bridge
• OPB 10/100M Ethernet
• OPB 10/100M Ethernet - Lite
• OPB ATM Utopia Level 2 Slave
• OPB ATM Utopia Level 2 Master

Peripherals (continued)
• OPB IIC Master & Slave
• OPB SPI Master & Slave
• OPB UART-16550
• OPB UART-16450
• OPB UART - Lite
• OPB JTAG UART
• OPB Interrupt Controller
• OPB TimeBase/Watch Dog Timer
• OPB Timer/Counter
• OPB GPIO
• PLB 1G Ethernet
• PLB RapidIO
• PLB UART-16550
• PLB UART-16450
• PLB ATM Utopia Level 2 Slave
• PLB ATM Utopia Level 2 Master
• PLB ATM Utopia Level 3 Slave
• PLB ATM Utopia Level 3 Master
• DCR Interrupt Controller

Implementing Processor Systems on Xilinx FPGAs Page 24

System Infrastructure

• Hardware IP
– Common PowerPC and MicroBlaze peripherals
– Peripherals are common across bus types
– Parameterize for optimal functionality, optimal FPGA usage
– IP Interface (IPIF) provides common hardware blocks

• Software IP (Device Drivers)
– Common across processors and operating systems

Implementing Processor Systems on Xilinx FPGAs Page 25

The Benefits of Parameterization

• Significantly increases performance or saves area
• Only include what you need
• This can only be accomplished in a programmable system

Resources F MAX

NUM_MASTERS PROC_INTERFACE DYNAM_PRIORITY PARK REG_GRANTS LUTs MHz
1 N N N N 11 295
2 N N N N 18 223
4 N N N N 34 193
4 Y N N N 59 156
4 N Y N N 54 169
4 N N Y N 83 159
4 N N N Y 34 201
4 Y Y Y Y 146 145
8 Y Y Y Y 388 112

Parameter Values

Example: OPB Arbiter

Difference:
>4x in size
>30% in speed

Implementing Processor Systems on Xilinx FPGAs Page 26

Full IP Interface (IPIF)

Bus Attachment
Layer

Bus/Core HW
Independent

Layer

Scatter
Gather

Master
Attachment

DMA

Interrupt
Controller

Read FIFO
IP

 C
ore from

X
ilinx, 3rd party or custom

er

Addr Decode

Write FIFO

M
U

X

Slave
Attachment

P
rocessor B

us (O
P

B
 or P

L
B

)

• Consists of 8 modules
– Each module is selectable and

parameterizable

• Automatically configures a core
to the processor bus

– Xilinx IP Cores

– 3rd Party IP Cores
– Customer proprietary cores and

external devices

• OPB & PLB supported
– Bus independent IP Cores and

associated Device Drivers

• IPIF will be added to other
LogiCOREs

IPIC

Implementing Processor Systems on Xilinx FPGAs Page 27

Buses and Arbiters

• PLB
– Arbitration for up to 16 masters
– 64-bit and 32-bit masters and slaves

– IBM PLB compliant

• OPB
– Includes arbiter with dynamic or fixed priorities and bus parking

– Parameterized I/O for any number of masters or slaves
– IBM OPB compliant

• DCR
– Supports one master and multiple slaves
– Daisy chain connections for the DCR data bus

– Required OR function of the DCR slaves’ acknowledge signal

• LMB
– MicroBlaze single-master Local Memory Bus

Implementing Processor Systems on Xilinx FPGAs Page 28

Bridges

• PLB to OPB
– Decode up to 4 different address ranges
– 32-bit or 64-bit PLB slave, 32-bit OPB master

– Burst and non-burst transfers, cache-line transactions

• OPB to PLB
– 64-bit PLB master, 32-bit OPB slave

– Burst and non-burst transfers, cache-line transactions
– BESR and BEAR

• OPB (slave) to DCR (master)
– Memory mapped DCR control

• OPB to OPB
– Allows further OPB partitioning

Implementing Processor Systems on Xilinx FPGAs Page 29

More System Cores

• Processor System Reset
– Asynchronous external reset input is synchronized with clock
– Selectable active high or active low reset

– DCM Locked input

– Sequencing of reset signals coming out of reset:
• First - bus structures come out of reset

• Second - Peripheral(s) come out of reset 16 clocks later

• Third - the CPU(s) come out of reset 16 clocks after the peripherals

• JTAG Controller
– Wrapper for the JTAGPPC primitive.

– Enables the PowerPC’s debug port to be connected to the FPGA JTAG chain

• IPIF User Core Templates
– Convenient way to add user core to OPB or PLB

Implementing Processor Systems on Xilinx FPGAs Page 30

Timer / Counter

• Supports 32-bit OPB v2.0 bus interface

• Two programmable interval timers with interrupt,
compare, and capture capabilities

• Programmable counter width

• One Pulse Width Modulation (PWM) output

Implementing Processor Systems on Xilinx FPGAs Page 31

Watchdog Timer / Timebase
• Supports 32-bit bus interfaces

• Watchdog timer (WDT) with selectable timeout period
and interrupt

• Two-phase WDT expiration scheme

• Configurable WDT enable: enable-once or enable-
disable

• WDT Reset Status (was the last reset caused by the
WDT?)

