University of Toronto
ECEbH32 Digital Hardware
Module m01: Building a MicroBlaze System in XPS

Version for EDK 8.2.02i as of January 6, 2007

Acknowledgement

This module is derived from a Xilinx lab given at the University of Toronto EDK workshop in November
2003. Many thanks to Xilinx for allowing us to use and modify their material.

Goals

e Use Xilinx tools to build and debug a basic MicroBlaze system. This will consist of a MicroBlaze
processor, memory, and a UART.

e Understand basic concepts of the Xilinx Embedded Development Kit (EDK), which includes tools such
as Xilinx Platform Studio (XPS) and processor IP.

e Explore some concepts used when programming in an embedded processor environment such as where
a program is loaded, how it is loaded, what gets added to it (runtimes, etc.), and how to interact with
it.

e Use some software debugging tools in an embedded processor environment.

e Get an idea of how to find various useful documentation.

Requirements

You’ll need access to:
e The Xilinx EDK 8.2.02i and ISE 8.2.03i software with IP Update 3.
e Either the Xilinx Virtex-II Multimedia Board or the Xilinx XUP Virtex-II Pro Development System.

e About 15MB of disk space for the project files (at least 12MB, plus some to spare).

Preparation

You should have a quick look at the following documents. There are links from the UofT EDK page to
the Xilinx site for the Xilinx documents and the link for the Training Lecture is there as well (see Tools
Documentation, Resources and Access).

You can also find the Xilinx documents in your EDK install directory. Some are online at Xilinx, but
others are only available in your installation.

If you are running XPS already, you can use the menu link:

Help—EDK Online Documentation

Note

Some of the activity in this module does not require hardware and can be done later, such as examining
various files. If time is running short, it is best to leave these steps till later and focus on the steps that
actually use the hardware.

The steps in this module assume you are running it in the Microprocessor lab on the PCs.

http://www.xilinx.com/products/boards/multimedia/
http://www.xilinx.com/univ/xupv2p.html
http://www.eecg.toronto.edu/~pc/courses/edk/node2.html
http://www.eecg.toronto.edu/~pc/courses/edk/node2.html

University of Toronto
ECEbH32 Digital Hardware
Module m01: Building a MicroBlaze System in XPS

Background

The Base System Builder (BSB), a wizard in XPS, can help you build your first system quickly and easily.
XPS uses the Xilinx Integrated Software Environment (ISE) tools to synthesize, place, and route the hardware
design. GNU tools are provided in the EDK and are used within XPS to build the software for the embedded
system.

Setup

If you are working with the Xilinx Multimedia Board, you should have the following hardware in your kit:
o Xilinx Virtex-II Multimedia Board
e Xilinx Parallel Cable 4 (including an adapter for taking power from a PS/2 port)

e USB to RS-232 adapter cable (and driver CD, which may be necessary even on Windows XP — check
here for installation instructions)

e RJ-15 to DB-9 adapter for use in the labs

e AC adapter

If you are using the Xilinx XUP Virtex-II Pro Development System, your kit should include:
e Xilinx XUP Virtex-II Pro Development System Board

e Documentation and driver CD

e Digilent VDEC1 video decoder board

USB A-B Cable

USB to RS-232 adapter cable

AC adapter

Step-by-step

Setting up the Hardware Connections
For the Xilinx Virtex-II Multimedia Board

Please be very careful when setting up the hardware so as not to break the connectors. Do not power on
the board until a TA has verified your hardware setup.
If you are using the Xilinx XUP Virtex-II Pro Development System Board, skip to the next subsubsection.

1. Place the development board on the table such that you can read the Xilinx insignia in the bottom
right hand corner.

2. Attach the flying leads cable to the Parallel Cable IV pod such that the red (JTAG/SERIAL) lead is
furthest away from you and the pod is faced so you can read the labels. The leads provide a JTAG
connection that is used for downloading FPGA configurations and debugging.

