
University of Toronto
ECE532 Digital Hardware

Lab 4: Adding the OPB EMAC Peripheral

Version 1.3 for EDK 6.2i 8/15/2004

Acknowledgement

This lab is derived from a Xilinx lab given at the University of Toronto EDK
workshop in November 2003. Many thanks to Xilinx for allowing us to use and
modify their material.

Goals

• Understand the procedure for adding more complex peripherals to an XPS
project.

• Use XPS to manually add the OPB 10/100 EMAC peripheral to the Mi-
croBlaze system.

• Search through more documentation to see where to find various bits of
information and examples.

Requirements

Module 3 (Lab 3) - Drivers, IP, and Interrupts.

Preparation

1. Read through this lab first to get an idea of what you are about to do.

2. Find the data sheet for the OPB Ethernet Media Access Controller (EMAC)
(v1.01a) and review it. A copy is also posted directly on the course web
page.

3. In this lab you will be modifying an example program that can be found
in the Processor IP drivers library for the device. On the lab machines,
look in

O:\Xilinx\EDK6.2i\sw\XilinxProcessorIPLib\drivers\emac v1 00 d\examples

4. The first step is to copy the previous lab. You can do this in advance by
going to your ugsparc directory where you can find “lab3”:

% cp -r lab3 lab4

You should, of course, check to see if you have enough space first! You
may need to clean up some files, i.e., do some cleaning. If you want to
clean lab3, you can also do this from the ugsparcs using the system.make
file in the lab3 directory. In the lab3 directory type:

% make -f system.make hwclean

1

University of Toronto
ECE532 Digital Hardware

Lab 4: Adding the OPB EMAC Peripheral

to clean the hardware directory.

% make -f system.make

will give you all the options. But, this still does not work!! Why?

Try this first:

% dos2unix system.make usystem.make

and try the above commands but using usystem.make. What.s going on?
Just one of the many kinds of things you have to deal with when working
with CAD tools.

5. During the lab, you will be working with the example called

xemac intr fifo example.c

This file is also posted on the course web site for you to look at before
the lab. You will be asked to modify it so that it will work with your
system. You might want to try to understand what it does so that you
will not have to spend time during the lab doing this. You can also do
some modifications and adding of print statements. Put your file in your
ugsparc directory where you can access it later. If you did step 3 above,
then put it in the code directory of the lab4 project directory.

Background

As peripherals become more complex, there are more signals to be brought out
of the FPGA and possibly more timing issues, including the need for timing
constraints and Digital Clock Managers (DCM). The DCM is a block in the
FPGA that contains functions like DLLs that can be used to help synchronize
internal logic and clocks with external logic and their clocks. You will not have
to deal with them here. In this lab, you will be connecting the FPGA to an
external Ethernet chip.

Ethernet is a widely used peripheral, so it is beneficial to learn how to
properly include the OPB EMAC into an XPS project.

Outside of the FPGA is the physical layer interface (PHY) that actually
connects to the Ethernet cable on one side, and the FPGA pins on the other
side. The EMAC is the peripheral that is inside the FPGA that connects from
the FPGA pins to the OPB bus of the MicroBlaze allowing the processor to
talk to the Ethernet chip.

This lab is built on top of the previous week.s lab. It expects a MicroBlaze
system with an interrupt controller and serial Uart device for standard I/O. If
you didn.t successfully add the DIP switch to last week.s lab, you can build
onto the simpler design.

Note that at 27MHz, the speed of the OPB bus, the EMAC will only function
correctly at 10Mbps.

2

University of Toronto
ECE532 Digital Hardware

Lab 4: Adding the OPB EMAC Peripheral

Using XPS Base System Builder

1. Copy the XPS project directory of the previous lab and rename the copy
to “lab4”. This will be the working project directory for this lab. You
may need to delete the implementation directory of the previous lab to
free up disk space. Use “clean” under the Tools menu.

