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ABSTRACT 
LNS (logarithmic number system) arithmetic has the advantages 
of high-precision and high performance in complex function 
computation. However, the large hardware problem in LNS 
addition/subtraction computation has made the large word-length 
LNS arithmetic implementation impractical. In this research, we 
proposed a hybrid floating-point (FLP)/LNS processor that can 
utilize the FLP multiplication-addition-fused (MAF) unit and the 
FLP division unit for implementing the computation of LNS 
addition/subtraction. With unified representation format in FLP 
and LNS numbers, this hybrid processor is versatile because it can 
execute the FLP-to-LNS and LNS-to-FLP conversions easily, 
without any extra hardware cost, in addition to the FLP 
multiplication-addition/subtraction, FLP division, and LNS 
addition/subtraction instructions. It is cost-effective because the 
FLP hardware is shared by the LNS unit. A 32-bit hybrid 
FLP/LNS processor is implemented on the Xilinx Virtex II 
multimedia FF896 development board. From the synthesis results, 
the hardware of the 32-bit hybrid processor is at most three times 
that of a 32-bit pure FLP processor. Our proposed hybrid 
FLP/LNS approach has made the design of very large word-
length LNS arithmetic processors become practical. 

Categories and Subject Descriptors 
B.2.4 [High speed arithmetic]: algorithms and cost/performance. 

General Terms: Algorithms and Design. 

Keywords: 
Logarithmic number system (LNS) arithmetic, Floating-point 
arithmetic, Logarithmic computation, Exponential computation. 

1. INTRODUCTION 
Floating-point (FLP) arithmetic unit is an essential 

component in many scientific and engineering systems. For 
example, in 3D computer graphics and visual simulations, the 
major execution units are the FLP multiplication-add-fused (FLP 
MAF) unit and the FLP divide/square root unit. Due to the scaling 
for overflow prevention in fixed-point (FXP) arithmetic, FLP 
arithmetic is usually preferred than FXP arithmetic in the 

hardware or software design [1].  

In radix-2 logarithmic number system (LNS), a number X  
is represented as a signed-exponent word, x . Its value is 

x
XSX 2= , where XS  denotes the sign of X . For A  = a

AS 2 , 

B  = b
BS 2 , and C  = c

CS 2 , arithmetic in LNS is performed in 
the following manner: 
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AS , BS , and CS  denote the signs of A , B , and C , 
respectively. The above equations reveal that multiplication and 
division in the LNS require only one additive operation. Square 
and square root operations can also be performed efficiently by 
simple shifting. Another advantage of the LNS is its better 
precision performance than that of the FLP system [2]  
 However, the addition and subtraction in LNS 
arithmetic require the computation of the functions 2Φ  and 2Ψ , 
which is usually performed by table-lookup operation. A problem 
in the development of large word-length LNS arithmetic is the 
exponential increase of this table size. In order to reduce the 
hardware cost for computing these two functions, many 
approaches have been proposed, either to reduce the size of the 
tables [3], to compute [4-5] or to avoid [6] the computation. 
However, we can expect that hardware cost in these 
computational methods will still increase dramatically as the word 
length increases. Another problem of LNS arithmetic is that high 
precision in LNS subtraction is very difficult to obtain [6].  

 In this research, an architecture that can combine the FLP 
MAF unit, FLP division unit, and LNS unit into one single 
arithmetic processor, called “hybrid FLP/LNS processor”, is 
proposed. The first advantage of this hybrid processor is that the 
FLP and LNS number representations can be designed in a 
uniform and compatible manner. Furthermore, the hardware for 
performing the FLP-to-LNS and LNS-to-FLP conversions is 
embedded within the hybrid FLP/LNS processor. There is no 
extra software and hardware effort needed for the two conversions. 
Secondly, the hybrid processor is a functionally versatile 
processor. It can perform FLP MAF operation, FLP division, LNS 
addition/subtraction, and the FLP-to-LNS and LNS-to-FLP 
conversions. Thirdly, and most importantly, this approach can 
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allow the FLP MAF unit and the FLP division unit be fully shared 
by the LNS unit. This advantage can effectively solve the large 
hardware problem of LNS arithmetic, and result in a cost-
effective FLP/LNS arithmetic processor. 