3. Connect the cable from the pod to the parallel cable from the computer and the smaller lead to the
adapter dangling from the back of the computer. The smaller lead provides power to the pod. The
status light on the pod should now be lit orange.

http://www.extras4u.com/faq/product/cb004/cb004.htm

University of Toronto
ECEbH32 Digital Hardware
Module m01: Building a MicroBlaze System in XPS

4. At the top left hand corner of the Ultragizmo board there are two grey cables labeled CON and D.
Unplug the CON cable and connect it to the serial cable adapter. Plug the other end of the serial cable
into the connector located at the top left hand side of the board just below the power switch. This
will be used for your UART connection.

Note: you need two connections to your board to do this lab. First, you need a programming connection
for configuring the FPGA. This is done using JTAG over either the Parallel Cable IV or the USB
connection to the XUPV2P board. Second, you need a communications connection for interacting
with the designs you instantiate on the FPGA. For instance, the standard input and standard output
of the MicroBlaze in most of your designs will be connected to the serial port on the Multimedia or
XUPV2P board. In other words, printf() and scanf () will run over the serial port. It’s for this
connection that you need the serial cable connected to the CON port.

5. Plug one end of the power supply into the power bar and the other into the jack located in the top left
hand corner (just above the power switch).

6. Get a TA to check your connections. You can then turn on the power switch (ON and OFF are
marked). The green LEDs near the power switch should be illuminated. Many other LEDs will be
flashing, including the System ACE Error LED — this is expected and perfectly okay.

For the Xilinx XUP Virtex-II Pro Development System Board

Please be very careful when setting up the hardware so as not to break the connectors. Do not power on
the board until a TA has verified your hardware setup.
If you are using the Xilinx Virtex-II Multimedia Board, consult the last subsubsection.

1. Place the development board on the table such that you can read the Xilinx insignia in the bottom
right hand corner.

2. Connect the USB cable to the socket on the right side of the board towards the upper edge. This
provides the JTAG connection that is used for downloading FPGA configurations and for debugging.

3. Connect the other end of the USB cable to the PC.

4. At the top left hand corner of the Ultragizmo board there are two grey cables labeled CON and D.
Unplug the CON cable and connect it to the serial cable adapter. Plug the other end of the serial cable
into the connector located at the bottom right-hand corner of the board towards the lower edge. This
will be used for your UART connection.

Note: you need two connections to your board to do this lab. First, you need a programming connection
for configuring the FPGA. This is done using JTAG over either the Parallel Cable IV or the USB
connection to the XUPV2P board. Second, you need a communications connection for interacting
with the designs you instantiate on the FPGA. For instance, the standard input and standard output
of the MicroBlaze in most of your designs will be connected to the serial port on the Multimedia or
XUPV2P board. In other words, printf() and scanf () will run over the serial port. It’s for this
connection that you need the serial cable connected to the CON port.

5. Plug one end of the power supply into the power bar and the other into the jack located in the top left
hand corner (just above the power switch).

6. Check that the DIP switches on the board are configured for JTAG programming. Now’s a good time
to leaf through the manual for the board (on the XUPV2P CD or online) if you haven’t already —
look for the section Configuring the FPGA.

7. Get a TA to check your connections. You can then turn on the power switch (ON and OFF are
marked). The green power LEDs along the top edge of the board should be illuminated, as should be
the green JTAG Config LED on the right side of the board. A red System ACE Error LED will also be
flashing since the System ACE controller failed to load a configuration from a Compact Flash (CF)
card. When you turn on your board, the PC it’s connected to will detect a new USB device and may
require that you install a driver for that device.

http://www.xilinx.com/univ/XUPV2P/Documentation/XUPV2P_User_Guide.pdf

University of Toronto
ECEbH32 Digital Hardware
Module m01: Building a MicroBlaze System in XPS

Using XPS Base System Builder

8.

10.

11.

12.

13.

14.

15.

16.

