
University of Toronto
ECE532 Digital Hardware

Module m05: Adding a User-Designed Peripheral

Version for EDK 8.2.02i as of January 7, 2007

New in EDK 7.1i

The Create and Import Peripheral Wizard was introduced in EDK 7.1i to simplify adding user-designed pe-
ripherals into an EDK repository or an XPS project. If you wish to add a peripheral that will be connected
to the OPB or PLB bus, then this tool should make it much easier. See the Embedded System Tools Reference
Manual for more information on this wizard.

This module was created before the Create and Import Peripheral Wizard was available. It remains a
valuable exercise because it develops an understanding of the underlying structure of an XPS project and
provides insight into how to handle a peripheral that might not exactly fit the model of a typical peripheral.
In this case, the core to be added also has a connection directly to the processor, not just to the bus. Finally,
it provides an example of how to design a peripheral that connects directly to the OPB bus without Xilinx’s
IPIF layer and IPIC interface as an intermediary.

Goals

• Add a user-designed peripheral to a basic MicroBlaze system. You will be provided with a core called
snoopy that is written in VHDL.

• Demonstrate the required structure necessary for interfacing user-designed cores to the Xilinx cores in
an XPS project.

• Learn about how you would make your own core to attach to the OPB.

Requirements

Module m01: Building a MicroBlaze System in XPS

It is suggested that modules m02, m03, and m04 also be completed before proceeding.

Preparation

• Review the handout outlining the EDK project structure provided in Module m01. We will be focusing
on the pcores subdirectory for this module.

• If you are unfamiliar with the profiling of code, read the manual page for “gprof”, which is accessible
on most UNIX systems via the “man” command and directly from the FSF.

Background

To this point, you have only been adding cores from the existing library. If you cannot find a core with the
required functionality, you will have to add your own.

This lab adds a simple core that can be used to profile the code running on a MicroBlaze. This has
similar functionality to the “gprof” utility for profiling that is included in the GNU toolchain. However, it
is much more accurate. You may find it useful for your project.

Step-by-step

1. Copy your working lab1 project into a new directory called lab5.

1

http://www.gnu.org/software/binutils/manual/gprof-2.9.1/gprof.html

University of Toronto
ECE532 Digital Hardware

Module m05: Adding a User-Designed Peripheral

2. Delete lab5/code/lab1.c — you don’t need it any more.

3. Unzip m05.zip into the directory containing lab5/. This will add a new program (lab5/code/system.c),
the custom peripheral (lab5/pcores/snoopy v1 00 a), and some supplemental files.

4. Take time to look through the directory structure of the snoopy core. The naming structure is essential
for XPS to be able to detect a user’s peripheral. All user cores must be located in the pcores
subdirectory or in a globally specified path to a peripheral repository. User cores can be defined using
Verilog, VHDL, or a mixture of the two.

Along with the HDL files used to implement the core, the user must also include data files: a .pao
file (Peripheral Analyze Order) and an .mpd file (Microprocessor Peripheral Description). The former
lists the order in which files in your design should be synthesized to resolve component architectures.
The latter describes the external interface of the core to a system. For more information on these files
and their structure, refer to the Embedded System Tools Guide.

Notice that the version numbers in the core name and the version numbers in the data file names differ
(e.g., version 1.00.a of the snoopy core includes a data file called snoopy v2 1 0.mpd.) The version in
the core name reflects the core’s version. The version in the data file names reflects the version of the
syntax used to write the data file.

The easiest method for including user IP in an EDK project is to follow an example. When you develop
your own cores for your project, you can use snoopy as a guide. The cores provided by Xilinx in the
$XILINX EDK/hw/XilinxProcessorIPLib/pcores/ directory may also be used as a reference.

You are also encouraged to look around through the directories in the EDK installation because there
is a lot of source code available that might help you or guide you with your own designs. Just as you
learn to write good prose by reading good prose, you learn to code well by reading good code. HDL for
IP core can be found in the $XILINX EDK/hw/XilinxProcessorIPLib/pcores/ directory and C code
for the drivers can be found in $XILINX EDK/sw/XilinxProcessorIPLib/drivers/. Documentation
for the IP cores and drivers can also be found in these directories.

5. The snoopy core is a snooping profiler that is able to profile software running on a soft processor in
real time. The counters calculate the exact number of clock cycles spent executing contiguous address
ranges. The user specifies the number of counters and the lower and upper bounds for each counter
before synthesis. This information can be used by embedded system designers to determine which, if
any, sections of the software should be moved to hardware to achieve the required design specifications.

