
University of Toronto
ECE532 Digital Hardware

Real Time MP3 Decoder Implentation Using MicroBlaze Soft Processor

Version 1.1 For EDK 6.2i 12/28/2004

Acknowledgement

This document was created to accompany the example MP3 design we received and adopted. Many thanks
to the anonymous donor.

We do our best to keep it working, but no promises.

Goals

• Get a better understanding of MicroBlaze systems by using this example design, which has instructions
stored in on-chip BRAMs and data stored in the ZBT external memory.

• Get an idea of how audio works on the Multimedia development board.

Requirements

Access to EDK 6.2i, the Xilinx Multimedia development board, and speakers or headphones plugged into
the Multimedia board headphones jack.

Preparation

• Copy pc/courses/532/labs/sampledesigns/MicroBlaze MP3Decoder Rel VerECE532.zip to your work-
ing directory and unzip it. MAKE SURE THIS PATH HAS NO SPACES!

• Read the README file in the unzipped directory.

• Read the section on user-specified Makefiles in the EST Guide -> Xilinx Platform Studio (XPS) ->
Flow Tool Settings and Required Files.

• Make sure your speakers/headphones are plugged into the Multimedia board and have power, if needed.
Make sure the speaker volume is not so high that it will make you go deaf or give a heart attack to
your TAs.

Note

• Although this design is supposed to work with EDK 6.1i, we have not had success with that version
of the tools. This design was found to work with EDK 6.2i Service Pack 1, but started mis-behaving
slightly with EDK 6.2i Service Pack 2. See the Step-by-step section for more details.

• Also, the opb zbt controller officially has Xilinx IP OBSOLETE status with EDK 6.2i service pack 2.
To get around this, the pcore directory for this core was copied and added to the pcores/ directory of
the example design. Then the MPD file was modified to describe it as having DEPRECATED status
instead. Otherwise, XPS would claim that the project has errors.

Step-by-step

You will use XPS to play your own MP3 song. This can be done via the GUI, by a slightly different procedure
than what is in the README file.

• Change directory to the directory you extracted for this example design.

1



University of Toronto
ECE532 Digital Hardware

Real Time MP3 Decoder Implentation Using MicroBlaze Soft Processor

• Change directory to the XPS DESIGN 2V2000 directory.

• Copy system.make as system mp3.make. The makefile that is provided has been modified from the
XPS version to use a bootloop code to initialze processor memory during bitstream download. Why
do you think we need to rename the makefile?

• If you are using EDK 6.2i with Service Pack 2, XPS will complain unless you do the following: Go
to your pcores directory. Rename bufg block v2 00 a to bufg v2 00 a. Open the directory and go
to the data directory. Rename bufg block v2 1 0.mpd and bufg block v2 1 0.pao to bufg v2 1 0.mpd
andbufg v2 1 0.pao. Open the PAO file for editing and change bufg block v2 00 a to bufg v2 00 a. Go
back to the main project directory. Open the MHS file and change the lines “BEGIN bufg block” to
“BEGIN bufg”. Save the files you edited.

• Open the 2v2000 design in XPS and allow it to rev it up. Read the dialog box that pops up to see
what takes place during a rev-up. Click Yes to continue.

• You will get some errors during the parsing of some MPD files. The Output tab will tell you where
to find the files. Open them and comment out the OPTION SPECIAL lines. Save the modified MPD
files.

• In GUI set the device to 2v2000 ff896 -4. This will cause it to change in the system.xmp file.

• In Options -> Project Options, specify system mp3.make as the custom makefile.

• Modify system mp3.make to follow the new 6.2 convention of including system incl.make. (You can
read more about this in the EST Guide.) Comment out the variable definitions in system mp3.make
but keep MY BLAZE OUTPUT and MY BOOTLOOP. Replace all instances of DO SCRIPT with
SIM SCRIPT. This is important because it makes sure that the makefile reflects changes to options
and settings made in XPS.

• Compile and download everything using the system mp3.make makefile. Make sure that you have lots
of free disk space, otherwise compilation may fail unnecessarily. This would be sad because generating
the netlist and bitstream takes quite a while.

• Note that with EDK 6.2i Service Pack 2, Timing fails. What was the constraint that failed?.

• Open xmd.

• Make sure user input switches are in the positions 1: off, 2: on

• Connect to the MicroBlaze debug module: mbconnect mdm.

• Provide the size of the MP3 file at location 0xfa800000: mwr 0xfa800000 0x1ec00

• Provide the MP3 data to download at location 0xfa800004 (The length of the song should be less than
0xFFFFF): dow -data ../MP3Streams/classic2.mp3 0xfa800004

• Download Microblaze executable (This downloads code to local memory and data to instruction mem-
ory): dow my blaze/code/executable.elf

• Execute the program from location 0x0: con 0x0

• If you are running EDK 6.2i Service Pack 1, your song should now play on the headphone jack of the
Multimedia board. If you are running EDK 6.2i Service Pack 2, then the song should still play in spite
of the Timing constraint violation.

2


