
University of Toronto
ECE532 Digital Hardware
Module m06: Using ISE

Version for EDK 10.1.03 and ISE 10.1.03 as of January 7, 2009

Introduction

ISE is an integrated environment for developing your cores for the FPGA. The main GUI is Project Navigator
and a number of other tools can be used in or launched from Project Navigator, such as CoreGen, HDL
Bencher, and ModelSim. You will probably do the initial development and debugging of your cores using
ISE before trying to connect them to a Microblaze in EDK (XPS).

Note that Xilinx tools do not work reliably if paths contain spaces. Paths with spaces should be avoided
like the plague when deciding where to install Xilinx tools, third party tools, and where to put your project
files.

For additional information on using ISE, please refer to the Xilinx documentation. Links to the online
documentation are embedded in the PDF version of this document; most of the referenced documentation
is also installed locally as part of ISE.

Goals

• To gain a basic understanding of how to use ISE.

• To develop a simple core using ISE for use on the XUPV2P.

• To use CoreGen IP in this design.

• To learn how to initialize memory.

• To use iMPACT to download the design to the board.

• To use the pushbuttons on the XUPV2P.

Requirements

Access to ISE 10.1.03

Preparation

The documentation for ISE 10.1.03 can be found here and can be also viewed directly here. The tools dealt
with in this module fall into the Design Implementation category.

• Take a quick look through the ISE Help documentation in the Design Implementation tools list.

• Skim through the FPGA Design Flow Overview to better understand the various tools and their
interactions.

• Skim through the ISE Quick Start Tutorial to get an idea of the additional capabilities of ISE.

• If you are using the XUPV2P board, read through the Using the LEDs and Switches section of the
Xilinx University Program Virtex-II Pro Development System Hardware Reference Manual. You will
be using the User Input dip switches and User LEDs in this lab.

1

http://www.xilinx.com/support/software_manuals.htm
http://toolbox.xilinx.com/docsan/xilinx10/books/manuals.pdf
http://toolbox.xilinx.com/docsan/xilinx82/help/iseguide/iseguide.htm
http://toolbox.xilinx.com/docsan/xilinx82/help/iseguide/html/ise_fpga_design_flow_overview.htm
http://toolbox.xilinx.com/docsan/xilinx10/books/docs/qst/qst.pdf
http://www.xilinx.com/univ/XUPV2P/Documentation/XUPV2P_User_Guide.pdf

University of Toronto
ECE532 Digital Hardware
Module m06: Using ISE

Steps

1. Open Project Navigator.

2. Create a new project in a directory (without spaces!) by selecting File → New Project.... When you
specify a Project Name, a subdirectory for it will automatically appear in the Project Location box. In
this document, we will call it learn ise. The top-level module type will be HDL. Click Next.

If you are using the XUPV2P board:

• The Device Family should be Virtex2P.

• The Device should be XC2VP30.

• The Package should be FF896.

• The Speed Grade should be -7.

The Synthesis Tool should be XST and the Simulator should be ModelSim-SE Verilog (unless you have
ModelSim-XE installed instead). Click Next, Next, Next, and Finish.

If you are unfamiliar with the Verilog HDL language, dont worry. Verilog syntax is a cross between C
and VHDL. It is beneficial to have exposure to both Verilog and VHDL as both languages are used in
industry. is a reasonable site to visit to get an idea of how to use Verilog.

With the XUPV2P board:

1. Create a new text document in your project directory called example memory.coe and paste the
following into it:

memory_initialization_radix=2;

memory_initialization_vector=

0101,

1010,

0110,

1001,

1100,

0011,

1110,

0001,

0000,

1111,

1000,

0100,

0010,

0111,

1011,

1101;

2. Select Project → New Source. Select IP (CoreGen & Architecture Wizard). Call it example memory.
Make sure the Add to Project checkbox is checked. Click Next.

3. The Select IP dialog box will pop up. Expand Memories & Storage Elements → RAMs & ROMs. Select
Block Memory Generator v2.8. Click Next. Click Finish.

4. A CoreGen GUI will pop up. Leave example memory as the Component Name. Select Single Port RAM
as the memory type and let CoreGen Optimize for Area in the Primitive Selection panel. Click Next.
Enter a Width of 4 and a Depth of 16 for Memory Size. This will create a ROM that has 16 4-bit words.