• One 32-bit free-running timebase counter with rollover
interrupt

Implementing Processor Systems on Xilinx FPGAs Page 32

Interrupt Controller
• Number of interrupt inputs is configurable up to the width

of the data bus width
• Interrupt controllers can be easily cascaded to provide

additional interrupt inputs

• Master Enable Register for disabling the interrupt request
output

• Each input is configurable for edge or level sensitivity

– rising or falling, active high or active low
• Output interrupt request pin is configurable for edge or

level generation

Implementing Processor Systems on Xilinx FPGAs Page 33

UART 16550 / 16450 / Lite

• Register compatible with industry standard 16550/16450

• 5, 6, 7 or 8 bits per character
• Odd, even or no parity detection and generation

• 1, 1.5 or 2 stop bit detection and generation
• Internal baud rate generator and separate RX clock input

• Modem control functions
• Prioritized transmit, receive, line status & modem control

interrupts

• Internal loop back diagnostic functionality
• Independent 16 word transmit and receive FIFOs

Implementing Processor Systems on Xilinx FPGAs Page 34

IIC

• 2-wire (SDA and SCL) serial interface

• Master/Slave protocol
• Multi-master operation with collision detection and

arbitration

• Bus busy detection
• Fast Mode 400 KHz or Standard Mode 100 KHz operation

• 7 Bit, 10 Bit, and General Call addressing
• Transmit and Receive FIFOs - 16 bytes deep

• Bus throttling

Implementing Processor Systems on Xilinx FPGAs Page 35

SPI

• 4-wire serial interface (MOSI, MISO, SCK, and SS)

• Master or slave modes supported
• Multi-master environment supported (requires tri-state

drivers and software arbitration for possible conflict)

• Multi-slave environment supported (requires additional
decoding and slave select signals)

• Programmable clock phase and polarity
• Optional transmit and receive FIFOs

• Local loopback capability for testing

Implementing Processor Systems on Xilinx FPGAs Page 36

Ethernet 10/100 MAC

• 32-bit OPB master and slave interfaces

• Media Independent Interface (MII) for connection to
external 10/100 Mbps PHY Transceivers

• Full and half duplex modes of operation

• Supports unicast, multicast, broadcast, and promiscuous
addressing

• Provides auto or manual source address, pad, and
Frame Check Sequence

Implementing Processor Systems on Xilinx FPGAs Page 37

Ethernet 10/100 MAC (cont)

• Simple DMA and Scatter/Gather DMA architecture for
low processor and bus utilization, as well as a simple
memory-mapped direct I/O interface

• Independent 2K to 32K transmit and receive FIFOs

• Supports MII management control writes and reads with
MII PHYs

• Supports VLAN and Pause frames

• Internal loopback mode

Implementing Processor Systems on Xilinx FPGAs Page 38

1 Gigabit MAC

• 64-bit PLB master and slave interfaces

• GMII for connection to external PHY Transceivers
• Optional PCS function with Ten Bit Interface (TBI) to

external PHY devices

• Option PCS/PMA functions with SerDes interface to
external transceiver devices for reduced signal count

• Full duplex only
• Provides auto or manual source address, pad, and

Frame Check Sequence

Implementing Processor Systems on Xilinx FPGAs Page 39

1 Gigabit MAC (cont)

• Simple DMA and Scatter/Gather DMA architecture for
low processor and bus utilization, as well as a simple
memory-mapped direct I/O interface

• Independent, depth-configurable TX and RX FIFOs

• Supports MII management control writes and reads with
MII PHYs

• Jumbo frame and VLAN frame support

• Internal loopback mode

Implementing Processor Systems on Xilinx FPGAs Page 40

Single Channel HDLC

• Support for a single full duplex HDLC channel

• Selectable 8/16 bit address receive address detection,
receive frame address discard, and broadcast address
detection

• Selectable 16 bit (CRC-CCITT) or 32 bit (CRC-32) frame
check sequence

• Flag sharing between back to back frames

• Data rates up to OPB_Clk frequency

Implementing Processor Systems on Xilinx FPGAs Page 41

Single Channel HDLC (cont)

• Simple DMA and Scatter/Gather DMA architecture for
low processor and bus utilization, as well as a simple
memory-mapped direct I/O interface

• Independent, depth-configurable TX and RX FIFOs

• Selectable broadcast address detection and receive
frame address discard

• Independent RX and TX data rates

Implementing Processor Systems on Xilinx FPGAs Page 42

ATM Utopia Level 2

• UTOPIA Level 2 master or slave interface

• UTOPIA interface data path of 8 or 16 bits
• Single channel VPI/VCI service and checking in received

cells

• Header error check (HEC) generation and checking
• Parity generation and checking

• Selectively prepend headers to transmit cells, pass entire
received cells or payloads only, and transfer 48 byte
ATM payloads only

Implementing Processor Systems on Xilinx FPGAs Page 43

ATM Utopia Level 2 (cont)

• Simple DMA and Scatter/Gather DMA architecture for
low processor and bus utilization, as well as a simple
memory-mapped direct I/O interface

• Independent, depth-configurable TX and RX FIFOs

• Interface throughput up to 622 Mbps (OC12)
• Internal loopback mode

Implementing Processor Systems on Xilinx FPGAs Page 44

OPB-PCI Bridge

• 33/66 MHz, 32-bit PCI buses

• Full bridge functionality
– OPB Master read/write of a remote PCI target (both single and burst)
– PCI Initiator read/write of a remote OPB slave (both single and multiple)

• Supports up to 3 PCI devices with unique memory PCI
memory space

• Supports up to 6 OPB devices with unique memory OPB
memory space

• PCI and OPB clocks can be totally independent

Implementing Processor Systems on Xilinx FPGAs Page 45

System ACE Controller

• Used in conjunction with System ACE CompactFlash
Solution to provide a System ACE memory solution.

