
University of Toronto
ECE532 Digital System Design

Module: Multiprocessor and Multi-Port Memory Controller

Version for EDK 10.1.03 as of June 14, 2010

Goals

• To familiarize with overall architecture of multiprocessors

• To understand how to synchronize data among processors using interprocessor peripheral

• To understand how to access external memory with several processors running simultaneously

• To learn how to configure debug module UART as other processor standard input output interface
other than RS232 UART peripheral

Requirements

• If you are using Virtex-II Pro XUP Evaluation Platform before, you will need to utilize a more advanced
version of library. Please download the EDK 10.1 Board Definition File for XUPV2 Pro Development
System from Xilinx website.

• Please check the memory size of your DDR SDRAM on your board. If it is KVR266X64C25/256
memory module, you can configure the program as default; however, if the module is KVR266X64C25/512,
please follow the instruction on 512MB DDR SDRAM Fix after you start BSB.

Preparation

• Please read the document Designing Multiprocessor Systems in Platform Studio to understand the
architecture of multiprocessor and interprocessor communication peripherals.

• Please read the document Dual Processor Reference Design Suite to better understands how to create
multiprocessor structure using EDK. (Note: the reference note is not based on XUPV2P, so the sample
design suite will not work on this board.)

• Please download the ml505 dual mb design suite and read the sample codes in sw folder. (Note: You
will need to sign up an account to download the design suite. You may ignore part of the codes that
are written for PowerPC processor.)

Configure Hardware

1. Using the Base System Builder Wizard (BSB), create a new design and set the project peripheral
repositories to virtex2pro board lib/lib file after you extract the EDK 10.1 Board Definition
File. In the board selection part, choose XUP Virtex-II Pro Development System as board
name.

2. Select microblaze with frequency 100.00Hz as DDR SDRAM will need higher system frequency to be
functional.

3. Select On-chip H/W debug module, local memory 8KB and enable cache setup.

4. For this tutorial, you only need RS232 Uart and DDR SDRAM with MPMC peripheral. Uncheck
the other IO devices in the interface.

5. Check the ICache and DCache to allow cache memory configuration in the external memory. Leave
the cache memory size as default.

1

http://www.xilinx.com/univ/xupv2p.html in Xilinx website.
http://www.eecg.toronto.edu/~pc/courses/edk/doc/512MBfix.txt
http://www.xilinx.com/support/documentation/white_papers/wp262.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp996.pdf
https://secure.xilinx.com/webreg/clickthrough.do?cid=92894

University of Toronto
ECE532 Digital System Design

Module: Multiprocessor and Multi-Port Memory Controller

6. Uncheck the memory test and peripheral selftest to shorten the compilation time. Leave the
standard IO and boot memory as default. (Note: Changing the boot memory to external memory will
cause fatal error in Microblaze, so leave it as local memory configuration.)

7. Now, create a similar Microblaze processor by adding peripherals and connect them manually as
instructed in step 8. (Note: remember to check your DDR SDRAM as stated in Requirement section
above before you proceed.)

8. Include the following peripherals (in IP Catalog) and rename them as ≺peripheral� ≺no.� so that
you can easily recognize which processor is referred to:-

Bus and Bridge

• 1 PLBV46 to PLBV46 Bridge

• 1 Processor Local Bus (PLB) 4.6

• 2 Local Memory Bus (LMB) 1.0

Clock, Reset and Interrupt

• 2 XPS Interrupt Controller

DMA and Timer

• 2 XPS Timer/Counter

Interprocessor Communication

• 1 XPS Mutex

• 1 XPS Mailbox

Memory and Memory Controller

• 2 XPS BRAM controller

• 2 LMB BRAM Controller

• 2 Block RAM (BRAM) Block

9. Instead of making 3 connections (1 PLB and 2 XCL) to the MPMC for each processor, we will use only
2 XCL connections. This method causes a processor to make uncached memory accesses over XCL
instead of PLB to reduce system size.

10. Double click on the microblaze 0 in System Assembly View, scroll to Cache, enable both caches
if you haven’t done so, and enable Use Cache Links for all I-Cache Memory Accesses and Use Cache
Links for all D-Cache Memory Accesses. (Note: You may change the Cache Line Length if you prefer
to speed up the system. If you do so, make sure you change all of them in the processor setting and
DDR SDRAM setting in Port Configuration.)

11. Change the base address and high address of I-cache and D-cache to your DDR SDRAM base
address and high address. By default, 256 MB memory module address ranges from 0x90000000 to
0x9FFFFFFF while 512 MB memory module address ranges from 0xA0000000 to 0xBFFFFFFF.

12. Double click on the microblaze 0, scroll to Debug and enable Microblaze debug module interface.
Repeat the same procedure in steps 10 to 12 for microblaze 1.

13. Double click on the DDR SDRAM, create four XCL connections in Base configuration. Scroll to
Advanced −→ EEC/PM/PHY and uncheck Enable Static PHY.

14. Double click on the debug module to increase the number of MicroBlaze debug ports to the number
of processors you have.

2

University of Toronto
ECE532 Digital System Design

Module: Multiprocessor and Multi-Port Memory Controller

15. Now, switch to System Assembly View. Click on the + sign on the left of Bus Interfaces to view
all the bus connections. Connect the bus for microblaze 1 in the same manner as microblaze 0 cor-
responding to their number. For example, the IPLB under microblaze 0 is connected to mb plb 0,
so you must connect IPLB under microblaze 1 to mb plb 1.

