
Design of a Versatile and Cost-Effective Hybrid Floating-
Point/LNS Arithmetic Processor

Chichyang Chen Paul Chow
Department of Information Engineering and Computer Science Department of Electrical and Computer Engineering

Feng Chia University, Taichung, Taiwan 407 University of Toronto, Toronto, ON M5S 3G4, Canada
Tel: +886-5-24517250 ext. 3738 Email: cychen@fcu.edu.tw Tel: 416-978-2402 Email:pc@eegc.utoronto.ca

ABSTRACT
LNS (logarithmic number system) arithmetic has the advantages
of high-precision and high performance in complex function
computation. However, the large hardware problem in LNS
addition/subtraction computation has made the large word-length
LNS arithmetic implementation impractical. In this research, we
proposed a hybrid floating-point (FLP)/LNS processor that can
utilize the FLP multiplication-addition-fused (MAF) unit and the
FLP division unit for implementing the computation of LNS
addition/subtraction. With unified representation format in FLP
and LNS numbers, this hybrid processor is versatile because it can
execute the FLP-to-LNS and LNS-to-FLP conversions easily,
without any extra hardware cost, in addition to the FLP
multiplication-addition/subtraction, FLP division, and LNS
addition/subtraction instructions. It is cost-effective because the
FLP hardware is shared by the LNS unit. A 32-bit hybrid
FLP/LNS processor is implemented on the Xilinx Virtex II
multimedia FF896 development board. From the synthesis results,
the hardware of the 32-bit hybrid processor is at most three times
that of a 32-bit pure FLP processor. Our proposed hybrid
FLP/LNS approach has made the design of very large word-
length LNS arithmetic processors become practical.

Categories and Subject Descriptors
B.2.4 [High speed arithmetic]: algorithms and cost/performance.

General Terms: Algorithms and Design.

Keywords:
Logarithmic number system (LNS) arithmetic, Floating-point
arithmetic, Logarithmic computation, Exponential computation.

1. INTRODUCTION
Floating-point (FLP) arithmetic unit is an essential

component in many scientific and engineering systems. For
example, in 3D computer graphics and visual simulations, the
major execution units are the FLP multiplication-add-fused (FLP
MAF) unit and the FLP divide/square root unit. Due to the scaling
for overflow prevention in fixed-point (FXP) arithmetic, FLP
arithmetic is usually preferred than FXP arithmetic in the

hardware or software design [1].

In radix-2 logarithmic number system (LNS), a number X
is represented as a signed-exponent word, x . Its value is

x
XSX 2= , where XS denotes the sign of X . For A = a

AS 2 ,

B = b
BS 2 , and C = c

CS 2 , arithmetic in LNS is performed in
the following manner:

[]
[]
[] ()

() () ()
[] ()

() () ().21log

21log

22

2

22

2

v
AC

v

AC

BAC

BAC

vandbavwithBA

SSandvacBACnSubtractio
vandbavwithBA

SSandvacBACAddition
SSSandbacBACDivision

SSSandbacBACtionMultiplica

−

−

−=Ψ−=≥

=Ψ+=−=

+=Φ−=≥

=Φ+=+=
⊕=−=÷=
⊕=+=×=

AS , BS , and CS denote the signs of A , B , and C ,
respectively. The above equations reveal that multiplication and
division in the LNS require only one additive operation. Square
and square root operations can also be performed efficiently by
simple shifting. Another advantage of the LNS is its better
precision performance than that of the FLP system [2]
 However, the addition and subtraction in LNS
arithmetic require the computation of the functions 2Φ and 2Ψ ,
which is usually performed by table-lookup operation. A problem
in the development of large word-length LNS arithmetic is the
exponential increase of this table size. In order to reduce the
hardware cost for computing these two functions, many
approaches have been proposed, either to reduce the size of the
tables [3], to compute [4-5] or to avoid [6] the computation.
However, we can expect that hardware cost in these
computational methods will still increase dramatically as the word
length increases. Another problem of LNS arithmetic is that high
precision in LNS subtraction is very difficult to obtain [6].