2. Open the “lab4” project using XPS.

3. From the Project menu, select the Add/Edit Cores... (dialog) submenu
item. Add the opb ethernet peripheral to the system. Define the base
address of the device to be a 16K aligned address following the address
of the previous peripheral in the list. Attach the EMAC as a slave to the
OPB bus. Note that two devices appear. Configure only the sopb (slave)
version.

When would you attach the EMAC as a master to the OPB bus?

The minimum address range of the OPB EMAC core is 16K (0x4000).
The tools require that the base address begin at a 16K aligned address.

4. In the Add/Edit Cores... dialog box (Ports tab), add the PHY ports
(except PHY rx en and PHY rst n) and the interrupt output port of the
EMAC to the design so that they can be connected to other signals or
pins of the FPGA. Make sure all PHY ports are external such that they
are connected to their corresponding FPGA pins. Later, you will use the
board user.s guide or schematic for information on pin assignments for
each signal.

Note that the net names chosen for each port will need to match the net
names in the system UCF file. The default net names will suffice for the
PHY connections. You.ll change the interrupt name later.

5. Add a vector range on the PHY receive and transmit data ports. Deter-
mine the width of the vector from the data sheet. For an n-bit bus, input
the range of [n-1:0].

6. There are two PHY signals connected to the FPGA that do not have
corresponding ports in the EMAC device. These signals are inputs to the
PHY and should be tied high (tied to net vcc) in the design.

Click Add Port in the Ports tab to create a system port. Name the port
PHY slew1, make it an output, and connect it to net vcc in the Add
External Port dialog box. Click OK.

Do the same for PHY slew2.

7. Make the interrupt output of the EMAC an internal port. We will be
connecting this net to the interrupt input of the interrupt controller device.
Rename the net name of the EMAC interrupt output port to emac intr.
This can be done by typing the new name in the Net Name box of the
port in the Ports tab.

3

University of Toronto
ECE532 Digital Hardware

Lab 4: Adding the OPB EMAC Peripheral

Recall that the interrupt controller can handle a number of interrupt input
request lines. The interrupt input of the controller is really a vector of
signals, not a single wire. Since there may be other interrupt signals
already connected to the interrupt input of the interrupt controller, the
EMAC interrupt output may need to be concatenated to those signals.

The interrupt controller has a vector of interrupt input signals with each
signal being assigned a specific priority. Concatenation of signals builds
a vector of signals that will be connected to the input of the interrupt
controller. The last signal in the list of concatenated signals is the highest
priority. Each signal prior to the last decrements in priority.

Here is the syntax for the net name of the interrupt input of the interrupt
controller, assuming there is already a signal named timer intr connected
to the interrupt controller input that comes from the interrupt request
output of the timer peripheral. The line below indicates the concatenation
of two signals to form a two-bit input vector for the interrupt input.

timer intr & emac intr

Note that the connections made under this Ports tab are done by the
names. Boxes with the same names indicate ports to connect. The Con-
nect button is only a quick way to connect ports with the same name, i.e.,
to save some typing. You cannot use it here.

8. Click OK on the Add/Edit Cores... (dialog) dialog box to save changes
and return to the main XPS GUI.

9. Add the following entries to the UCF file in the /data subdirectory of
the project. This is describing the physical connections between the PHY
device and the FPGA pins. Use the board user.s guide to verify the correct
pin location. Note that one of the pin locations below (****) still needs
to be assigned. (Hint: You can cut and paste these values from the online
document source by changing the select cursor in Acroread to select text.
Make sure the angle brackets appear as greater and less than symbols).

Net PHY slew1 LOC=G16;
Net PHY slew2 LOC=C16;
Net opb ethernet 0 PHY crs LOC=F20;
Net opb ethernet 0 PHY col LOC=C23;
Net opb ethernet 0 PHY tx data<3> LOC=C22;
Net opb ethernet 0 PHY tx data<2> LOC=B20;
Net opb ethernet 0 PHY tx data<1> LOC=B21;
Net opb ethernet 0 PHY tx data<0> LOC=G20;
Net opb ethernet 0 PHY tx en LOC=G19;
Net opb ethernet 0 PHY tx clk LOC=****;
Net opb ethernet 0 PHY tx er LOC=D21;
Net opb ethernet 0 PHY rx er LOC=D22;
Net opb ethernet 0 PHY rx clk LOC=C17;
Net opb ethernet 0 PHY dv LOC=B17;