16. In the same manner as previous step, configure the bus interfaces, ports and assign appropriate ad-
dresses to all the peripherals and processors. You should refer to the System Assembly View on
ml505 dual mb design suite as a guide to connect and rename all of them. (Note: Except the DDR
SDRAM, the rest of the configurations are almost the same.)

17. You should have a similar block diagram as shown below:-

Diagram 1: Dual Processor

Configure Software

1. Scroll to Software −→ Software Platform Setting −→ OS and Libraries, make sure the stdout
and stdin for microblaze 0 is RS232 Uart and for microblaze 1 is debug module.

2. Scroll to Debug −→ Debug Configuration −→ JTAG UART, enable JTAG UART for microb-
laze 1.

3. From the ml505 dual mb design suite, copy all the C files in sw folder to your project directory. As
usual, use Add Software Application Project to create 8 different required project files and include
their respective source files accordingly. (Note: Refer to ml505 dual mb design suite Applications
tab on creating all 8 project files.)

4. Double click on Project: shm0, enable Use Default Linker Script with:-

3

https://secure.xilinx.com/webreg/clickthrough.do?cid=92894
https://secure.xilinx.com/webreg/clickthrough.do?cid=92894
https://secure.xilinx.com/webreg/clickthrough.do?cid=92894

University of Toronto
ECE532 Digital System Design

Module: Multiprocessor and Multi-Port Memory Controller

Memory Module 256MB 512MB
Program Start Address 0x90000000 0xA0000000

Stack Size 0x3000 0x3000
Heap Size 0x3000 0x3000

5. Double click on Project: shm1, enable Use Default Linker Script with:-

Memory Module 256MB 512MB
Program Start Address 0x91000000 0xA1000000

Stack Size 0x3000 0x3000
Heap Size 0x3000 0x3000

6. By default, the linker script is using local memory to store all .elf data which may not be enough for
multiprocessor. The offset address assigned is to ensure that the processors are using data from DDR
SDRAM. Two processors should not be allocated the same starting address to avoid data overwriting.

7. Repeat the same procedure for all project files in step 4 and 5.

Running and Debugging Design

1. Generate bitstream for hardware configuration and build all user applications for software application.
(Note: You may face several errors in this step, make sure that you follow all the steps above. Refer
to the last page on Common Encountered Bugs to fix some common problems.)

2. After successful compilation, download bitstream to XUPV2P board and open up a XMD shell. Choose
microblaze 0 when a window pop up, leave the connection type as hardware and click OK.

3. Open up hyperterminal (windows) or minicom (linux) to connect to your communication port.

4. After the XMD auto-connect to microblaze 0, input the following instructions:-

connect mb mdm -debugdevice deviceNr <jtag chain no.> cpunr <processor no.>
- This will connect the XMD to other processor. Normally, the jtag chain no. is 3 and processor no.
is 2 in this case.

connect mdm -uart
terminal -jtag uart server 4321
- This will connect your processor to microblaze debug module (mdm) uart device. The latter instruc-
tion will open a TCP terminal tunnel in port 4321.

targets
- This command is to check which devices the XMD is connected to. Make sure you have both microb-
laze processors and mdm uart device connected in this stage. The XMD specifies a unique number for
each device.

5. Open up another hyperterminal in windows. Select connection TCP/IP (Winsock) and enter local-
host as host address and 4321 as port number. You should be able to see a notice in XMD saying
hyperterminal connection detected. (Note: in Linux OS, open up a terminal, enter telnet followed by
open localhost 4321 to establish connection.)

6. Enter the following commands to run the program:-

targets 0
- switch your targeted device to device 0 which is MicroBlaze≺1�> or microblaze 0 in this case. An
asterisk * indicates which device you are currently accessing.

4

University of Toronto
ECE532 Digital System Design

Module: Multiprocessor and Multi-Port Memory Controller

dow shm0/executable.elf
run

targets 1
dow shm1/executable.elf
run

7. If everything is configured correctly, you should be able to see the same output on Dual Processor
Reference Design Suite document. Try to download other software projects file to verify your design
is correct.

Extend the Design

1. Now, you can use the similar method to create 4 microblaze processors connected to MPMC.

2. Modify your codes on sharedconsole.c to allow four microblazes running simultaneously.

3. Instead of using shared BRAM memory, you will need to use DDR SDRAM as shared memory for
four processors. (Note: Microblaze processor does not provide cache coherency support, thus you must
either enforce your coherency in software or disable cache.)

4. You should have a similar block diagram as shown below:-

Diagram 2: Quad Processor

Common Encountered Bugs

• If you see ”Cable is locked” problem, open your XMD shell and enter xclean cablelock to release all
the locks.

• If you encounter ”too many RAMB are declared”, reduce the size of all your BRAM. The maximum
allowable memory size is 32KB.

5

http://www.xilinx.com/support/documentation/application_notes/xapp996.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp996.pdf

University of Toronto
ECE532 Digital System Design

Module: Multiprocessor and Multi-Port Memory Controller

• When using plbv46 plbv46 bridge, its address range must cover the address of the desired custom
peripheral.

Prepared By,
Chia Chen Tan

6