In the proposed hybrid processor, the 2Φ  and 2Ψ  
functions are computed by the following computations: 
exponential computation of Fv.02− , right shifting by Iv  bits, 
addition/subtraction by one, and finally the logarithmic 
computation followed by an addition. We denote Iv  and Fv  as 
the integer and fractional parts of v , respectively. Among these 
computations, the exponential and the logarithmic computations 
can be used to compute the LNS-to-FLP and FLP-to-LNS 
conversions, respectively. In the implementation of the 
exponential computation, a full word-length multiplication is 
needed, which can be performed in the FLP MAF unit. On the 
other hand, the shifting that is used to perform the normalization 
in the FLP MAF unit can also be adopted to perform the right 
shifting in the computation of the 2Φ  and 2Ψ  functions. Finally, 
the FLP division in this hybrid processor is implemented by using 
the division-by-reciprocal algorithm, which can be easily 
modified to compute the logarithmic function in the 2Φ  and 2Ψ  
functions. As a result, the hardware of the FLP unit can be fully 
shared by the LNS unit. A 32-bit hybrid FLP/LNS processor is 
implemented on a Xilinx Virtex II multimedia FF896 
development board. From the synthesis results, the proposed 
hybrid processor can save roughly about one quarter the hardware 
of the processor that has separate FLP and LNS datapaths. 
Furthermore, the hardware of the 32-bit hybrid processor is at 
most three times that of a 32-bit pure FLP processor. It is 
concluded that practical design of very large word-length LNS 
arithmetic processors is possible by using our proposed hybrid 
FLP/LNS approach. 
  In the following, we first describe the format of the FLP 
and LNS number representation, and the precision requirement of 
the LNS subtraction, in Section 2 and 3, respectively. The 
architecture and algorithms for the FLP MAF unit, the 
exponential unit, the FLP division and logarithmic unit, and the 
hybrid processor are described in Section 4, 5, 6, and 7, 
respectively. The synthesis and test results are presented in 
Section 8. Conclusions are made in Section 9. 

 

2. Format of the FLP and LNS Number 
Representation 
In the IEEE 754 single-precision standard, the format of a 32-bit 
FLP number X  consists of a sign bit XS , eight-bit exponent 

XE , and an unsigned 23-bit fractional mantissa, XM . With 
127-bias and hidden-one, the value of such an FLP number is 
defined to be  1272).00.1()1( −+−= XX E

X
S MX .  

 For an LNS number x , its representation consists of a 

sign bit xs  and an unsigned 31-bit exponent FIx eee .= , where 

Ie  is 8-bit and Fe  is 23-bit. With the bias of 127 in the integer 

part of the exponent, the value of an LNS number is equal to 

.2)1( 127. −−= FIx eeSx  

3. Precision Requirement in LNS Subtraction 
For FLP arithmetic, if we denote the correct value of the 
arithmetic operation to be )1(2 correct

E mcorrect +  and assume that 

the maximum error in the mantissa computation is ε . Then, the 
maximum relative error of the arithmetic operation is defined as 

 
.|

)1(2
)1(2)1(2

|

 error relative Maximum operation  FLP

ε
ε

=
+

++−+

=

correct
E

correct
E

correct
E

m
mm

correct

correctcorrect
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 In LNS arithmetic, we denote the correct value of the 
arithmetic operation to be correctcorrect FI .  and assume that the 

maximum error in the exponent computation is lε . Then, the 
maximum relative error of the arithmetic operation will be 
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In order to have a comparable precision performance with the 
FLP arithmetic, for the LNS addition/subtraction of our hybrid 
processor, we must ensure that the maximum error in the 
computation of the )21(log2

v−±  be less than 
24124 2443.1)2(ln2 −−− ⋅≈ . In the computation of LNS subtraction, 

when v  is very close to zero, the value of )21( v−−  is also very 

close to zero. The maximum error in v−2  computation should be 
less than 472443.1 −⋅ . 