• System ACE Microprocessor Interface (MPU)
– Read/Write from or to a CompactFlash device
– MPU provides a clock for proper synchronization

• ACE Flash (Xilinx-supplied Flash Cards)
– Densities of 128 MBits and 256 Mbits
– CompactFlash Type 1 form factor

• Supports any standard CompactFlash module, or IBM microdrives up to 8
Gbits, all with the same form factor.

• Handles byte, half-word, and word transfers

Implementing Processor Systems on Xilinx FPGAs Page 46

GPIO

• OPB V2.0 bus interface with byte-enable support

• Supports 32-bit bus interface
• Each GPIO bit dynamically programmable as input or

output

• Number of GPIO bits configurable up to size of data bus
interface

• Can be configured as inputs-only to reduce resource
utilization

Implementing Processor Systems on Xilinx FPGAs Page 47

 Memory Controllers

• PLB and OPB interfaces

• External Memory Controller
– Synchronous Memory (ZBT)

– Asynchronous Memory (SRAM, Flash)
• Internal Block Memory (BRAM) Controllers

• DDR and SDRAM

Implementing Processor Systems on Xilinx FPGAs Page 48

• Device drivers are provided for each
hardware device

• Device drivers are written in C and are
designed to be portable across
processors

• Device drivers allow the user to select
the desired functionality to minimize the
required memory

• BSPs are automatically generated by
EDK tools

Board Support
Package (BSP)

Boot Code

Initialization Code

E
th

er
n

et
 1

0/
10

0
D

ev
ic

e
D

ri
ve

r

U
A

R
T

 1
65

50
D

ev
ic

e
D

ri
ve

r

IIC
 M

as
te

r
&

 S
la

ve
D

ev
ic

e
D

ri
ve

r

A
T

M
 U

to
p

ia
 D

ev
ic

e
D

ri
ve

r

P
er

ip
h

er
al

 n
, n

+1
…

D
ev

ic
e

D
ri

ve
rs

RTOS Adaptation Layer

Device Drivers and Board
Support Packages (BSPs)

Creating a Simple
MicroBlaze System
with XPS
with Base System Builder Wizard

Implementing Processor Systems on Xilinx FPGAs Page 50

Design Flow

• Design Entry with Xilinx Platform Studio using the
Base System Builder Wizard

• Generate system netlist with XPS
• Generate hardware bitstream with XPS
• Download and sanity check design with XPS and

XMD

Implementing Processor Systems on Xilinx FPGAs Page 51

Simple MicroBlaze System
Block Diagram

External to FPGA

MicroBlaze

LMB_BRAM
IF_CNTLR

OPB_V20

SYS_Clk /
SYS_Rst

JTAG Debug

BRAM
BLOCK

OPB_MDM OPB_UART
LITE

LMB_V10

Serial Port

LMB_BRAM
IF_CNTLR

LMB_V10

I-Side LMB D-Side LMB

D-Side OPBI-Side OPB

Implementing Processor Systems on Xilinx FPGAs Page 52

Start Xilinx Platform Studio

Implementing Processor Systems on Xilinx FPGAs Page 53

Create A New Project
• Select File from the Tools

menu

• Select the New Project
submenu and the Base
System Builder submenu

• Browse to the location where
the project is to be located

• Click OK to start creating the
project

Implementing Processor Systems on Xilinx FPGAs Page 54

Selecting The Board

• Select Xilinx as the Board
Vendor

• Select Virtex-II Multimedia
FF896 Development Board as
the Board Name

• Select Board Revision 1

• Click Next to continue to the
next step

Implementing Processor Systems on Xilinx FPGAs Page 55

Select the Processor

• This board has a Virtex-II
FPGA which does not contain
a PowerPC processor

• Click Next to continue to the
next step

Implementing Processor Systems on Xilinx FPGAs Page 56

Configuring The Processor
• Select On-chip H/W debug

module such that a ROM
monitor is not required

• Select 64KB of Local Data and
Instruction Memory (BRAM)

• There is no need to select
caches when using internal
BRAM

• Click Next to continue to the
next step

Implementing Processor Systems on Xilinx FPGAs Page 57

Configuring I/O Interfaces

• The board has a serial port
and it is default behavior to
build the hardware with it

• Since it is used as standard
I/O it is not necessary to be
interrupt driven

• Click Next to continue to the
next step

Implementing Processor Systems on Xilinx FPGAs Page 58

Adding Internal Peripherals

• Other peripherals can be
added at this point, such as a
timer counter.

