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Abstract

This paper presents some recent advances in the architecture for the data
compression technique known as Arithmetic Coding. The new architecture em-
ploys loop unrolling and speculative execution of the inner loop of the algorithm
to achieve a significant speed-up relative to the Q-Coder architecture. This ap-
proach reduces the number of iterations required to compress a block of data
by a factor that is on the order of the compression ratio. While the speed-up
technique has been previously discovered independently by researchers at IBM,
no systematic study of the architectural trade-offs has ever been published. For
the CCITT facsimile documents, the new architecture achieves a speed-up of
approximately seven compared to the IBM Q-coder when four lookahead units
are employed in parallel. A structure for fast Input/Output processing based
on run length pre-coding of the data stream to accompany the new architecture
is also presented.

1 Introduction

Data compression has found widespread use in data storage, and audio and video
transmission. In all of the above cases it is advantageous to compress data to conserve
scarce resources (disk space in storage, bandwidth in sound and image transmission).

Arithmetic Coding [1, 2] is a data compression technique that represents the source
data as a fraction that assumes a value between zero and one. The encoding algorithm
is based upon recursive subdivision of an interval and retaining one of the created
subintervals as a new interval for the next step of the recursion. The advantages
of Arithmetic Coding include working directly with symbols, without resorting to
construction of multi-symbol sequences (extensions of the source alphabet). This
makes Arithmetic Coding particularly well suited to the encoding of binary images,
where the probabilities of occurrence of two symbols are frequently skewed.
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A group at IBM has reported a CMOS realization of an Arithmetic encoder/decoder
for binary images in [3]. An updated version of the system, known as the Q-coder,
appeared in [4]. The simplified en¢oding and decoding processes are described in
Figures 1 and 2 respectively. The variable C keeps track of the code string, while the
variable A keeps track of the interval as it is being subdivided. Q. is the probability
of the Less Probable Symbol. An efficient mechanism for adaptively varying the value
of Q. based on the frequencies of occurrence of ones and zeros in the data stream is
suggested in [5].

In Section 2 we apply loop unrolling to the Q-coder algorithm and demonstrate
how the Q-coder algorithm can be made faster through processing multiple source
pels at a time. Section 3 discusses the techniques that must be applied to eliminate
the bottleneck at the input to the encoder (and symmetrically at the output of the
decoder). Section 4 discusses the trade-offs inherent in designing and implementing
a high-performance arithmetic coder. Finally, Section 5 gives a summary of research
and indicates possible directions for future work.

2 Loop Unrolling

We present a scheme for achieving parallelism in Arithmetic Coding using a variant
of a common technique used in compiler optimization called Loop Unrolling [6], which
exposes more parallelism to the hardware. This technique was investigated in [7], and
in this paper we extend their investigation and consider an optimum hardware im-
plementation of the technique. For instance, the encoder described in [4, 5] considers
the source symbols sequentially, one symbol at a time. We may place at the encoder
a second unit that considers input symbols two at a time. When the probability of
the More Probable Symbol (MPS) is much greater than the probability of the Less
Probable Symbol (LPS), the probability of two MPS’s in a row is much greater than
the sum of the probabilities of all other two-symbol combinations. Thus the most
likely sequence of events will be as follows:

1. Examine the first input bit; detect an MPS. Update A and C:
A—A-Q.,C~C-Q..

2. Compare A against A;;, = 0.75. Find that A > Ap;,, therefore no re-
normalization (which causes Q. to be updated) is required.