Create a directory for your modules in your home directory (W:\ in the ECE labs). Note: Make sure
that the path to your project directory has no spaces. W:\ece532\ is probably a good choice.
In this directory, you should unzip the m01.zip file available from the UofT EDK page. You should
now have a W:\ece532\1lab1\ directory in which you’ll create your project for this module.

Start XPS by going to Start — Programs — Xilinx Platform Studio 8.2i — XPS 8.2i.

Once Xilinx Platform Studio has opened, a window should appear that describes several methods of
loading a project. Select Base System Builder Wizard and click OK. The Base System Builder is a wizard
that helps minimize the effort required to generate a system by building the necessary data files for
XPS.

The Create New XPS Project Using BSB Wizard dialog box is displayed. Browse to the directory named
labl that you unzipped into your project work area and select it in the dialog box. Click Open on the
dialog box to select the directory.

If you are using the XUPV2P board, you’ll need to check the Use Repository Paths option to import the
board definition files and the drivers for the board’s specific peripherals. These files are contained in
lib_rev_1_1.zip, which is available on the CD that came with the XUPV2P kit and online. Extract
the ZIP file into the directory you created for the modules directory (i.e., W:\ece532\) and use the
lib/ diretory from that archive as your repository path (e.g., W:\ece532\1ib\). If you use the wrong
path, you'll be presented with an error dialog. Remember to avoid spaces in your paths!

Click OK on the Create New Project dialog box to start building the project.

The Base System Builder — Welcome dialog box is displayed. Select | would like to create a new design
and click Next.

The Base System Builder — Select Board dialog box is displayed. If you are using the Multimedia
Board, select Xilinx as the Board Vendor; Virtex-1I Multimedia FF896 Development Board as the Board
Name and 1 as the Board Revision. If you are using the XUPV2P board, select Xilinx as the Board
Vendor, XUP Virtex-11 Pro Development System as the Board Name, and C as the Board Revision. Click
Next on the dialog box.

The Base System Builder — Select Processor dialog box is displayed. If you are using the Multimedia
Board, the MicroBlaze processor should be selected by default because there is no PowerPC in the
FPGA on that board. If you are using the XUPV2P board, you can select a PowerPC or a MicroBlaze
processor. Select MicroBlaze for this experiment. Click Next on the dialog box.

The Base System Builder — Configure Processor dialog box is displayed. If you are using the Multimedia
board, ensure the Reference Clock Frequency and Processor-Bus Clock Frequency are both set to 27.00
MHz. If you are using the XUPV2P board, the Reference Clock Frequency is fixed at 100.00 MHz; set
the Processor-Bus Clock Frequency to 25.00 MHz.

Regardless of which board you're using, select XMD with S/W debug stub as your Debug I/F. This
selection uses a ROM monitor debug solution, not a true JTAG debug solution. A ROM monitor debug
solution assumes that software can execute on the platform to do debugging. Select and 64 KB in the
Local Memory panel and select No Cache in the Cache setup panel. All of the data and instruction
processor memory will then be implemented using the internal block RAMs of the FPGA. Click Next
on the dialog box.

The Base System Builder — Configure 1O Interfaces dialog box is displayed. There are several Interfaces
available for us to select. For now, select only the RS232 interface (for the Multimedia board) or
the RS232_Uart_1 interface (for the XUPV2P board). The default settings for the UART (9600 baud,
8 data bits, no parity) are OK. The UART peripheral will be used for standard I/0O. The standard
I/0 libraries delivered in the EDK use the UART in polled mode, so do not select the Use Interrupt
checkbox. Deselect all other devices (i.e., LEDs, Ethernet, and ZBT memory for the Multimedia board;

http://www.xilinx.com/univ/XUPV2P/lib/lib_rev_1_1.zip

University of Toronto
ECEbH32 Digital Hardware
Module m01: Building a MicroBlaze System in XPS

17.

18.

19.

20.