4

University of Toronto
ECE532 Digital Hardware

Lab 4: Adding the OPB EMAC Peripheral

Net opb ethernet 0 PHY rx data<0> LOC=B16;
Net opb ethernet 0 PHY rx data<1> LOC=F17;
Net opb ethernet 0 PHY rx data<2> LOC=F16;
Net opb ethernet 0 PHY rx data<3> LOC=D16;
Net opb ethernet 0 PHY Mii clk LOC=D17;
Net opb ethernet 0 PHY Mii data LOC=A17;

Building The Hardware

10. Select the Tools menu and the Generate Bitstream submenu in XPS to
start building the hardware system. This will take about 10-15 minutes
as the system is compiled, placed and routed for the FPGA. During the
build process, a lot of information will be displayed in the bottom window
pane of XPS. The first step of the software design may be done while the
bitstream is being generated.

Defining The Software

11. Create a simple loopback application that sends an Ethernet frame and
receives the same frame while the EMAC is in internal loopback mode.
Begin with the xemac intr fifo example.c example provided in the EDK
installation area by copying this file to your lab4/code subdirectory. The
example resides at:

O:\Xilinx\EDK6.2i\sw\XilinxProcessorIPLib\drivers\emac v1 00 d\examples

You can look through the example code while XPS generates a hardware
bitstream but you should have done this prior to the lab as preparation!

12. Add the xemac intr fifo example.c file to the XPS project as program
source. Be sure to remove any other source files that are leftover from
previous labs.

13. Next you will edit the xemac intr fifo example.c source to match your
system.

The example supports both the Microblaze and PPC405 processors as
well as the VxWorks operating system. Be sure to include support only
for MicroBlaze.

You should reference the xparameters.h file for the correct constant names
needed by the application. Open the xparameters.h file. When looking
through the file, you should notice that there are no references to the
Ethernet core. The generation of the bitstream did not update your xpa-
rameters.h file. Goto the Tools menu and generate the libraries. This
should update your xparameters.h file. Now you can edit the example file

5

University of Toronto
ECE532 Digital Hardware

Lab 4: Adding the OPB EMAC Peripheral

to match your system by providing the correct names from the xparame-
ters.h file. (Hint: the constants should all begin with XPAR so you can
do a search)

Compiling the Drivers and Program

14. In XPS, make sure that the compiler options are set so there is no opti-
mization and debug flags are generated. Compile the application.

15. Select the Tools menu and the Update Bitstream submenu to update the
hardware bitstream with the xmdstub elf.

Downloading the Bitstream to the FPGA

16. Ensure that power is on to the board and the parallel 4 cable is connected
to the PC. The Status light on the parallel 4 pod should be green. Select
the Tools menu and Download submenu. This will download the hardware
and software contained in the bitstream to the FPGA. The ROM monitor
software will begin executing after the download completes.

Getting Ready to Debug

17. Use XMD to connect to the stub (ROM monitor software) running on the
target board.

Debugging Software

18. Use GDB to connect to the XMD gdb server and download the executable
elf file that contains the EMAC loopback application.

19. Use GDB to step through the program. Verify the program runs by setting
breakpoints in the interrupt handlers and looking at return values with
the debugger or by adding xil printf statements to the code and looking
at the terminal output. Why do we prefer xil printf over printf?

Note: You can save your breakpoint locations for subsequent runs. In
the GDB Source window, select the View menu and the Breakpoints sub-
menu. The Breakpoints window will open. Once you have set all your
breakpoints, in the Breakpoints window, select the Global menu and the
Store Breakpoints submenu. You can then specify a filename that you can
restore in a subsequent run of GDB.

6

University of Toronto
ECE532 Digital Hardware

Lab 4: Adding the OPB EMAC Peripheral

Look At Next

Module 5: Adding a User Core - Snoopy
Module 6: Using ISE

7