3. Examine the second input bit; detect an MPS. Update A and C:
Ae—A-Q.,C~C-Q..

Thus the most likely outcome of the sequence of processing two input bits is simply
the following update: A — A—2xQ., C «— C —2x Q.. These computations are easy
to perform (multiplication by 2 is implemented by wiring, with no circuitry required).
It is natural to combine the two updates into one, thus saving one iteration. This is
analogous to loop unrolling, with two iterations of the updates of the variables A and C
combined into a single iteration of the new algorithm. What makes this modification
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of the basic algorithm particularly appealing is the possibility of combining the two
operations that must be performed on each of the variables A and C into only a single
operation on each variable. Of course there will be a small number of cases where
advancing by two bits is not possible, due either to the presence of an LPS in the
second bit position, or the need to re-normalize A and C, and update @, following the
A — A — Q. computation. Thus we must preserve the ability to perform the original
one-bit update — our attempt to combine two iterations into one must be treated as
speculative. The best technique is to compute both A; + A—Q. and A; — A—-2xQ.,
while simultaneously checking for the LPS and the re-normalization required, and
selecting A; or A; as the new, updated value of A. The input data stream is also
updated by removing one or two bits from the input stream, as appropriate. If
p(MPS) > p(LPS), then the two-bit updates will dominate, allowing the processing
rate to increase by a factor of almost two.

Of course there is nothing magical about examining the input stream two bits
at a time. In principle, we could choose to examine k bits at a time and increase
the processing speed by a factor of approximately k. There are obvious practical
limitations on what values of k¥ are worth considering -— for instance in computing
Ar — A — k x Q. we must restrict k to be a power of two, if we are to avoid the
expense and delay of a true multiplication. As k grows larger it becomes increasingly
difficult to get k input bits and to verify whether or not they are all MPS’s. Yet this
verification must be fast enough to keep up with the circuitry used to update A and
C. The technique for providing fast I/O will be discussed at length in Section 3.

A technique described in [7] requires that an integer quotient (A — 0.75)/Q. be
computed to calculate the value k. Although this may be perfectly acceptable in
a software implementation running on a general-purpose computer, a fast division
operation is expensive in hardware® and would add significantly to the cycle time
(since it must precede the actual update of the A and C registers).

Thus we propose a modification of the approach of [4]. This modification consists
of allowing simultaneous lookahead by multiple powers of two (2,4,...25mx) to be
performed. While occurrences of a large number of MPS’s in a row are less frequent
than those of the smaller number of MPS’s in a row, each incidence of accepting
a long string gives greater benefit than accepting a short string. Thus maintaining
separate circuitry for large lookahead values may be advantageous, even if used only
infrequently. Any string of length N < 2¢m=*! can be processed in O(|log,(N)])
iterations using O(|log,(N)]) adders for updating A and C. In the original Q-Coder,
N iterations are required using one adder for A and one for C.

The pseudo-code describing the operation of the proposed encoder is presented
in Figure 3. Note that the operation of lookahead by two is slightly different from
all other powers of two. Since we know that Q. < 0.75, we can accept lookahead by
two even when re-normalization is caused by the second MPS. This is easily verified
by considering A,. If A; > 0.75 then we can guarantee that the re-normalization is
not required until at least the second MPS. Thus we can always take advantage of
lookahead by two. A similar enhancement for any other power of two is impossible:

3Recall that the Q-coder is designed to be multiplication-free.
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for instance, to guarantee that lookahead by eight is acceptable, we must ensure that
the re-normalization occurs after the eighth bit at the earliest. For this we must
know A7 = A — 7 x Q.. Since computing A7 requires (expensive) multiplication, we
avoid it by slightly tightening the constraint and verifying that re-normalization is
not required until the ninth bit at the earliest (As > 0.75). Occasionally, we may
miss an opportunity to perform lookahead by the maximum amount possible, but we
avoid the penalties (time and circuitry) required to perform the multiplication. For
the case of lookahead by two, where the result of the “multiplication” is available for
free, we use it.

As we process our input data stream, we frequently encounter long strings of
MPS’s with only a few LPS’s, however, each LPS contains a large amount of informa-
tion, while each MPS contains only a little. In the original Q-Coder, either a single
MPS or a single LPS was processed in one iteration, resulting in an encoded output
whose rate was uneven. In our scheme with lookahead, we process a single LPS or
multiple MPS’s in one iteration. Thus the amount of information being processed per
iteration is more nearly balanced. Since the number of output bits must be (in the
ideal case) proportional to the amount of information being transmitted, our design
with lookahead results in reduced jitter at the encoded output end. The situation at
the decoder end is similar.