Dallas 1-wire, Ethernet, System ACE, LEDs, DIP switches, pushbuttons, DDR, PS2, and audio for
the XUPV2P board). Click Next on the dialog box.

The Base System Builder — Add Internal Peripherals dialog box is displayed. Internal peripherals include
timers, interrupt controllers, and other devices that are typically used within the FPGA. Do not add
peripherals at this time. Click Next on the dialog box.

The Base System Builder — Software Setup dialog box is displayed. Ensure that both STDIN and
STDOUT are set to R$232 (for the Multimedia board) or RS$232_Uart_1 (for the XUPV2P board).
Un-check the Memory test and Peripheral selftest checkboxes. Click Next on the dialog box.

The Base System Builder — System Created dialog box is displayed. Here you can view information
about the system to be created. Click Generate to cause the system data files to be generated.

The Base System Builder — Finish dialog box is displayed. Click Finish on the dialog box to complete
the wizard. The system is displayed in XPS and is ready to be built. In the dialog box that appears,
select Start using Platform Studio and click OK.

At this point, the Base System Builder has generated a user constraint file (system.ucf) in the data sub-
directory as well as a project file (system.xmp), a microprocessor hardware specification file (system.mhs),
and a microprocessor software specification file (system.mss) in your project directory (1labl). These files
are accessible on the left hand side of XPS in the Project tab.

Building The Hardware

21.

Select the Hardware menu and the Generate Bitstream submenu in XPS to start building the hardware
system (hint: there’s also a button for this on the toolbar). This will take at least five minutes as the
system is synthesized, mapped, placed, and routed for the FPGA. During the build process, a lot of
information will be displayed in the bottom window pane of XPS.

XPS generates the system HDL file and wrappers for the cores used in your design and then invokes
the Xilinx ISE tools to synthesize (xst.exe), map (map.exe), place, and route (par.exe) the design.
When this step is complete, a system.bit file is created (via bitgen.exe) in the implementation
subdirectory of the XPS project.

Defining The Software

22.

23.

24.

Double click on Add Software Application Project... in the Applications tab of XPS. For the Project
Name, type mbO_default. Any name will do here, but this name is nicely descriptive: the project will
run on the processor named microblaze 0 (hence "mb0”) and it is the default application for that
processor. Click OK. A new project should appear in the Applications tab. In the list of Software
Projects in the Applications tab, right click on Default: microblaze 0 xmdstub. Make sure Mark to
Initialize BRAMs is checked. Do the same for Project: mb0_default.

Double click on Project: mb0_default. A dialog box will open to allow users to set compiler settings for
the project. In the Environment tab, select XmdStub as the Application Mode. In the Optimizations
tab, uncheck the Generate Debug Symbols option. Click OK.

Expand the mb0_default project in the Applications tab of XPS. Right click on Sources and select Add
Existing Files.... Browse to the code subdirectory of the project and select the 1ab1l.c source file. Click
open.

The source files added are listed in Sources under the mb0_default section of the Applications tab.

University of Toronto
ECEbH32 Digital Hardware
Module m01: Building a MicroBlaze System in XPS

Compiling the Drivers and Program

25.

26.

27.

Select the Software menu and the Generate Libraries and BSPs submenu (hint: again, there’s a toolbar
button for this task, too). This will cause the drivers and startup code to be compiled into a library
that will be used to link with the program.

Select the Software menu and the Build All User Applications submenu. This will cause the program
source, labl.c, to be compiled and linked. An executable.elf file is created in the mbO_default
directory. This is the file that can be downloaded to the embedded platform.

You may also see a xmdstub.elf file in the microblaze _0/code directory. This is the ROM monitor
executable.

Select the Device Configuration menu and the Update Bitstream submenu. This will cause the executable
files executable.elf and xmdstub.elf that were generated for the software to be inserted into the
hardware bitstream such that the BRAM memory is initilalized with the software when the hardware
is downloaded to the FPGA.

Using More GNU Tools

28.