 In this research, an architecture that can combine the FLP
MAF unit, FLP division unit, and LNS unit into one single
arithmetic processor, called “hybrid FLP/LNS processor”, is
proposed. The first advantage of this hybrid processor is that the
FLP and LNS number representations can be designed in a
uniform and compatible manner. Furthermore, the hardware for
performing the FLP-to-LNS and LNS-to-FLP conversions is
embedded within the hybrid FLP/LNS processor. There is no
extra software and hardware effort needed for the two conversions.
Secondly, the hybrid processor is a functionally versatile
processor. It can perform FLP MAF operation, FLP division, LNS
addition/subtraction, and the FLP-to-LNS and LNS-to-FLP
conversions. Thirdly, and most importantly, this approach can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’07, March 11–13, 2007, Stresa-Lago Maggiore, Italy.
Copyright 2007 ACM 978-1-59593-605-9/07/0003…$5.00.

allow the FLP MAF unit and the FLP division unit be fully shared
by the LNS unit. This advantage can effectively solve the large
hardware problem of LNS arithmetic, and result in a cost-
effective FLP/LNS arithmetic processor.

In the proposed hybrid processor, the 2Φ and 2Ψ
functions are computed by the following computations:
exponential computation of Fv.02− , right shifting by Iv bits,
addition/subtraction by one, and finally the logarithmic
computation followed by an addition. We denote Iv and Fv as
the integer and fractional parts of v , respectively. Among these
computations, the exponential and the logarithmic computations
can be used to compute the LNS-to-FLP and FLP-to-LNS
conversions, respectively. In the implementation of the
exponential computation, a full word-length multiplication is
needed, which can be performed in the FLP MAF unit. On the
other hand, the shifting that is used to perform the normalization
in the FLP MAF unit can also be adopted to perform the right
shifting in the computation of the 2Φ and 2Ψ functions. Finally,
the FLP division in this hybrid processor is implemented by using
the division-by-reciprocal algorithm, which can be easily
modified to compute the logarithmic function in the 2Φ and 2Ψ
functions. As a result, the hardware of the FLP unit can be fully
shared by the LNS unit. A 32-bit hybrid FLP/LNS processor is
implemented on a Xilinx Virtex II multimedia FF896
development board. From the synthesis results, the proposed
hybrid processor can save roughly about one quarter the hardware
of the processor that has separate FLP and LNS datapaths.
Furthermore, the hardware of the 32-bit hybrid processor is at
most three times that of a 32-bit pure FLP processor. It is
concluded that practical design of very large word-length LNS
arithmetic processors is possible by using our proposed hybrid
FLP/LNS approach.
 In the following, we first describe the format of the FLP
and LNS number representation, and the precision requirement of
the LNS subtraction, in Section 2 and 3, respectively. The
architecture and algorithms for the FLP MAF unit, the
exponential unit, the FLP division and logarithmic unit, and the
hybrid processor are described in Section 4, 5, 6, and 7,
respectively. The synthesis and test results are presented in
Section 8. Conclusions are made in Section 9.

2. Format of the FLP and LNS Number
Representation
In the IEEE 754 single-precision standard, the format of a 32-bit
FLP number X consists of a sign bit XS , eight-bit exponent

XE , and an unsigned 23-bit fractional mantissa, XM . With
127-bias and hidden-one, the value of such an FLP number is
defined to be 1272).00.1()1(−+−= XX E

X
S MX .

 For an LNS number x , its representation consists of a

sign bit xs and an unsigned 31-bit exponent FIx eee .= , where

Ie is 8-bit and Fe is 23-bit. With the bias of 127 in the integer

part of the exponent, the value of an LNS number is equal to

.2)1(127. −−= FIx eeSx

3. Precision Requirement in LNS Subtraction
For FLP arithmetic, if we denote the correct value of the
arithmetic operation to be)1(2 correct

E mcorrect + and assume that

the maximum error in the mantissa computation is ε . Then, the
maximum relative error of the arithmetic operation is defined as

.|

)1(2
)1(2)1(2

|

 error relative Maximum operation FLP

ε
ε

=
+

++−+

=

correct
E

correct
E

correct
E

m
mm

correct

correctcorrect

For our designed 32-bit FLP MAF unit, 241 22 −− == ulpε .

 In LNS arithmetic, we denote the correct value of the
arithmetic operation to be correctcorrect FI . and assume that the

maximum error in the exponent computation is lε . Then, the
maximum relative error of the arithmetic operation will be

2ln12|

2
22|

 error relative Maximum

.