• Click Next to continue to the
next step

Implementing Processor Systems on Xilinx FPGAs Page 59

System Summary

• The system has been created
and is ready to be generated

• Review the details of the
system and backup if
necessary to make changes

• Click the Generate button to
create the data files for XPS

Implementing Processor Systems on Xilinx FPGAs Page 60

Base System Builder
Finished

• The Base System Builder
Wizard in XPS has completed

• The data files for XPS have
been generated such that the
system will be contained in an
XPS project

• Click the Finish button to exit
the wizard & return to XPS

Implementing Processor Systems on Xilinx FPGAs Page 61

Generating Hardware NetList

• Select the Tools
menu

• Select the Generate
Netlist submenu

• Wait for the
generation to
complete

Implementing Processor Systems on Xilinx FPGAs Page 62

Generating Hardware Bitstream

• Select the Tools
menu

• Select the
Generate
Bitstream
submenu

• Wait for the
bitstream
generation to
complete

Implementing Processor Systems on Xilinx FPGAs Page 63

Adding Software Source Files

• Select processor in
System tab

• Select the Tools menu
• Select the Add Program

Sources submenu
• Navigate to the source

file and select it.

Implementing Processor Systems on Xilinx FPGAs Page 64

Setting Compile Options

• Select the Options menu

• Select the Compiler
Options submenu

• Set the optimization to
none

• Set the debug options to
create symbols for
debugging

Implementing Processor Systems on Xilinx FPGAs Page 65

Setting Up Standard I/O

• Select the System tab

• Double click on the
microblaze_0

• The dialog box illustrated
is displayed

• Select the opb_uartlite_0
for the STDIN and
STDOUT peripheral and
click the OK button

Implementing Processor Systems on Xilinx FPGAs Page 66

Assigning Drivers To Devices

• Assigning a driver to a device
causes the driver to be compiled
into the library & linked with the
application

• Double click on the device in
the System tab of the XPS
project

• The latest version of the driver is
displayed by default

• Choose the appropriate
Interface Level of the driver

Implementing Processor Systems on Xilinx FPGAs Page 67

Setting Memory Options

• Double click on the
processor instance in the
System tab

• Select the Details tab

• Change the program start
address or stack size

• Add other options to the
preprocessor, assembler,
or linker

Implementing Processor Systems on Xilinx FPGAs Page 68

Setting Library Options

• Double click on the
processor instance in the
System tab

• Select the Others tab

• Add or change options for
library compilation

• Add other options for
application compilation

Implementing Processor Systems on Xilinx FPGAs Page 69

Generating Libraries In XPS

• A Library containing the device
drivers and the startup code is
built for an application to be
linked against

• The Library helps separate
Board Support Package
development from application
development

• Libraries will automatically be
built if they don’t exist when the
application is built

Implementing Processor Systems on Xilinx FPGAs Page 70

Compiling The Software

• Select the Tools menu

• Select the Compile
Program Sources
submenu

• Wait for the compile to
complete

Implementing Processor Systems on Xilinx FPGAs Page 71

Updating the Bitstream

• Select the Tools menu

• Select the Update
Bitstream submenu

• The hardware bitstream
is updated to contain
the contents of the
software elf file

Implementing Processor Systems on Xilinx FPGAs Page 72

Downloading The Hardware

• Make sure that the
board power is on
and the parallel pod
is connected

• Select the Tools
menu

• Select the Download
submenu

• Wait for the download
to complete

Implementing Processor Systems on Xilinx FPGAs Page 73

Running XMD
• Select the Tools

menu

• Select the XMD
submenu

• Type “mbconnect
mdm” to connect
XMD to the
MicroBlaze
processor.

Implementing Processor Systems on Xilinx FPGAs Page 74

Testing Memory
• Type “mrd 0x1000 2” to read 2

memory locations starting at
address 0x1000

• Type “mwr 0x1000
0x12345678” to write to
memory location 0x1000

• Perform writes to location
0x1004 also

• Type “mrd x1000 2” to read 2
memory locations and verify
the values that were written

Implementing Processor Systems on Xilinx FPGAs Page 75

Starting The GNU Debugger
(GDB)

• Select the Tools menu
• Select the Software

Debugger submenu

Implementing Processor Systems on Xilinx FPGAs Page 76

Target Selection & Download

• In GDB, select the
Run menu and
choose the Run
menu item

• Wait for the Target
Selection dialog box
to be displayed

• Enter the data in the
dialog box and click
OK

Implementing Processor Systems on Xilinx FPGAs Page 77

Stepping in GDB

• The debugger is
ready, the program
counter is at a
breakpoint at line 5 of
the source file

• Select the Control
menu

• Select the Step
submenu

Implementing Processor Systems on Xilinx FPGAs Page 78

Watching A Variable With GDB

• Double click on the
variable count such that it
is selected

• Right click and select in
the submenu to Add
count to Watch

• A dialog box is displayed
which contains the
variable count and it’s
contents

Creating a Simple
MicroBlaze System
with XPS
without Base System Builder Wizard

Implementing Processor Systems on Xilinx FPGAs Page 80

Design Flow

• Design Entry with Xilinx Platform Studio
• Generate system netlist with XPS
• Generate hardware bitstream with XPS
• Download and sanity check design with XPS and

XMD

Implementing Processor Systems on Xilinx FPGAs Page 81

Start Xilinx Platform Studio

Implementing Processor Systems on Xilinx FPGAs Page 82

Create A New Project

• Select New Project from the
Tools menu

• Enter all the project
information

• Click OK
on this dialog box.