29.

30.

Select the Project menu and the Launch EDK Shell... submenu. This will start a Bash shell under
Xygwin. Change to the mb0O_default directory, which should contain the executable.elf file. If you
are running this on a Linux system (for instance, one of the ECF machines), you can just invoke the
command in your command shell.

In the Bash shell window, type:
mb-objdump -d executable.elf > disassembly.out

to disassemble the Executable and Linking Format (ELF) file and save the results in a file named
disassembly.out. Open this file with your preferred editor to view the disassembly.

The disassembly file shows the machine code stored at each memory location and the corresponding
assembly instruction. What is the address of the function _start?

What is the address of the function main? This corresponds to main in the C program.
Why do you think the program is linked to start where it does?

Can you see where the stack pointer is set? There are a number of activities that are done in the C
run time module, which is linked into your program before your main routine. Your program actually
starts execution in the C run time module to set things like the stack pointer and to zero the bss
segment. Uninitialized variables in C are supposed to be set to 0 before execution of main starts.

Disassemble xmdstub.elf. What is the address of the function _start?

Within XPS, where would you specify the program start address for the software application? (Hint:
look in one of the dialogs we accessed via the Applications tab.) This is useful when you have multiple
memory blocks at different addresses in your memory map. This is controlling a flag given to the
linker/loader phase of the compiler.

Downloading the Bitstream to the FPGA

31.

Go to the Courseware directory (folder) and open the XILINXPORT. On Linux systems, you can use
minicom and on other Windows machines, you can use HyperTerminal. The correct terminal settings
are 9600 baud, 8-N-1, no flow control. These have been pre-set for you in the lab and they match the
settings from the IO dialog box during the Base System Builder Wizard system creation. Double check
the serial cable connection between the board and the PC.

University of Toronto
ECEbH32 Digital Hardware
Module m01: Building a MicroBlaze System in XPS

32.

Ensure that power is on to the board. If you are using the Multimedia Board, ensure that the Parallel
IV cable is connected to the PC, that the board is powered on, and that the Status light on the
Parallel IV pod should be green. If you are using the XUPV2P board, make sure that the USB cable
is connected to the PC and that the board is powered on.

Select Download Bitstream from the Device Configuration menu in XPS. This will download the hardware
and software contained in the bitstream to the FPGA. The ROM monitor software will begin executing
after the download completes. This may take a few seconds or a few minutes, depending on the mode
in which the parallel or USB port is operating.

If you are using your own PC to run the Xilinx tools and you are using the Multimedia board, ensure
that your parallel port is in the ECP mode. This must generally be configured via the BIOS. ECP
mode will yield the fastest bistream downloads and will have the highest probability of working. If
you're consistently (i.e., not occasionally) receiving errors like "Done did not go high”, the parallel
port mode is probably the culprit.

The FPGA Done LED also illuminates (green on the Multimedia board, red on the XUPV2P board)
when programming is completed. If you see an error/warning in the XPS ouput window indicating
that the done pin did not go high, try downloading again a couple of times before messing with the
cable settings.

Getting Ready to Debug

33.

34.

35.

36.

Select the Debug menu and select the XMD Debug Options... submenu. We must select which debug
method we will be using for our program. Ensure that MicroBlaze 0 is the processor selected, and
select Stub as the Connection Type. Click Save.

Select the Debug menu and the Launch XMD... submenu. This will start Xilinx Microprocessor Debug
in a new Xygwin window. This program communicates with the board via the JTAG connection
(either the Parallel IV cable or the USB cable). XMD will automatically connect to the software XMD
stub running on the MicroBlaze. If we had chosen to use the hardware debug module, XMD would
instead connect automatically to MicroBlaze Debug Module (MDM) instantiated with the processor.
The results should indicate that it connected successfully and that a GDB server was started. GDB
(the GNU Debugger) is the software debugger that will be used to debug software for the system.