3 Input Data Stream Processing

As lookahead is introduced into the Interval Update Core (IUC) of the encoder, the
speed of the encoder will become increasingly limited by the speed at which uncom-
pressed data can be supplied and examined for the presence of an LPS in the data
stream. Some kind of buffering must be provided to examine up to 2% ™= input sym-
bols at one time. A simple solution is to use a simple form of run-length codes.
Whenever a run is terminated, a number indicating the length of the run is deposited
in a FIFO that is placed between the run-length encoder and the IUC. This also
removes input processing from the critical path of the IUC iteration, and allows all
input processing to be pipelined. The IUC “consumes” run lengths from the FIFO
and loads them into its own counter, and proceeds to encode the run. At each step of
the IUC operations an internal counter is decremented by an appropriate amount. It
is advantageous to generate packets that correspond to the number of MPS’s followed
by an LPS in a manner similar to that of [8]. Thus : MPS’s followed by one LPS
followed by j MPS’s followed by one LPS will require only two packet locations inside
the FIFO (7, 7). This scheme is superior to the usual run-length encoding, since the
probability of two or more LPS’s in a row is very low (if the source information is
compressible), and since processing more than one LPS at a time is impossible (the
IUC performs re-normalization following every LPS). This scheme also has certain
shortcomings, primarily the need for an escape sequence to indicate the occurrence
of a string of MPS’s that is longer than can be stored inside the counter.




258

4 Performance Driven Design

As discussed previously, IUC performance can be immproved by employing lookahead
into the input sequence. To determine precisely how much speed-up can be obtained,
we have encoded the eight CCITT FAX images [9, 10]. The seven-pel predictor with
contezt used in [10] was employed.

4.1 Speed-up Evaluation

The methodology of examining the speed-up that can be obtained with various ar-
rangements of the IUC is quite simple. We begin by running a simulation that assumes
a fully parallel IUC, with a lookahead by every power of 2 up to a maximum? of 1024.
We record the number of iterations in which lookahead by 1,2, ... ,1024 MPS’s was
employed. The results for such an experiment are summarized in Table 1 for the
CCITT1 image.

Note that the three largest lookahead values account for for well over 50% of the
processed bits, but under 2% of the number of iterations. This gives a clear indication
that the better encoder configurations will not be confined to using only the smallest
lookahead values. It is also important to note that the processing of single LPS’s and
single MPS’s together account for over 75% of the iterations of the encoder. Thus
any additional speed-up improvement must involve reducing the number of iterations
spent processing single pels.

It is convenient to represent an encoder by assigning a 12-bit binary number that
has a one in position i if lookahead by 2' is provided and a zero if lookahead by 2! is not
provided. Thus, under this classification, the Q-coder encoder is 000000000001 (or
0X001 in hexadecimal notation), the fully parallel encoder/decoder is 111111111111
or OXFFF, and the decoder with lookahead by 1024, 64,8, 1 pel is 010001001001 or
0X449. It is then relatively simple to perform an exhaustive search of all possible
combinations, noting the best encoder and the number of iterations required when
using the system with 1,2,..., lookahead units for each of the eight CCITT images.
We have determined the “best” encoders for each CCITT image when 1,2,...,12
lookahead units are employed. The results are summarized in Figure 4, with each
curve corresponding to one of the CCITT documents (indicated by a number).

We make the following observations: even in the worst case (least-compressible,
CCITT7 document) up to four lookahead units may be employed with approximately
linear speed-up and is therefore a reasonable choice for a lookahead value. Only one
question remains outstanding: which particular encoder with four lookahead units is
the best? Unfortunately, there is no one encoder for a particular value of lookahead®
that is best for all eight CCITT documents. We can narrow our choice by looking
at candidate encoder configurations that have been found to be optimum for at least
one of the eight CCITT documents. The results are summarized in Table 2.