4. Architecture of the FLP MAF Unit 
Fig. 1 shows the block diagram of a typical FLP MAF unit, which 
is modified from the design in [7].  

 

4.1 The first stage 

In the first stage, the multiplication and alignment stage, the 
mantissas Bm  and Cm  are multiplied. At the same time, the 
alignment of the two operands of the FLP addition is 
accomplished by right shifting the mantissa Am . 

 To increase the precision of the exponential function 
computation when the value of )21( v−−  is less than 232− , the 
word length of the result of the Mantissa Adder is increased to 98 
bits (28 integer bits and 70 fractional bits). The two 2424×  
multipliers in the right-upper corner are used to multiply Bm  

and 2mCp , and Cm  and 2mBp , respectively. 2mBp  and 

2mCp  are the low-order fractional parts of the exponential 

values of 1.02 Fe  and 2ln2.0 8
2

−
Fee , respectively, as will be 

explained in Section 5. 
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Fig. 1 Architecture of the FLP MAF unit. 

4.2 The second and third stages 
In the second stage, the sign reversion and addition stage, a 74-bit 
adder is used to add the aligned and negated mantissa '

Am  and 

the mantissa product BCm . Leading-zero detection (LZD) is 
performed after this mantissa addition to detect the number of 
leading zero bits of the result. The value of the intermediate 
exponent 1intexp  is adjusted. In the third stage, the normalization 
and rounding stage, the normalization, rounding, and post-
normalization are performed according to the IEEE 754 standard. 

5. Exponential Unit 
In this section, we first explain the algorithm for computing the 
exponential value Fe.02 , then we describe the architecture of the 
exponential unit in the hybrid processor. 

5.1 The algorithm 
To compute the exponential function Fe.02 , with Fe.0  being the 
23-bit fractional part of an unsigned 32-bit fixed-point number e , 
we first split the operand Fe.0  into two parts, 21.0.0 FFF eee = , 

where 1.0 Fe  is 8-bit and 2.0 Fe  is 15-bit. Then the value of the 

exponential function Fe.02  will become the product of the two 

terms, 1.02 Fe  and 
8

2 2.02
−⋅Fe . The value of the first term 1.02 Fe  

can be easily obtained by looking up a pre-computed table.  

 To compute the value of the second term 
8

2 2.02
−⋅Fe , we 

approximate 
8

2 2.02
−⋅Fe  as 
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2.0 Fw  is divided into two parts as 8
22212 2.0.0.0 −⋅+= FFF www . 

21.0 Fw  and 22.0 Fw  are designed to be 8-bit and 15-bit wide, 
respectively. Thus, the sum of the first two terms in (1) can be 
obtained by looking up a table with only 256 entries. The term 
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Fig. 2 Architecture of the exponential unit 

5.2 The architecture 
To perform the LNS-to-FLP conversion, we need to 

convert an LNS number 
127.2)1( −−= FIx eeSx  into an FLP 

number 1272).00.1()1( −+−= XX E
X

S MX  through the following 

computations: xX SS = , IX eE = , and Fe
XM .02.00.1 =+ . 

If these computations are performed by the FLP MAF unit 
( ACB +× ), the three FLP operands can be assigned in the 
following manner: 

.2  ,127  ,0

  and  ,2  ,  ,    ,0.0
8
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e
CCC

e
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 The other instruction that needs to compute exponential 
function is the LNS addition/subtraction. We need to compute the 
value of )221()21( FI vvv −−− ±=± . This computation can be 
performed by the FLP MAF unit by assigning the three operands 
of the FLP MAF unit as: with FIFI vvvvv .127. ''' −== ,  
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 We can divide each of BM  and CM  into two parts as, 
 2mBpmM BB += and 2mCpmM CC += . Bm  and 

Cm  are the mantissas of the FLP numbers B and C, respectively. 
2mBp  and 2mCp  are the least significant 24 bits of BM  and 

CM , respectively. Then,  
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Fig. 3 The architecture of the FLP division and logarithmic unit 