At this point XMD is connected to the ROM monitor stub running on the target board. Type help
to get a list of commands and type help running to get a list of more detailed execution commands.

In the XMD window, read the contents of memory location 0 based on the commands displayed in the
help.

What are the contents of memory location 07 Is this what you would expect? To help answer this
question, use the disassembler to examine xmdstub.elf. You can also try using XMD to disassemble a
number of instructions in memory, say twelve, and compare the output with the disassembled output
of xmdstub.elf.

What you have been doing in this step is examining the executable object file (*.elf) in a simple
way, which gives you an idea of what should be loaded in memory and the address for some of the
labels/routines. Using XMD is a very low-level interface for debugging your code, but it is more likely
to be telling the truth. You will shortly also use a symbolic debugger, GDB, which adds a layer of
abstraction and is a lot more powerful. However, if in doubt, then you can always resort to the XMD
interface — if something weird is happening, the simplest interface is likely to be the most reliable.

Recall the start address for the executable.elf file that you found previously. In the XMD window,
disassemble at memory location 0x800.

What is the assembly language instruction contained at location 0x8007 Is this what you expected?

University of Toronto
ECEbH32 Digital Hardware
Module m01: Building a MicroBlaze System in XPS

Debugging Software

37.

38.

39.

40.

41.

42.

43.

44.

45.

From the Debug menu, select Launch Software Debugger. This is simply a GUI interface that connects
to the GDB debugger running on the MicroBlaze that can be used to debug code on the processor. In
GDB, select the Run menu and Connect to Target submenu. A Target Selection dialog box is displayed.
Select Remote/TCP : XMD as the target. Enter localhost as the hostname. Enter 1234 as the port.
Ensure that Set Breakpoint at ‘main’ and Set Breakpoint at ‘exit’ are checked. Click OK. The processor
will be stopped at a breakpoint at the beginning of the program.

Return to your XMD window. By observing the response of this window, you can see that XMD is a
GDB server. It accepts the TCP connection from GDB and facilitates debug between GDB and the
target board.

In your XMD window, check a number of the instructions at 0x800 and above. Here it is probably
easier to use the disassemble command rather than the memory read command. What do you see now?

At this point, you should see assembly code in the GDB source window. The leftmost pulldown menu
beneath the buttons allows you to view the source for code related to this program. Are you able to
view the C language source code for 1abl.c? Why not?

Exit GDB so that the code can be rebuilt. GDB holds files open that will prevent the code from being
recompiled and linked. Similarly, make sure you are not holding open files or directories that need to
be rewritten in your editor or Windows Explorer.

In XPS, select the Applications tab and double click Compiler Options. On the Debug and Optimization
tab, select No Optimization for the program and select Create symbols for debugging (-g). This will cause
debug symbols to be put into the elf file and will prevent optimizations so that symbolic debugging
can be done from the original C code.

Recompile the program, download the program again and restart GDB. You should be able to view
the source code for the labl.c program.

Using the new executable.elf file, run the disassembler again to get a new listing. Save the original
one. Using XMD and its disassembler, compare what you see in memory with what you see in the
disassembled elf file. Hopefully, they are the same!

If you have time, or at a later time, see if you can understand the assembly language generated by the
compiler for your C program. Note that the optimizer is completely off, so the code is quite inefficient
compared to the first version that you built. You may want to refer to the MicroBlaze reference manual
to be able to interpret the assembly code.

In the EDK shell, try using the mb-nm command on your executable.elf file. You may want to use
the -n flag to get the output sorted numerically. On a Unix system, you can just type man nm to see
how to use the command. nm is a standard gnu utility. The mb-nm command is just the MicroBlaze
version of it.

The nm command is used to dump the symbol table of the object file. Here you will see the address
of various symbols in your program such as the start of subroutines, location of global variables, and
other internal symbols. This command is often useful for finding the memory location of your symbols,
especially if you need to use XMD to look at something.

Practice using GDB.