*The maximum is the highest power of two that is less than or equal to Eﬁ-ﬂ‘(‘g—)

SExcept, of course, for the trivial cases of one and twelve lookahead units.
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The configuration 0X95 is a clear winner, with the best average speed-up of 8.48.
It is the optimum encoder configuration for three out of the eight CCITT documents.
It is also important to note that the worst encoder configuration, 0X2b, is on average
only 8% slower than the best configuration. Thus any one of the four configurations
shown in Table 2 can be expected to perform reasonably well. Yet another criterion
that must be considered when choosing an encoder configuration is keeping the largest
lookahead value used in an encoder as small as possible, since it reduces the wiring
required to provide shifted (i.e., multiplied by powers of two) copies of the Q.. The
configurations 0X4b and 0X55 require one bit less shifting than the configuration
0X95. The diagram of a four-lookahead unit encoder with configuration 0X95 is
shown in Figure 5.

4.2 Single-Cycle Processing of Multiple Pels in an Area
with Changing Context

Consider again Table 1. We have already pointed out that the lion’s share of the
clock cycles are spent in processing the pels one at a time. Even if all the time spent
processing two, four, etc. pels at a time was reduced to zero, 75% of the clock cycles
would still be required to continue processing single MPS’s and single LPS’s (Am-
dahl’s Law [11]). Table 3 gives a summary of the causes that prevent the processing
of multiple pels.

In those cases where the context is changing and where an MPS is followed by
another MPS, it may be possible to process two MPS’s in a single clock cycle, provid-
ing the Q. values are available in time for both contexts. This may be accomplished
through employing a double-ported storage for the . values. A better alternative
may be pre-fetching of the (. values. For instance, suppose an encoder is processing
a run of zeros and the present context® is also zero 06°°. There is only one possible
context following an all-zero context, namely 88001, that might allow two MPS’s to be
processed in the same clock cycle. Thus, when processing an all-zero run, the encoder
begins to fetch the Q, value of the contexts 66, ggon’ 00" etc. always selecting the
more likely successor context to pre-fetch. As successive Q. values are fetched, they
are stored in a cache and are made available to the interval and code point update
circuitry as required. Note that the Q. values cannot change in the interim and the
cache is guaranteed to have the correct @, values.

The speed-up that may be achieved if this change is implemented is shown and
compared to the default scheme in Table 4. A speed-up gain of up to thirty percent is
consistent with our analysis of the default configuration, where advancing by a single
MPS accounted for approximately 60% of the cycles, with the lion’s share of these
being convertible into pairs of MPS pels that can be processed in a single cycle.

. XXXXX . .
SWe adopt the notation XX to describe the seven-pel context determined by the values of
five pels in the previous line and two pels in the current line of the image being processed
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5 Summary

This paper has presented new architectures for the data compression technique known
as Arithmetic Coding based on loop unrolling and speculative execution of the inner
loop of the algorithm that is a generalization of the Q-Coder [4] architecture. Multiple
lookahead units are employed, with each unit attempting to process a different number
of input bits (output bits in the case of the decoder) in one iteration. For the set of
CCITT documents, the coder achieves a speed-up of approximately eight compared
to the IBM Q-coder when four lookahead units are employed in parallel. A structure
for fast Input/Output processing based on Run-Length encoding of the data stream
to accompany the new, faster IUC is also suggested.

Additional speed-up using single-cycle processing of multiple pels with different
contexts was also investigated.
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if MPS is encoded
C—C+0Q. A—A-Q.
while A < 0.75 do
A—Ax2
decrement Q.
end do
else

Ce—Cx2

LPS encoded
Ae=Q.
while A < 0.75 do
A—Ax2
increment Q.
end do
end if

C—Cx2

Figure 1: Pseudo-code Description of
Arithmetic Encoding

ifC > Q. MPS decoded
C—C- Qc A—A- Qe
while A < 0.75 do
A—Ax2
decrement Q.
end do
else

C—Cx2

LPS decoded
AeQ.
while A <0.75 do
A—Ax2
increment Q.
end do
end if

C—Cx2

Figure 2: Pseudo-code Description of
Arithmetic Decoding

do par
?
Cy —C+Q. A —A-Q. FLAGiups — 1 symb. = MPS
Co—C+2xQ. Ay —A—2xQ. FLAGayps — 2symb. = MPS

