
University of Toronto
ECE532 Digital Hardware

Lab 5: Adding a User-Designed Peripheral

Version 1.5 8/16/2004

This lab can be started during Lab 4 and completed during Lab 5, if neces-
sary.

Goals

• Add a user designed peripheral to a basic MicroBlaze system.

• Demonstrate the required structure necessary for interfacing user-designed
cores to the Xilinx cores.

• Learn about how you would make your own core to attach to the OPB.

Requirements

Module 1 (Lab 1) Building a base system. Preferably, do Modules 1-4.

Preparation

1. Review the handout outlining the EDK project structure provided in Lab
1. We will be focusing on the pcores subdirectory for this lab.

2. Read the document “Integrating a Verilog design into a MicroBlaze Sys-
tem”. Much of the content is also applicable to creating VHDL cores.
Pay particular attention to the section about “Adding the design to a
MicroBlaze system”.

3. If you are unfamiliar with the profiling of code, read the manual page for
“gprof”, which is available on the ugsparcs with the “man” command.

Background

To this point, you have only been adding cores from the existing library. If you
cannot find a core with the required functionality, you will have to add your
own.

This lab adds a simple core that can be used to profile the code running on
a MicroBlaze. This has similar functionality to the “gprof” utility for profiling
that is available in the GNU tools. However, it is much more accurate. You
may find it useful for your project.

1



University of Toronto
ECE532 Digital Hardware

Lab 5: Adding a User-Designed Peripheral

Step-by-step

1. Copy your working lab1 project into a new directory.

2. Add a pcores subdirectory to your new project directory.

Using an ssh window, login to your ugsparc account. The files you will need
for this lab can be found in pc/courses/532/labs/User Area/lab4.5. Copy:
1) system.c to the code directory of your project; 2) the snoopy v1 00 a di-
rectory into the pcores directory; and 3) the sst script and example results.txt
to the root of the project directory; 4) the OPBInterfaceModule directo-
ries to a directory where you can refer to it later. Note: You may find the
“cp -r” command useful.

3. Take time to look through the directory structure of the snoopy core.
The naming structure is essential for XPS to be able to detect a user.s
peripheral. All user cores must be located in the pcores subdirectory or
in a globally specified path to a peripheral repository. User cores can
be defined using either VHDL or Verilog, but the tools do not support
simulation of mixed designs. Therefore, it may be preferable to write the
designs in VHDL

Along with the hdl files used to implement the core, the user must also
include data files: a .pao file (Peripheral Analyze Order) and an .mpd
file (Microprocessor Peripheral Description). The .pao file lists the order
in which files in your design should be synthesized to resolve component
architectures. The .mpd file describes the external interface of the core to
a system. For more information on these files and their structure, go to
the Embedded System Tools Guide.

Notice that the version numbers in the core name and the version numbers
in the data file names differ. The version in the core name is the core’s
version. The version in the data file names is the version of the syntax
used to write the data file.

The easiest method for including user IP into an EDK project, is to fol-
low an example. When you develop your own cores for your project,
you can use snoopy as a guide. The cores provided by Xilinx in the
EDK6.2\hw\\XilinxProcessorIPLib\pcores may also be used as a refer-
ence. There is also a document describing how to add user cores to Em-
bedded Systems (the User Core Template Reference Guide) but it is meant
for relatively complex cores, providing the user an IP Interface (IPIF) to
simplify user core connections to system buses.

4. The snoopy core is a snooping profiler that is able to profile software run-
ning on a softcore processor in real time. The counters calculate the exact
number of clock cycles spent executing contiguous address ranges. The
user specifies the number of counters and the lower and upper bounds for

2



University of Toronto
ECE532 Digital Hardware

Lab 5: Adding a User-Designed Peripheral

each counter before synthesis. This information can be used by embed-
ded system designers to determine which, if any, sections of the software
should be moved to hardware to achieve the required design specifications.

5. Open the Add/Edit cores menu. The snoopy core should appear in the
list of peripherals you can add to your design. Add the snoopy core and
connect it to the slave opb bus. The core requires 0x100 bytes and a
0x100 byte alignment. Since the tools resolve connections to the opb and
lmb buses based on the address of a peripheral, we suggest address range
0xffffff00 to 0xffffffff to guarantee the peripheral resides on the opb.

6. For the snoopy core to work, it must be interfaced with the system clock,
and the PC EX and valid instr ports on the Microblaze core. Connect the
clock from the snoopy core (OPB Clk) to the system clock. Don.t forget to
check the net name and the scope under the Ports tab. Unfortunately, the
PC EX and valid instr ports on the snoopy core are not visible through the
Add/Edit core interface. Therefore, they will have to be added manually
to the hardware description.