First, set a breakpoint at line 5, 7, or 8 of the labl.c in the source window. Add the counter of
labl.c to a watch window. Note that several breakpoints were set. Can you figure out where these
breakpoints are?

You can find more information on the GDB commands in the Embedded Systems Tools Guide.

Use the View Menu to start up other windows and see what they do.

University of Toronto
ECEbH32 Digital Hardware
Module m01: Building a MicroBlaze System in XPS

More Trickiness

46. In the window where you are watching the counter, you can change the value of the counter by clicking
on it. The counter is a local variable so it will exist as part of the stack frame for main. See if you can
find out where in the stack the counter is located.

Start with opening a window for the register values. Note that r1 is the stack pointer. Dump about 16
locations starting at the stack pointer using XMD. Then change the counter value in the GDB window,
and dump the stack again in XMD. Repeat a few times if necessary. Modify the appropriate stack
location using XMD by putting in a different number. Step your program a few times and observe
what happens.

47. Modify your C program to only do the loop 32 times. Compile and run it without any breakpoints.

Exploring some files (system.make, system.log)

You have been working with the GUI, which hides a lot of the underlying details. This, of course, makes
things a lot easier when things work. When things break, you will need to look more deeply.

Also, in the long run, especially for large projects, you will need to have some reproducibility when you
run the tools to know that the changes that occur are because you fixed some code, rather than because you
pushed the buttons in a different order.

In these situations, you will want to investigate how the scripts work and ultimately use them to run your
compilation and synthesis. XPS gives you a good start and creates a makefile called system.make, which
you can find at the top level in your project directory. When you push particular buttons, you’ll actually
invoke actions that are found in system.make. Have a look through the makefile.

Everything that you see in the log window of XPS gets put into a log file. It is called system.log and is
found at the top level of your project directory. Everytime you start up XPS and do things in that project,
the output is added to the system. log file. You might want to keep an eye on this file as it could grow quite
large.

Have a look through the system.log file. See if you can find out the utilization of the FPGA and how
fast you could actually clock it.

When you are done
Please take care when packing up the kit.

1. If you are using the Multimedia board, do not remove the flying leads for the JTAG
connection from the board.

2. Disconnect all other cables and place them in the bottom of the bin.
3. Put the foam on top of the cables and then the board.

4. Make sure the serial cable is reconnected to the Ultragizmo board.

Summary of the structure of the EDK project directory
The following should be used as a reference to aid you in finding information about your MicroBlaze system.

system.mhs A higher-level description of the hardware modules in the system.
system.mss A higher-level description of the software modules in the system.

system.xmp The system project file used by XPS. We suggest that you should not edit this file outside of
XPS, but if you choose to do so please use extreme caution. When returning to the project, this is the
file to open.

University of Toronto
ECEbH32 Digital Hardware
Module m01: Building a MicroBlaze System in XPS

_xps/ Options used by different tools.

code/ Software source code run on processor.

data/ Contains the user constraint file (.ucf) which assigns external pins to ports, sets clock speed, etc.
etc/ Contains download.cmd and fast_runtime.opt (not important to general designs).

hdl/ Generated by XPS. Contains the upper level system file and wrappers for each of the peripherals.
implementation/ Contains the synthesis files, bit files and initialization files for the BRAMs.

microblaze_0/ Instance of the MicroBlaze processor:

code/ Has the source code run on this particular instance of MicroBlaze (both .s and .elf files).

include/ Contains the drivers, header files, and the xparameter.h file. The xparameter.h file will
be referenced in future labs and is used to program the drivers.

1lib/ Has the standard libraries 1ibc.a, 1ibm.a and 1ibxil.a.

libsrc/ Contains the library source code for the drivers, MicroBlaze, etc.

synthesis/ Has the output from XST.

pcores/ User designed peripherals can be added to designs as cores using a specified directory (an example
will be provided in future labs).

Look At Next

Module m02: Adding IP and Device Drivers — GPIO and Polling

10