..

operation LNS

lFI

FIFI
l

correctcorrect

lcorrectcorrectcorrectcorrect

εε
ε

≈−=
−

=
+

.

In order to have a comparable precision performance with the
FLP arithmetic, for the LNS addition/subtraction of our hybrid
processor, we must ensure that the maximum error in the
computation of the)21(log2

v−± be less than
24124 2443.1)2(ln2 −−− ⋅≈ . In the computation of LNS subtraction,

when v is very close to zero, the value of)21(v−− is also very

close to zero. The maximum error in v−2 computation should be
less than 472443.1 −⋅ .

4. Architecture of the FLP MAF Unit
Fig. 1 shows the block diagram of a typical FLP MAF unit, which
is modified from the design in [7].

4.1 The first stage

In the first stage, the multiplication and alignment stage, the
mantissas Bm and Cm are multiplied. At the same time, the
alignment of the two operands of the FLP addition is
accomplished by right shifting the mantissa Am .

 To increase the precision of the exponential function
computation when the value of)21(v−− is less than 232− , the
word length of the result of the Mantissa Adder is increased to 98
bits (28 integer bits and 70 fractional bits). The two 2424×
multipliers in the right-upper corner are used to multiply Bm

and 2mCp , and Cm and 2mBp , respectively. 2mBp and

2mCp are the low-order fractional parts of the exponential

values of 1.02 Fe and 2ln2.0 8
2

−
Fee , respectively, as will be

explained in Section 5.

A B C

UnpackUnpackUnpack

CSpecialBSpecialASpecial CSBSAS BE Bm CE Cm
AmAE

Am
Bm Cm

Handler
Case Special

C

A

Special
Special
Special

B

AS BS CS AE BE CE

Processing
Sign

Processing
Exponent

Add/Sub
FLP

Multiplier
2424×

Shifter
Alignment

orComplement

Adder
Mantissa

orComplement
LZD

Shifter
ionNormalizat

Rounding

ionNormalizat
Post

Adjustment
Exponent

Adjustment
Exponent

LZN

Pack

Result

intE

Amount
Shift

BCm

'
Am

One Stage

Three Stage

Two Stage

2mBp 2mCp

Multiplier
2424×

Multiplier
2424×

2mCp2mBp BmCm

Handler
Case Special

Processing
Sign

Handler
Case Special

Processing
Sign

all_zeo
complement

complementall_zeo

Fig. 1 Architecture of the FLP MAF unit.

4.2 The second and third stages
In the second stage, the sign reversion and addition stage, a 74-bit
adder is used to add the aligned and negated mantissa '

Am and

the mantissa product BCm . Leading-zero detection (LZD) is
performed after this mantissa addition to detect the number of
leading zero bits of the result. The value of the intermediate
exponent 1intexp is adjusted. In the third stage, the normalization
and rounding stage, the normalization, rounding, and post-
normalization are performed according to the IEEE 754 standard.

5. Exponential Unit
In this section, we first explain the algorithm for computing the
exponential value Fe.02 , then we describe the architecture of the
exponential unit in the hybrid processor.

5.1 The algorithm
To compute the exponential function Fe.02 , with Fe.0 being the
23-bit fractional part of an unsigned 32-bit fixed-point number e ,
we first split the operand Fe.0 into two parts, 21.0.0 FFF eee = ,

where 1.0 Fe is 8-bit and 2.0 Fe is 15-bit. Then the value of the

exponential function Fe.02 will become the product of the two

terms, 1.02 Fe and
8

2 2.02
−⋅Fe . The value of the first term 1.02 Fe

can be easily obtained by looking up a pre-computed table.

 To compute the value of the second term
8

2 2.02
−⋅Fe , we

approximate
8

2 2.02
−⋅Fe as

324

2
243

2
162

2
8

2

2.02ln2.0

2.0
!4

12.0
!3

12.0
2
12.01

2
8

2
8

2

−−−−

⋅⋅⋅

++++=

=
−−

FFFF

we

wwww

e FF

.