Ci—C+4xQ. Ag—A-4xQ. FLAGsups — 4 symb. = MPS

Cormas — C +25m% X Q¢ .. .FLAG hmurpips — 26 symb. = MPS

end par

if ( FLAG kmax mps A Agkmax 2 0.75)  { C — Cormax A — Agkmax }

else if ( FLAGgyps A Ag > 0.75) { C<0Cy A—Aq}

else if ( FLAGszs A Ag 2 0.75 ) { C Cz A~ A2 }

else if ( FLAGjwps ) {C-Cy A— A}

else { Cc<C A—Q.}

end if

do par
if (( FLAGgkmax yps V - - VFLAGyps VFLAG ps ) A A < 0.75 ) deer Q.
else if ( 4 <0.75) incr Q.
end if
while( 4<0.75)do{ A~ Ax2 C—~Cx2}
end do

end par

Figure 3: Pseudo-code Description of an Arithmetic Encoder with Lookahead by
Multiple Powers of 2.FLAG « a L b means that FLAG will be set to TRUE if a

equals b.
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INPUT PROCESSING UNIT (IPU) MAIN CONTROLLER
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sus Number of Lookahead Units for ) . )
all eight CCITT FAX documents The| | Figure 5: A block diagram of an arith-
dashed line corresponds to Speed-up| | meticencoder with four lookahead units
linear in number of Lookahead Units. (configuration 0.X95).

[ Advance by ][ No. of Tterations | % of total | No. of Bits Encoded | % of total
1LPS 34640 12.35 34640 0.84

1 MPS 182233 64.98 182233 4.44

2 MPS 22174 7.91 44348 1.08

4 MPS 12946 4.62 51784 1.26

8 MPS 7307 2.61 58456 1.42

16 MPS 5574 1.99 89184 2.17
32 MPS 3835 1.37 122720 2.99
64 MPS 3609 1.29 230976 5.63
128 MPS 3030 1.08 387840 9.45
256 MPS 1698 0.61 434688 10.59
512 MPS 2008 0.72 1028096 25.04
1024 MPS 1407 0.50 1440768 35.09
Total 280461 100% 4105728 100%

Table 1: Applying Lookahead to the CCITT1 image encoded with a seven-pel
predictor employing context.
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Speed-up
for Coder CCITT Document Average
Configuration 1 2 | 3] 4 5 6 7 8
0X95 12.00 | 15.17 | 7.37 | 3.76 { 6.79 | 10.21 | 3.98 | 8.53 8.48
Ox4b 11.61 | 14.45 | 7.39 | 3.87 | 6.82 | 10.10 | 4.02 | 8.31 8.32
0x2b 10.33 | 12.81 | 7.10 | 3.81 | 6.63 | 9.39 | 4.09 | 8.59 7.84
0x55 11.50 | 14.78 | 7.35 | 3.76 | 6.79 | 10.17 | 4.04 | 8.88 8.38
Compression
Ratio 34.0 57.4 | 21.7{ 9.1 | 19.0 | 36.5 8.8 | 32.8

Table 2: Speed-up for all eight CCITT documents that is obtained using four different
encoder configurations and a seven pel predictor with context. Speed-up values
corresponding to the optimum encoder configuration for a particular CCITT docu-
ment are highlighted. The compression ratio is independent of the encoder configu-
ration.

[ Advance by | No. of bits processed |
Single LPS 34640
MPS followed by renormalization 25085
MPS followed by LPS 2634
MPS in a changing context followed by an LPS 23580
MPS in a changing context followed by an MPS 130934

Table 3: Frequency breakdown of the case of advancing by a single pel for the CCITT1
image encoded with a seven-pel predictor employing context.

| Average Speed-up |
Configuration | 0X95+ [ 0X95 | OXFFF+ | OXFEF
[ CCITT (1-8) | 1034 | 8.48 | 13.46 10.49

Table 4: Speed-up averaged over eight CCITT documents for the fastest four-adder
configuration, 0X95, and twelve-adder configuration 0XFFF. The “+” indicates
that pairs of MPS’s with different context are processed in parallel, where possible.