2

http://www.asic-world.com/verilog/index.html

University of Toronto
ECE532 Digital Hardware
Module m06: Using ISE

Leave all other options as their default values. Click Next. In the Memory Initialization panel, check the
Load Init File checkbox. Click on Load File... and browse to and select the COE file that you created.
Click Next. Click Finish. You should get the message “Successfully generated <example memory>”
in the Transcript panel at the bottom of the Project Navigator window.

Note that you have just initialized a very small block of memory so it did not take very long. If you
were to initialize something occupying over 50% of the on-chip block RAM, generating the ROM could
take upward of 10 minutes.

5. Select Project → New Source. Select Verilog Module. Call it example verilog. Make sure the Add to
Project checkbox is checked. Click Next.

6. Create input ports system clock, sw 0, sw 1, sw 2, and sw 3 and output ports led 0, led 1, led 2,
and led 3. Click Next. Click Finish

7. Select File→ Open... and open the example memory.veo file that was automatically generated for you
by CoreGen. Copy the instantiation template from this file to your newly-created example verilog.v.
Connect the ports of the memory as follows: addra with {sw 3,sw 2,sw 1,sw 0}, clka with system clock,
dina with 4’h0, douta with {led 3,led 2,led 1,led 0}, and wea with 1’b0.

Note: In Verilog, a pair of curly braces are used to concatenate signals. So sw 3,sw 2,sw 1,sw 0 is a
4-bit vector formed by concatenating the four 1-bit sw <#> signals.

Note: In Verilog a simple component instationation uses the following syntax:

<name_of_component> <instance name> (

.<component_port_0>(<signal_0_in_instantiating_file>)

.<component_port_1>(<signal_1_in_instantiating_file>)

.<component_port_2>(<signal_2_in_instantiating_file>)

);

8. Save your example verolog.v file. Select Project → New Source. Select Implementation Constraints File.
Call it example verilog. Make sure the Add to Project checkbox is checked. Click Next. Click Finish.

9. Select example verilog.ucf from the Sources panel, then double-click on User Constraints → Edit Con-
straints (Text) in the Processes panel. Copy the appropriate lines from the User Constraint Files (UCF)
section Xilinx University Program Virtex-II Pro Development System Hardware Reference Manual into
your new UCF file.

10. Save and close all the open design files.

11. In the Sources in Project window you will see a collapsible listing of the source file hierarchy for the
project. Depending on which source you click on, the Processes panel will change to correspond to that
source file. This allows you to compile and debug at various levels in your design. Be sure that you
have clicked on the source file you actually want before running one of the processes for it.

Another helpful tool for lazy typers: In the Sources panel of the Project Navigator window, select a
Verilog or VHDL source file. In the Processes panel, double click View HDL Instantiation Template under
View Design Summary Tab. This will generate an instantiation template to instantiate the module
represented by that file.

12. In the Sources panel, click on the top-level module. In the Processes panel, double click on Synthesize
— XST.

13. When synthesis completes successfully, double click on Implement Design in the Processes panel.

14. When Implementation completes successfully, double click on Generate Programming File in the Pro-
cesses panel.

3

http://www.xilinx.com/univ/XUPV2P/Documentation/XUPV2P_User_Guide.pdf

University of Toronto
ECE532 Digital Hardware
Module m06: Using ISE

15. When the programming file has been generated, turn the XUPV2P on.

16. Double-click on Configure Target Device → Manage Configuration Project (iMPACT) in the Processes
Panel. A iMPACT dialog box will appear. Select Configure devices using Boundary- Scan (JTAG), then
click Finish.

17. The iMPACT tool will open up in Project Navigator. This tool is used to download bitstreams to the
FPGA. There will be a message about connecting to cable and configuring and then an Assign New
Configuration File dialog box will appear. Click Bypass, Click Bypass for the next dialog box as well,
then Select example verilog.bit for the third dialog box. A long, narrow dialog box should now appear,
click OK. A “Device Programming Properties” dialog box will appear, click OK.

18. Right-click the xc2vp30 FPGA image in the main pane. Choose Program from the menu and click
OK in the dialog box that appears. If you get a warning saying “Startup Clock has been changed to
JtagClk”, just click OK. Check the console at the bottom to see if the download was successful.

19. You can fiddle with the user switches to get different configurations on the LEDs. Can you explain the
results of a given switch configuration?

Look at Next

Module m07: ModelSim Simulation

4