2ln.0.0 22 ⋅= FF ew . In order to minimize the hardware cost,
the third-order and the fourth-order terms are computed as

248
22

2
21

324
21

243
21

324
2

243
2 22.0.0

2
12.0

!4
12.0

!3
12.0

!4
12.0

!3
1 −−−−−− ++≈+ FFFFFF wwwwww

(1)

2.0 Fw is divided into two parts as 8
22212 2.0.0.0 −⋅+= FFF www .

21.0 Fw and 22.0 Fw are designed to be 8-bit and 15-bit wide,
respectively. Thus, the sum of the first two terms in (1) can be
obtained by looking up a table with only 256 entries. The term

248
22

2
21 22.0.0

2
1 −−

FF ww in (1) can be easily computed by

hardware circuit.

Multiplier
Contant

Table
2 .0 v−

ba − ab − ba ≥

b

aaa

a

bbb

11 0 0

2ln
1 0

v

Pack Pack

Sum

2
2)0.0(

2
1

Fw

1.0 Fv
20.0 Fv

 ba and
 from

 Signals
Special

Processing
Sign

Handler
Case Special

B C

d

0=CS
127

FLP-to-LNS

Iv

1MUX

3MUX2MUX

SubLNS
FLPtoLNS

,

−
−−

≥ ba
SS ba

324
21

243
21 2.0

!4
12.0

!3
1 −− + FF ww

32
22

2
21 2.0.0

2
1 −

FF ww
Table

upLook
circuit

MPY and SQR

2mBp 2mCp

0 0

00 11
LNS_to_FLP

or LNS_AS

LNS_to_FLP

or LNS_AS

20.01 Fw+

Fig. 2 Architecture of the exponential unit

5.2 The architecture
To perform the LNS-to-FLP conversion, we need to

convert an LNS number
127.2)1(−−= FIx eeSx into an FLP

number 1272).00.1()1(−+−= XX E
X

S MX through the following

computations: xX SS = , IX eE = , and Fe
XM .02.00.1 =+ .

If these computations are performed by the FLP MAF unit
(ACB +×), the three FLP operands can be assigned in the
following manner:

.2 ,127 ,0

 and ,2 , , ,0.0
8

2

1

2.0 −⋅===

====

F

F

e
CCC

e
BIBxB

MES

MeESSA

 The other instruction that needs to compute exponential
function is the LNS addition/subtraction. We need to compute the
value of)221()21(FI vvv −−− ±=± . This computation can be
performed by the FLP MAF unit by assigning the three operands
of the FLP MAF unit as: with FIFI vvvvv .127. ''' −== ,

8'
2

'
2

2.0

'

2 ,127 ,0 and

 ,2 , ,
nsubtractio LNS if 1,

addition, LNS if ,0
0.1

−⋅===

==
⎩
⎨
⎧

=

=

F

F

v
CCC

v
BIBB

MES

MvES

A

 We can divide each of BM and CM into two parts as,
 2mBpmM BB += and 2mCpmM CC += . Bm and

Cm are the mantissas of the FLP numbers B and C, respectively.
2mBp and 2mCp are the least significant 24 bits of BM and

CM , respectively. Then,

.22

)2)(2(
mBpmmCpmmm

mCpmmBpmm

CBCB

CBBC

⋅+⋅+≈
++=

table-log1
e tabl

Reciprocal

XmX += 10

table-log2

28
3

1 2)2(ln −−− S

)21(log 28
32

−+−≈ S

)21(log 8
12

−+ S)21(8
1

−+ S

2Multiplier

Adder

Adder

1Multiplier

A dX

Unpack Unpack Unpack

Handler
Case Special

Processing
Exponent

4Multiplier

5Multiplier

3Multiplier

10

127 0

•
)81(0 −X)81(0 −X

FLP-to-LNS AE

Am.1

PackPack

ionNormalizat

ionNormalizatPost
and Rounding

−Adjustment
Exponent

)21(8
101

−+= SXX
)21(.1 8

11
−+= SmA A

)21(15
21

2
−+

=

SA

A)21(15
212

−+= SXX

28
3 21 −+ S

 d
A, X,

and
 from

Signals
 Special

Signals
Special

XA

EE XA

 and
from

 , Adder10

Adder12

Adder11

•

).00.1(log
127.

2 X

XFI

M
Edd
+

+−+=

Z z

FI dd .