7. Close the XPS GUI. Go to your project directory and open the system.mhs
file. You are going to edit this file by hand. It is important to remember
that this file contains the project description used by XPS to generate
your MicroBlaze system. Therefore, it is safest to only edit the mhs file
when XPS is not running.

8. You are going to add two lines of code to the MicroBlaze and snoopy
module descriptions. Each module description begins with a BEGIN
<module type>. Look for the MicroBlaze core and the snoopy core and
add the following two lines just before both END statements:

PORT PC EX = PC EX
PORT valid instr = valid instr

9. Save and close the mhs file. Reopen XPS and your current project. Go
to the Add/Edit cores menu. If you look under the ports tab, you should
now see that the valid instr and PC EX ports of the processor have been
connected to snoopy.

10. The core lets you set a reset address for clearing the counters, the number
of counters you want to use (maximum of 16) and the upper and lower
bounds for the instruction addresses. Choose an address that is within
the address range assigned to the core. (Hints: if you used the suggested
address range for the core, the default reset address, 0xffffffe4, will be fine.
Remember this is found under the Parameters tab.)

11. Remove the old system source file and add the new source file you copied
into the code directory, system.c. Compile the source program without
optimizations and including debug flags to see the generated executable.
If you get an error, go to the compiler options menu and verify that the

3



University of Toronto
ECE532 Digital Hardware

Lab 5: Adding a User-Designed Peripheral

executable is being placed in the appropriate directory. Disassemble your
executable into a file.

12. Open the disassembled file to determine the address ranges you will profile.
You will be selecting contiguous address ranges to profile based on function
calls. Edit the parameters for the snoopy core to profile the following
functions:

Counter Function

0 start
1 exit
2 crtinit
3 main
4 exception handler
5 interrupt handler
6 program clean
7 program init
8 print
9 putnum
10 outbyte
11 XUartLite SendByte
12 XUartLite RecvByte
13 All Functions (complete program)

The lowerbound should be the starting address of the function and the
upperbound should be the address of the last instruction in the function.
Change the default value for the NUM COUNTERS parameter to 14

13. Now you can generate the bitstream to download onto the FPGA.

14. After the bitstream has been downloaded onto the FPGA, start up the
XMD window. Connect to the XMD stub and then download the ex-
ecutable onto the board using the XMD download command dow (Re-
member that when you start up the XMD window you will be in the
project root directory and the executable.elf file is in the ./mb0 default/
subdirectory).

15. The sst script you copied to your project directory can be used to read
the counters. To reset them, use the memory write command in the XMD
window: mwr reset address <value>, where the reset address is one of the
core parameters. The counters are designed to reset independent of the
written value. Type “source sst” and a file res.out will be generated. Open
the file res.out to view the values stored in each of the 64-bit counters.
The most significant portion is stored in 0x00 and the least significant
portion in the 0x04 address. As you have just reset the counters, all the
values should be zero.

16. After you have run your application, you can check the new counter values
again using the sst script. Open res.out to see what the values for each

4



University of Toronto
ECE532 Digital Hardware

Lab 5: Adding a User-Designed Peripheral

counter are. Are they all non-zero values? Why or why not? (Hint: look
at the disassembled code to understand the values.)

17. Now copy res.out to res.bak. Reset the counter values as previously in-
structed and rerun the program. Run the sst script again and look at the
values of the counters. Are they all the same as the values in your res.bak
file. Why or why not? You should compare your results to those found in
the file example results.txt to verify the counter values.

18. You can also use the counters to determine how many clock cycles are
required to execute a single instruction by setting both the upper and
lower bounds to the same address. If the instruction is executed only
once, the number of clock cycles should be the same as what is specified in
the MicroBlaze processor manual. Familiarize yourself with the available
XMD commands or change the core parameters to better understand how
your application runs on the MicroBlaze processor.

19. Use the remaining lab time to look at the OPBInterfaceModule files that
you can use as templates when creating your own core for the OPB. Your
Verilog or VHDL code will go in the subdirectory of the “hdl” directory.
You will need at least an .mpd and .pao file in the “data” directory. If
your core makes use of components that are in netlist format instead of
HDL, you will need a .bbd file.

Look at Next

Module 6: Using ISE
Module 8: Using ZBT Memory
Module 10: Using FSLs
Module 12: Using ChipScope
Module 13: MBlaze MP3 Decoder

5