• Click Yes on the next dialog
box to start with an empty
MHS file

Implementing Processor Systems on Xilinx FPGAs Page 83

Adding New Cores

• Select the
Project
menu

• Select the
Add/Edit
Cores
submenu

Implementing Processor Systems on Xilinx FPGAs Page 84

Adding Bus Structures

• Select the Bus Connections
Tab

• Select the
lmb_v10_v1_00_a bus &
opb_v20_v1_10_b bus and
click the Add button

• Select the
lmb_v10_v1_00_a bus and
click the Add button

Implementing Processor Systems on Xilinx FPGAs Page 85

Adding Basic Peripherals

• Select the Peripherals
tab

• Select the bram_block,
lmb_bram_if_cntlr,
microblaze, and
opb_mdm and click the
Add button.

• Select the
lmb_bram_if_cntlr and
click the Add button.

Implementing Processor Systems on Xilinx FPGAs Page 86

Change The Memory Map

• Edit the Base
Address and High
Address for the
lmb_bram_if_cntlr
and opb_mdm
peripherals

Implementing Processor Systems on Xilinx FPGAs Page 87

Setting Bus Masters & Slaves

• Select the Bus
Connections
tab

• Set the masters
and slaves on
the buses by
clicking on the
boxes with an
‘s’ and ‘M’

Implementing Processor Systems on Xilinx FPGAs Page 88

Setting MicroBlaze Parameters
• Select the Parameters

tab
• Select microblaze_0 IP

instance

• Select the
C_DEBUG_ENABLED and
C_NUMBER_OF_PC_BRK

parameters and click
the Add button

• Edit the parameter
values

Implementing Processor Systems on Xilinx FPGAs Page 89

Setting MDM Parameters

• Select the
opb_mdm_0 IP
instance

• Select the
C_USE_UART
parameter and
click the Add
button

• Edit the parameter
value

Implementing Processor Systems on Xilinx FPGAs Page 90

Setting LMB Parameters

• Select the lmb_v10_0
IP instance

• Select the
C_EXT_RESET_HIGH
parameter and click the
Add button

• Edit the parameter
value

• Repeat for lmb_v10_1
IP instance

Implementing Processor Systems on Xilinx FPGAs Page 91

Setting OPB Parameters

• Select the opb_v20_0
IP instance

• Select the
C_EXT_RESET_HIGH
parameter and click the
Add button

• Edit the parameter
value

Implementing Processor Systems on Xilinx FPGAs Page 92

Connecting The Clock

• Select the Ports tab

• Select the LBM_Clk
and OPB_Clk ports on
the lmb_v10_0,
lmb_v10_0 and
opb_v20_0 IP
instances and click
the Add button

Implementing Processor Systems on Xilinx FPGAs Page 93

Connecting The Reset

• Select the SYS_Rst
ports of the
lmb_v10_0,
lmb_v10_1, and
opb_v20_0 IP
instances and click
the Add button

Implementing Processor Systems on Xilinx FPGAs Page 94

Connecting The Reset (2)
• Select the

lmb_v10_0,
lmb_v10_1, and
opb_v20_0 instances
on the left side and
click the Connect
button

• Enter sys_rst for the
net name in the
dialog box and click
the OK button

Implementing Processor Systems on Xilinx FPGAs Page 95

Completing the Add/Edit

• Click the OK button to set all the items
changed in the Add/Edit Cores dialog box