)21(log 15
22

−+ S

)21(28
312

−+= SAA

one Stage

 threeStage

 twoStage

DIV-FLP

Result

1 0

)21(15
2

−+ S)21(15
2

−+ S

Fig. 3 The architecture of the FLP division and logarithmic unit

6. FLP Division and Logarithmic Unit
6.1 Division algorithm

For a normalized operand, xX += 1 ,

120
23

1
<=≤ ∑

=

−

i

i
ixx , its reciprocal can be obtained by three

processing stages. In the first stage, the approximate value of the
reciprocal of X , denoted as a normalization factor)21(8

1
−+ S ,

with 1S being a negative 8-bit integer, is obtained from a lookup

table addressed by the eight leading fractional bits of X ,
81 , ≤≤ ixi . Then, the first remaining term

∑
=

−−=
28

1

)1(
1 21

i

i
ixX , 0or ,1)1(=ix , is computed as

)1(1
11

−+= rSXX .

We can easily show that the leading fractional bits)1(
1x of 1X ,

71 ≤≤ i , should be all zero.

 In the second stage, the normalization factor is chosen

to be)21()21(
15

8

)1(15
2

i

i
ixS −

=

− ∑+=+ . The second remaining term

2X becomes

)21(21 15
21

28

15

)2(
2

−

=

− +=+= ∑ SXxX
i

i
i .

The leading fourteen fractional bits of 2X are all zero, and
14

2 2|1| −<−X .

In the third stage, the normalization factor is chosen to be

)21()21(
28

15

)2(28
3

i

i
ixS −

=

− ∑−=+ , and the value of the reciprocal

of X and quotient can be computed as

)21)(21)(21(1 28
3

15
2

8
1

−−− +++≈ SSS
X

 and

)21)(21)(21(28
3

15
2

8
1

−−− +++= SSSA
X
A (2)

6.2 Logarithmic computation
According to (2), the logarithmic value of X can be

computed as

)].21(log)21(log)21([log

)(log
28

32
15

22
8

12

2
−− +++++−= SSS

X
 (3)

The first and the second terms in (3) can be obtained by looking-
up a table with 256 entries. The third term can be computed as

128
3

28
32)2(ln2)21(log −−− ≈+ SS .

6.3 The Architecture
 Fig. 3 shows the architecture of this unit. For FLP
division operation, the output Q is equal to

X
AQ = , which is an

FLP number. In this case, the d input is ignored and is assigned as
FLP zero value. The d value is the larger one among the inputs of
a and b.

For FLP-to-LNS operation, the input
1272).00.1()1(−+−= XX E

X
S MX is an FLP number and the

output z is an LNS number, whose value should be
127.2)1(−−= FIz zzSz , with

Xz SS = and).00.1(log. 2 XXFI MEzz ++= .

In this case, the input A is assigned as a FLP 1.0 value and the
input d is assigned as 0.0.

For LNS addition/subtraction, the output z is an LNS
number, the value of the LNS input d should be added to the
logarithmic value. Therefore, the value of the A input should be
assigned as an FLP 1.0 value. With 127.2)1(−−= FId ddSd , the

value of the output z should be 127.2)1(−−= FIz zzSz , where

dz SS = and

).00.1(log.
)(log..

2

2

XXFI

FIFI
MEdd

Xddzz
+++=

+=
.

Idle

Exp

Read

MAF1

Write

MAF3

MAF2

DIV3

DIV2

DIV1

1
Data_Ready
=

0Re_ =adyData

bFLP_MAF_Su
d,FLP_MAF_Ad

LNS_to_FLP
LNS_Sub,
LNS_Add,

FLP_to_LNS
FLP_DIV,

LNS_to_FLP
b,FLP_MAF_Su
d,FLP_MAF_Ad

Reset

0 r Read_numbe >

Fig. 4 The FSM of the control unit of the hybrid FLP/LNS

processor

 Unit
lExponentia

Register R1 Register R3Register R2

CA B

1.0

d

111

1

000

0

Register d

Registers

MAF3

MAF2

MAF1

Registers

0.0

stRead_cntl_

FLP_MAF

MAF1_st

Result_MAF

Exp_st

Read_Exp

LNS_AS

Read3_stRead2_stRead1_st

FLP_MAF FLP_MAF

Read_Exp Read_Exp

MAF3_st

MAF2_stRegisters

bFLP_MAF_Su
 OR dFLP_MAF_Ad FLP_MAF 3.

Exp_st ORRead_st Read_Exp 2.
LNS_Sub OR LNS_Add LNS_AS 1.