6. Lauch XPS and open your lab5/system.xmp project. Open the IP Catalog tab located in Project
Information Area. The snoopy core should appear filed under Project Repository. Add an instance of
the snoopy core by right clicking the core and selecting Add IP. The core will appear in the list of
System Assembly View. Connect it to the slave OPB by clicking the green empty circle associated with
the core. Switch to the Addresses view and place the new snoopy instance somewhere in the memory
map. The core requires 256 bytes of address space to be allocated to it aligned at a 256-byte boundary
(don’t forget that the OPB only covers the address space not covered by the ILMB and DLMB — i.e.,
0x00010000-0xFFFFFFFF). Feel free to check the parameter settings for the core by double-clicking
on it. The default values are fine for now.

7. The snoopy core functions by monitoring some trace signals provided by the MicroBlaze. These are
documented on the MicroBlaze core’s datasheet, accessible by right-clicking on the microblaze 0 entry
in the System Assembly View and selecting View PDF Datasheet. Specifically, the PC EX signal of the
snoopy core must be connected to the Trace PC signal provided by the MicroBlaze and the valid instr
signal of the snoopy core must be connected to the Trace Valid Instr signal of the MicroBlaze. Wire
up these connections by entering Trace PC and Trace Valid Instr in the Net column next to the
snoopy core’s PC EX and valid instr ports, respectively.

8. Select the Application tab, remove the old system source file, and add the new source file (lab5/code/system.c).
Double-check that the compiler options are set to build the user application without optimizations

2

University of Toronto
ECE532 Digital Hardware

Module m05: Adding a User-Designed Peripheral

(Hint: look at the Optimization Level in the Debug and Optimization tab of the Compiler Options
dialog) and the libraries with optimizations (Hint: look for the extra compiler options variable in the
Software Platform Settings dialog). From the Software menu, select Build All User Applications to regen-
erate the libraries and compile the software applications. Note: this will not regenerate the hardware
components of your design.

9. Launch an EDK shell and disassemble your executable into a file. Open the disassembled file to
determine the address ranges you will profile. You will be selecting contiguous address ranges to
profile based on function calls. Double click the snoopy 0 entry in the System Assembly View to edit
the parameters. Profile the following functions:
Counter Function
0 start
1 exit
2 crtinit
3 main
4 exception handler
5 interrupt handler
6 program clean
7 program init
8 print
9 putnum
10 outbyte
11 XUartLite SendByte
12 XUartLite RecvByte
13 All Functions (complete program)

The lower bound should be the starting address of the function and the upper bound should be the
address of the last instruction in the function. Change the value for the NUM COUNTERS parameter to
14.

10. Generate the bitstream, download it to the FPGA, and launch XMD.

11. To reset the counters, use the memory write command in the XMD window: mwr reset address
<value>, where the reset address is any address in the snoopy core’s allocated address space. The
counters are designed to reset regardless of the written value.

The show count.tcl script you unzipped into your project directory can be used to read the coun-
ters. Type set snoopy c baseaddr <value> to set the base address of the snoopy peripheral.
Set the snoopy num counters variable to the correct value the same way. Finally, type source
show count.tcl to display the contents of the 64-bit counters. As you have just reset the counters, all
the values should be zero.

12. Open the GDB Debugger and connect to the target. The assembly listing of the main routine should
be visible, with the program counter set to 0x800. Set a breakpoint at the closing bracket of main and
execute the program.

After you have run your application, you can check the new counter values again using the show count.tcl
script. Are they all non-zero values? Why or why not? (Hint: look at the disassembled code to under-
stand the values.)

13. Reset the counter values as previously instructed and rerun the program. Run the show count.tcl
script again and look at the values of the counters. Are they all the same as last time? Why or why
not? You should compare your results to those found in the file example results.txt to verify the
counter values. Does your profiling data explain where all the execution cycles were spend (i.e., does
the total number of cycles executed equal the sum of the cycles spent in the functions profiled)?

14. You can also use the counters to determine how many clock cycles are required to execute a single
instruction by setting both the upper and lower bounds to the same address. If the instruction is

3

University of Toronto
ECE532 Digital Hardware

Module m05: Adding a User-Designed Peripheral

executed only once, the number of clock cycles should be the same as what is specified in the MicroB-
laze processor manual. Familiarize yourself with the available XMD commands or change the core
parameters to better understand how your application runs on the MicroBlaze processor.

15. Look at the files in the OPBInterfaceModule v and OPBInterfaceModule vhd directories. These files
can be used as templates when creating your own core for the OPB. Your Verilog or VHDL code will
go in the subdirectory of the hdl directory. You will need at least an .mpd and .pao file in the data
directory. If your core makes use of components that are in netlist format instead of HDL, you will
need a .bbd file.

Look at Next

Module m06: Using ISE
Module m08: Using External ZBT Memory
Module m10: Fast Simplex Link (FSL) Interfaces
Module m12: Introduction to ChipScope
Module m13: Real-time MP3 Decoder Implementation Using the MicroBlaze Soft Processor

4