Adding I/O
Peripherals to a
System

Implementing Processor Systems on Xilinx FPGAs Page 97

Adding A UartLite

• Select the Project
menu

• Select the Add/Edit
Cores submenu

• Select the opb_uartlite
and click Add

• Edit the Base Address
and High Address of
the uartlite

Implementing Processor Systems on Xilinx FPGAs Page 98

Setting UartLite Parameters

• Select the Parameters
tab

• Select the C_CLK_FREQ
and C_USE_PARITY
parameters and click the
Add button

• Edit the parameter values

Implementing Processor Systems on Xilinx FPGAs Page 99

Put UartLite On the OPB

• Select the Bus
Connections tab

• Click on the box to mark
the UartLite as a slave on
the OPB bus

Implementing Processor Systems on Xilinx FPGAs Page 100

Connecting UartLite I/O

• Select the Ports tab

• Select the RX and
TX ports of
opb_uartlite_0 and
click the Add button

• Edit the net names
to be tx and rx for
the opb_uartlite_0

• Click OK on the
dialog box

Implementing Processor Systems on Xilinx FPGAs Page 101

Adding A Timer

• Select the Project
menu

• Select the Add/Edit
Cores submenu

• Select the opb_timer
and click Add

• Edit the Base Address
and High Address of
the timer

Implementing Processor Systems on Xilinx FPGAs Page 102

Setting Timer Parameters

• Select the Parameters
tab

• Select the
C_ONE_TIMER_ONLY
parameters and click the
Add button

• Edit the parameter value

Implementing Processor Systems on Xilinx FPGAs Page 103

Put Timer On the OPB

• Select the Bus
Connections tab

• Click on the box to mark
the Timer as a slave on
the OPB bus

Implementing Processor Systems on Xilinx FPGAs Page 104

Adding an Interrupt
Controller

• Select the Project
menu

• Select the Add/Edit
Cores submenu

• Select the opb_intc
and click Add

• Edit the Base Address
and High Address of
the intc

Implementing Processor Systems on Xilinx FPGAs Page 105

Put Intc On the OPB

• Select the Bus
Connections tab

• Click on the box to mark
the Intc as a slave on the
OPB bus

Implementing Processor Systems on Xilinx FPGAs Page 106

Connect Intc to MicroBlaze
• Select Ports tab

• Add Interrupt input
of MicroBlaze and
Irq output of Intc

• Highlight both of
these and press
Connect

• Name the net,
select Internal,
and press OK

Implementing Processor Systems on Xilinx FPGAs Page 107

Connect Intc to MicroBlaze

Implementing Processor Systems on Xilinx FPGAs Page 108

Connect Timer to Intc
• Select Ports tab

• Add Interrupt
output of Timer
and Intr input of
Intc

• Highlight both of
these and press
Connect

• Name the net,
select Internal,
and press OK

Implementing Processor Systems on Xilinx FPGAs Page 109

Connect Timer to Intc

Software
Development with
the EDK and XPS

Implementing Processor Systems on Xilinx FPGAs Page 111

Compiler/Linker

(Simulator)

C/C++ Code

Debugger

Data2BlockRAM

Bitstream

 ChipScope Tools

Xilinx Platform
Studio (XPS)

Standard Embedded SW
Development Flow

Standard FPGA HW
Development Flow

RTOS, Board Support Package

Synthesizer

Place & Route

Simulator

 VHDL/Verilog

code
in on-chip
memory

?
code
in off-chip
memory

?

Download to Board & FPGA

Download to FPGA

EDK System Design
Comprehensive Tool Chain

Object Code

Implementing Processor Systems on Xilinx FPGAs Page 112

Building Software in XPS

• XPS is an Integrated Development Environment
(IDE) similar to other products with the primary
difference being it allows the user to build
hardware and software.

• The GNU tools (compiler, linker, etc.) including
GDB are used by XPS for software development.

• The GNU tools are not native Windows tools such
that they execute within a Xygwin (Xilinx Cygwin)
environment.

Implementing Processor Systems on Xilinx FPGAs Page 113

XPS Project Directory
Structure

• A project within XPS is a directory that contains
multiple subdirectories.

• The code subdirectory is created by the user and
contains application source code.

• The include files, drivers, and libraries are located
in a directory based on the instance name of the
microprocessor in the project.

Implementing Processor Systems on Xilinx FPGAs Page 114

XPS Example Project
Directory

Implementing Processor Systems on Xilinx FPGAs Page 115

Library Generation

• XPS compiles device drivers and C run-time CRT
into a single library that is then linked with a user
application program.

• Libgen is the tool executed from within XPS or
from a command line, that copies the library
source files and device driver source files to the
project directory to build the library.

Implementing Processor Systems on Xilinx FPGAs Page 116

Command Line Builds

• XPS generates a single make file, system.make,
that can be used to build the hardware or software
from the command line of a Xygwin window.

• This make file could be used to create a build
environment for software development groups that
build from the command line.

Implementing Processor Systems on Xilinx FPGAs Page 117

Xilinx Microprocessor
 Debugger (XMD)

• Interfaces GDB to a “target”
• Supports script interface for built-in commands
• Allows debug with or without a ROM monitor

– MDM target for true JTAG
– UART target for ROM monitor (xmd-stub)
– SIM target for instruction set simulator

XMDGDB MDM

UART

SIM

Implementing Processor Systems on Xilinx FPGAs Page 118

• JTAG debug using BSCAN

• Software non-intrusive debugging
• Read/Write access to internal registers

• Access to all addressable memory
• Hardware single-stepping

• Hardware breakpoints - configurable (max 16)
• Hardware read/write address/data watchpoints

– configurable (max 8)

Microprocessor Debug
Module (MDM)

Device Drivers &
Software
Infrastructure

Implementing Processor Systems on Xilinx FPGAs Page 120

Device Drivers for FPGA
Designs

• Hardware is parameterizable
– Capabilities and features may change every build

• FPGA space is limited
– User needs flexible driver architecture
– Internal memory solution as well as external memory solution

• Processor may change
– Portability of driver is key

Implementing Processor Systems on Xilinx FPGAs Page 121

Device Driver Goals

• Portability/Reusability
– Drivers are to be portable across many different

RTOSs, microprocessors, and toolsets
– Minimize development effort

• Out-of-the-box solution for customers

Implementing Processor Systems on Xilinx FPGAs Page 122

Driver Design
 Considerations

Programming Languages
• Assembly Language

– Minimized to allow maximum portability between microprocessors
– Only boot code, which executes prior to the C/C++ runtime system, is

typically necessary to be assembly language
– Located in separate source files to help isolate it, as opposed to in-line

assembly language in the C source code

• C Programming Language
– The C programming language is the most utilized language for embedded

systems
– In order to support the largest number of customers, the first

implementation utilizes the C programming language

Implementing Processor Systems on Xilinx FPGAs Page 123

Driver Design
Considerations

• Object Oriented Design
– Emphasize data abstraction, data hiding, and encapsulation in

addition to greater potential for code reuse and ease of
maintenance

– Provides an easier transition from non-object oriented
languages such as C to more object oriented languages such
as C++ and Java

• Delivery Format
– Delivered to customers in source code format, allowing it to be

built and optimized for a wide range of microprocessors using
customer selected tools