:Note

=
=
=

Register
 WordControl

Fig. 5 The block diagram of the data path of the hybrid

FLP/LNS processor (part 1)

7. PROCESSOR ARCHITECTURE
In this section, we describe the design of the control and datapath
of the hybrid processor.
7.1 Control unit design

 The control unit is implemented as a finite state
machine (FSM), as shown in Fig. 4. Associated with each state, a
control signal is generated and is named as StateName_st. After
the system resets, the FSM enters the Idle state and is waiting for
the Data_ready signal from the Microblaze (MB) processor. Once
the Data-Ready signal is raised, the FSM enters into the Read
state. In this state, the first data read from the MB processor
through the FSL link is stored in the Control Word Register.

7.2 The data path design
In Fig. 5 (part 1), the Exponential unit generates the values of B
and C operands for the FLP MAF unit, and also the d operand for
the LNS addition/subtraction instructions. For the FLP-MPY-Add
and FLP-MPY-Sub instructions, the inputs of the A, B, and C
registers are the values from the R1, R2, and R3 registers,
respectively. For LNS-Add, LNS-Sub, and LNS-to-FLP
instructions, the input values of the B and C registers come from
the outputs of the Exponential unit. The value of the A register
should be assigned as 1.0 for the LNS-Add and LNS-Sub
instructions, and as 0.0 for the LNS-to-FLP instruction, as
explained in Section 6.3.

register R1 register R2

2 11

1 0

00

Registers

Registers

Registers

DIV1

DIV3

DIV2

DIV3_st

DIV1_st

DIV2_st

d

FLP_DIV
⎪
⎩

⎪
⎨

⎧

AS-LNS :0
DIV-to-FLP :1
LNS-to-FLP:2

Read2_stRead1_st

Result_MAF
Result_DIV

⎩
⎨
⎧

DIV-FLP LNS,-to-FLP AS,-LNS :0
FLP-to-LNS MAF,-FLP:1

ltFinal_Resu

0.1
unit-MAF-fromResult −

Fig. 5 The block diagram of the data path of the hybrid FLP/LNS
processor (part 2)

In Fig. 5 (part 2), the first input operand (the dividend) to
the FLP division and logarithmic unit comes from the R1 register.
For the other instructions, this operand is assigned value 1.0. The
second input operand (the divisor X) comes from the R1 register,
if the instruction is FLP-to-LNS conversion. If the instruction is
FLP division, the second operand should be the value of register
R2. If the instruction is LNS addition/subtraction, the second
operand should be from the result of the FLP MAF unit.

8. SYNTHESIS and TEST RESULTS
The hybrid FLP/LNS processor is synthesized by using the Xilinx
EDK 6.3.

8.1 Timing and hardware cost
From the controller design of the hybrid FLP/LNS

processor, we can easily derive the number of clock cycles that
are needed to execute each of the seven kinds of the instructions
in the datapath, which is listed in Table 1. The FPGA device of
the development board is 2v2000ff896-4. The device utilization
summary is listed in Table 2.
 In order to investigate the extra hardware cost that is
required for adding the FLP-to-LNS, LNS-to-FLP, and LNS-Add
and LNS-Sub instructions into the FLP arithmetic processor, we

remove the circuits in the hybrid processor that are used for
executing the four LNS-related instructions, and then we estimate
the hardware cost after this modification. The device utilization
summary of the FLP processor is listed in Table 2.

Table 1. The execution clock cycles of the instructions in
the FLP/LNS datapath.

Instruction LNS-
to-FLP

FLP-
to-

LNS

LNS
Add
and
Sub

FLP_MPY_
Add
and
Sub

FLP_DIV

No. of
cycles

4 3 7 3 3

Table 2. The number of slices used for the FLP/LNS processor.

 Used number Percentage used

Hybrid FLP/LNS 3415 31

FLP processor 1274 11

8.2 Test results
 The hybrid FLP/LNS processor is tested thoroughly in
the manner described in the following. The test is divided into
three phases. The first phase is to test all the possible cases of the
special values of the operands. The second phase is to test the
cases with all the possible values of the integer part of the LNS
numbers or the exponent of the FLP numbers, by fixing the values
of the fractional parts. The third phase is to test as many cases as
possible with different values of the fractional parts or the
mantissas of the operands, while the values of their integer parts
or exponents are fixed. The number of the test cases for each of
the seven instructions is more than 2323× . The maximum errors

of these cases for all the instruction are all less than 232− .