Implementing Processor Systems on Xilinx FPGAs Page 124

Device Driver Architecture

• Component based object
oriented design implemented
in ANSI C

• A device driver supports
multiple instances of a device

• Layered device driver
architecture to allow user
selectable features and size

Layer 0 (Low Level)
Drivers

Layer 1 (High Level)
Drivers

 Layer 2 Drivers
(RTOS Adapters)

Implementing Processor Systems on Xilinx FPGAs Page 125

Device Driver Architecture
(continued)

• Source code is provided
• Layer 0 and Layer 1 are OS-independent

• Device drivers in all layers have common characteristics
• Primitive data types for portability (Xuint8, Xuint16,

Xuint32, etc.), in xbasic_types.h

• Isolation of I/O accesses for portability (XIo_In8(),
XIo_Out8(), etc.), in xio.h

• Coding and documentation conventions

Implementing Processor Systems on Xilinx FPGAs Page 126

Layer 0, Low Level Drivers

• Interface contained in <driver>_l.h file
• Designed for a small system, typically for internal memory

of an FPGA.

• Small memory footprint
• No error checking performed

• Supports primary device features only, not comprehensive
• Polled I/O, blocking functions

Implementing Processor Systems on Xilinx FPGAs Page 127

Layer 1, High Level Drivers

• Interface contained in <driver>.h file
• Designed to allow a developer to utilize all features of a

device
• Larger memory footprint
• Robust error checking such as asserting input arguments

• Supports configuration parameters in <driver>_g.c
• Interrupt driven I/O, non-blocking functions

– Interrupt service routines are provided

Implementing Processor Systems on Xilinx FPGAs Page 128

Layer 2 Drivers,
RTOS Adapters

• Interface contained in <driver>_adapter.h file.
• Converts the Layer 1 device driver interface to an

interface that matches the device driver scheme of the
RTOS.

• Contains calls specific to the RTOS

• Can use RTOS features such as memory management,
threading, inter-task communication, etc.

Implementing Processor Systems on Xilinx FPGAs Page 129

RTOS Independent
Device Drivers

• Driver
– Responsible for interfacing to the device (peripheral).

It encapsulates communication to the device
– Designed to be portable across processor

architectures and operating systems

• Adapter
– Integrates the driver into an operating system

– Satisfies the "plug-in" requirements of the operating
system

– Needs to be rewritten for each OS

Implementing Processor Systems on Xilinx FPGAs Page 130

RTOS Support

• Xilinx supports VxWorks 5.4/5.5 for PowerPC in-house
• 3rd party support includes MontaVista Linux (PPC), ATI

Nucleus, uCos, ucLinux
• VxWorks integration:

– All device drivers can be used directly by the application
– Some device drivers tightly integrated into VxWorks

• UARTs to standard and file I/O
• Ethernet to network stack (Enhanced Network Driver)
• Interrupt controller
• System ACE into VxWorks filesystem interface

• Automatic Tornado BSP generation using EDK

Implementing Processor Systems on Xilinx FPGAs Page 131

Naming Conventions
• A common name is used for all external identifiers of the

device driver
– <driver_name>_FunctionName();
– <driver_name>_DataType;

• A common name is used for all source files of the device
driver for ease of use
– <driver_name>_l.h low level driver interface definition
– <driver_name>.h high level driver interface definition
– <driver_name>.c primary source file
– <driver_name>_g.c configuration table source file
– <driver_name>_intr.c interrupt processing source file

Implementing Processor Systems on Xilinx FPGAs Page 132

Multiple Instance Details

• Multiple instances of a single device (such as an Ethernet
MAC) typically exist in a system

• A single device driver handles all instances of the device

• A layer 1 device driver uses a data type that is passed as
the first argument to each function of the driver. The data
type contains information about each device instance
such as the base address

Implementing Processor Systems on Xilinx FPGAs Page 133

Example Layer 0 Device
Driver API

• Each function of Layer 0 uses the base address of the
device as the first argument

• No state information is kept by the driver and the user
must manage multiple instances of the device

• void XEmac_mSetControlReg(Xuint32 BaseAddress, Xuint32 Mask)
• void XEmac_SendFrame(Xuint32 BaseAddress, Xuint8 *FramePtr, int Size)
• int XEmac_RecvFrame(Xuint32 BaseAddress, Xuint8 *FramePtr)

Implementing Processor Systems on Xilinx FPGAs Page 134

Example Layer 1 Device
Driver API

• Each function of Layer 1 uses an instance pointer as
the first argument

• XStatus XEmac_Initialize(XEmac *InstancePtr, Xuint16 DeviceId)
• XStatus XEmac_Start(XEmac *InstancePtr)
• XStatus XEmac_Stop(XEmac *InstancePtr)
• void XEmac_Reset(XEmac *InstancePtr)
• XStatus XEmac_SelfTest(XEmac *InstancePtr)

Implementing Processor Systems on Xilinx FPGAs Page 135

Example Layer 1 Device Driver
API For FIFO Interrupt Support

• XStatus XEmac_FifoSend(XEmac *InstancePtr, Xuint8 *BufPtr, Xuint32
ByteCount);

• XStatus XEmac_FifoRecv(XEmac *InstancePtr, Xuint8 *BufPtr, Xuint32
*ByteCountPtr);

• void XEmac_SetFifoRecvHandler(XEmac *InstancePtr, void *CallBackRef,
XEmac_FifoHandler FuncPtr);