8.3 Discussions

From Table 1, we can see that the datapath delay of the
LNS add/sub instruction is about 2.3 times that of the FLP
multiply-and-add/sub instruction. However, the LNS
multiply/divide instructions take only one clock cycle. From our
experiments, the maximum clock rate of the FLP/LNS processor
is less than half the clock rate of the FLP processor. One method
to improve the clock rate of the FLP/LNS processor is to divide
the exponential stage in the FLP/LNS processor into two stages
and further optimize its circuit design.

Comparing the hardware cost of the FLP/LNS processor
and the pure FLP processor in Table 2, we can see that the
hardware cost of the FLP/LNS processor is roughly about 2.5 to 3
times that of the FLP processor. The extra 1.5 to 2 times the
hardware cost of the FLP processor is mainly due to the high-
precision cost in the LNS subtraction. Our proposed hybrid
processor can save at least about one quarter

(
3)processor(LNS/FLP ofCost 1)processor(FLP ofCost

)1processor(FLP ofCost
+

) the

hardware of the processor with separate FLP and LNS datapaths.

9. CONCLUSIONS
This research has proposed a versatile and cost-effective hybrid
FLP/LNS arithmetic processor. It is versatile because it can
execute the FLP-to-LNS and LNS-to-FLP conversions, the FLP
multiplication-addition/subtraction and FLP division operations,
and the LNS addition/subtraction operations in one single
datapath with uniform data representation format. It is cost-
effective because it allows the FLP hardware be shared by the
LNS computation. This 32-bit hybrid FLP/LNS processor is
implemented on the Xilinx Virtex II multimedia FF896
development board. From the synthesis results, we found that the
hardware of the 32-bit hybrid processor is at most three times that
of a 32-bit pure FLP processor. It is concluded that practical
design of very large word-length LNS arithmetic processors is
possible by using our proposed hybrid FLP/LNS approach.

10. Acknowledgement
This work is financially supported by the National Science
Council of Taiwan.

11. REFERENCES
[1] Ki-Il Kum, Jiyang Kang, and Wonyong Sung, “AutoScaler for

C: an optimizing floating-point to integer C program
converter for fixed-point digital signal processing,” IEEE
Transactions on Circuits and Systems-II: Analog and Digital
Signal Processing, vol. 47, no. 9, Sept. 2000, pp. 840-848.

[2] E. E. Swartzlander Jr., et al., “Sign/logarithm arithmetic for
FFT implementation,” IEEE Tran. on Computers, vol. 32,
no. 6, pp. 526-534, June 1983.

[3] M. L. Frey and F. J. Taylor, “A table reduction technique for
logarithmically architected digital filters,” IEEE
Transactions on Acoustics, Speech, and Signal Processing,
vol. ASSP-33, no. 3, pp. 718-719, June 1985.

[4] J. N. Coleman, E. I. Chester, C. I. Softley, and J. Kadlec,
“Arithmetic on the European logarithmic microprocessor,”
IEEE Transactions on Computers, vol. 49, no. 7, pp. 702-
715, July 2000.

[5] Chichyang Chen, Rui-Lin Chen, and Chih-Huan Yang,
“Pipelined computation of very large word-length LNS
addition/subtraction with polynomial hardware cost,” IEEE
Transactions on Computers, vol. 49, no. 7, pp. 716-726, July
2000.

[6] Mark G. Arnold, Thomas A. Bailey, John R. Cowles, and
Jerry J. Cupal, “Redundant logarithmic arithmetic," IEEE
Tran. on Computers, vol. 39, pp. 1077-1086, Aug. 1990.

[7] E. Hokenek, R. Montoye, and P. W. Cook, “Second-
generation RISC floating-point with multiply-add fused,”
IEEE J. Solid-State Circuits, vol. 25, no. 5, pp. 1207-1213,
1990.

[8] Chichyang Chen, Rui-Lin Chen, and Ming-Hwa Sheu, “A
hardware algorithm for fast logarithmic computation with
exponential convergence rate,” Journal of the Chinese
Institute of Engineers, vol. 28, no. 4, pp. 749-752, July, 2005.