• void XEmac_SetFifoSendHandler(XEmac *InstancePtr, void *CallBackRef,
XEmac_FifoHandler FuncPtr);

• void XEmac_IntrHandlerFifo(void *InstancePtr); /* interrupt handler */

Implementing Processor Systems on Xilinx FPGAs Page 136

Device Driver & System
Configuration

• xparameters.h contains important system parameters
used by the drivers & the BSP

• Parameters for each device may include a device ID, a
base address, an interrupt identifier, and any device
unique parameters

• This file is the best place to start when trying to
understand a system

• Libgen automatically generates xparameters.h

Implementing Processor Systems on Xilinx FPGAs Page 137

Example xparameters.h File

• The following example is for a system that has an
Ethernet MAC device at address 0x60000000. The name
of the hardware instance is opb_ethernet.

#define XPAR_XEMAC_NUM_INSTANCES 1
#define XPAR_OPB_ETHERNET_BASEADDR 0x60000000
#define XPAR_OPB_ETHERNET_HIGHADDR 0x60003FFF
#define XPAR_OPB_ETHERNET_DEVICE_ID 0
#define XPAR_OPB_ETHERNET_ERR_COUNT_EXIST 1
#define XPAR_OPB_ETHERNET_DMA_PRESENT 3
#define XPAR_OPB_ETHERNET_MII_EXIST 1

Implementing Processor Systems on Xilinx FPGAs Page 138

Device Driver Configuration
Specifics

• Constants describing each device instance are contained in
xparameters.h

• These constants are also inserted into a configuration table for
each device driver contained in the <driver_name>_g.c

• The device driver looks up information for the specific instance
of the device when it is initialized

• The data type definition for the configuration data is contained
in the <driver_name>.h file

• Libgen generates the <driver_name>_g.c file for each device
driver

Implementing Processor Systems on Xilinx FPGAs Page 139

Device Driver Configuration
Example

• typedef struct
{

Xuint16 DeviceId;
Xuint32 BaseAddress;
Xboolean HasCounters;
Xuint8 IpIfDmaConfig;
Xboolean HasMii;

} XEmac_Config;
• XEmac_Config XEmac_ConfigTable[] =

{
{

XPAR_OPB_ETHERNET_DEVICE_ID,
XPAR_OPB_ETHERNET_BASEADDR,
XPAR_OPB_ETHERNET_ERR_COUNT_EXIST,
XPAR_OPB_ETHERNET_DMA_PRESENT,
XPAR_OPB_ETHERNET_MII_EXIST

}
};

From
xemac.h
source file

From
xemac_g.c
source file

Implementing Processor Systems on Xilinx FPGAs Page 140

Interrupt Processing
• Layer 1 device drivers provide interrupt driven I/O

• The device driver provides an interrupt handler that must be
connected to the interrupt source by the application

• The device driver interrupt handler performs device specific
details such as register reads & writes and calls a user
specified handler (or callback) to process events and data

• The user application must setup the application callback to be
called by the device driver interrupt handler

• The application callback can perform processing in an
interrupt context or signal non-interrupt driven processing to
perform the processing

Implementing Processor Systems on Xilinx FPGAs Page 141

Interrupt Processing Example
• When using MicroBlaze, XPS automatically connects the interrupt controller

in the system to the exception vector of the processor so that the interrupt
controller’s interrupt handler gets called when an interrupt occurs

• The following code illustrates setting an application callback for the Ethernet
MAC device driver, connecting the Ethernet MAC device driver interrupt
handler to the interrupt controller, and enabling the MicroBlaze interrupts

XEmac_SetFifoSendHandler(InstancePtr, InstancePtr, SendHandler);
XEmac_SetFifoRecvHandler(InstancePtr, InstancePtr, RecvHandler);

XIntc_Connect(&InterruptController,
XPAR_OPB_INTC_OPB_ETHERNET_IP2INTC_IRPT_INTR,

(XInterruptHandler)XEmac_IntrHandlerFifo, InstancePtr);

microblaze_enable_interrupts();

Implementing Processor Systems on Xilinx FPGAs Page 142

Error Processing

• Device driver functions which detect errors return a data type
of XStatus to indicate the detailed error condition

• The error details are contained in xstatus.h
• Device driver functions use asserts to indicate errors during

runtime.
• Errors detected during interrupt processing are returned to the

application via an asynchronous callback function.

Implementing Processor Systems on Xilinx FPGAs Page 143

Assert Details

• Device drivers use Assert to validate input arguments

• The default is for asserts to be used by device drivers
• Asserts can be disabled when the libraries are generated by

using the -DNDEBUG symbol

• The default behavior of Assert is to loop forever after calling a
user defined function if defined

• The user can setup a function to be called when an assert is
called.

void XAssertSetCallback(XAssertCallback Routine);

Implementing Processor Systems on Xilinx FPGAs Page 144

Device Drivers In The EDK
Install Directory

This illustration shows
the directories of a
device driver (emac) in
the EDK install area.

Note that there is an
examples directory that
contains example
source files for using a
device driver.

Implementing Processor Systems on Xilinx FPGAs Page 145

Writing An Application To Use A
Device Driver

• Always start with an example provided in the device driver
directory of the EDK install to save time

• Choose the example best fits your application, such as polled,
interrupts, or DMA, and copy code snippets from the example