6. FLP Division and Logarithmic Unit 
6.1 Division algorithm 

For a normalized operand, xX += 1 , 

120
23

1
<=≤ ∑

=

−

i

i
ixx , its reciprocal can be obtained by three 

processing stages. In the first stage, the approximate value of the 
reciprocal of X , denoted as a normalization factor )21( 8

1
−+ S , 

with 1S  being a negative 8-bit integer, is obtained from a lookup 

table addressed by the eight leading fractional bits of X , 
81  , ≤≤ ixi . Then, the first remaining term 
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6.2 Logarithmic computation 
According to (2), the logarithmic value of X  can be 

computed as 
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The first and the second terms in (3) can be obtained by looking-
up a table with 256 entries. The third term can be computed as 
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6.3 The Architecture 
 Fig. 3 shows the architecture of this unit. For FLP 
division operation, the output Q is equal to 

X
AQ = , which is an 

FLP number. In this case, the d input is ignored and is assigned as 
FLP zero value. The d value is the larger one among the inputs of 
a and b.  

For FLP-to-LNS operation, the input 
1272).00.1()1( −+−= XX E

X
S MX  is an FLP number and the 

output z is an LNS number, whose value should be 
127.2)1( −−= FIz zzSz , with  

Xz SS =  and ).00.1(log. 2 XXFI MEzz ++= . 

In this case, the input A is assigned as a FLP 1.0 value and the 
input d is assigned as 0.0. 

For LNS addition/subtraction, the output z is an LNS 
number, the value of the LNS input d should be added to the 
logarithmic value. Therefore, the value of the A input should be 
assigned as an FLP 1.0 value. With 127.2)1( −−= FId ddSd , the 
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Fig. 4 The FSM of the control unit of the hybrid FLP/LNS 

processor 
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Fig. 5 The block diagram of the data path of the hybrid 

FLP/LNS processor  (part 1) 

7. PROCESSOR ARCHITECTURE 
In this section, we describe the design of the control and datapath 
of the hybrid processor. 
7.1 Control unit design 

 The control unit is implemented as a finite state 
machine (FSM), as shown in Fig. 4. Associated with each state, a 
control signal is generated and is named as StateName_st. After 
the system resets, the FSM enters the Idle state and is waiting for 
the Data_ready signal from the Microblaze (MB) processor. Once 
the Data-Ready signal is raised, the FSM enters into the Read 
state. In this state, the first data read from the MB processor 
through the FSL link is stored in the Control Word Register.  

 

7.2 The data path design 
In Fig. 5 (part 1), the Exponential unit generates the values of B 
and C operands for the FLP MAF unit, and also the d operand for 
the LNS addition/subtraction instructions. For the FLP-MPY-Add 
and FLP-MPY-Sub instructions, the inputs of the A, B, and C 
registers are the values from the R1, R2, and R3 registers, 
respectively. For LNS-Add, LNS-Sub, and LNS-to-FLP 
instructions, the input values of the B and C registers come from 
the outputs of the Exponential unit. The value of the A register 
should be assigned as 1.0 for the LNS-Add and LNS-Sub 
instructions, and as 0.0 for the LNS-to-FLP instruction, as 
explained in Section 6.3.  
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Fig. 5 The block diagram of the data path of the hybrid FLP/LNS 
processor (part 2) 

In Fig. 5 (part 2), the first input operand (the dividend) to 
the FLP division and logarithmic unit comes from the R1 register. 
For the other instructions, this operand is assigned value 1.0. The 
second input operand (the divisor X) comes from the R1 register, 
if the instruction is FLP-to-LNS conversion. If the instruction is 
FLP division, the second operand should be the value of register 
R2. If the instruction is LNS addition/subtraction, the second 
operand should be from the result of the FLP MAF unit.  

8. SYNTHESIS and TEST RESULTS 
The hybrid FLP/LNS processor is synthesized by using the Xilinx 
EDK 6.3.  

8.1 Timing and hardware cost 
From the controller design of the hybrid FLP/LNS 

processor, we can easily derive the number of clock cycles that 
are needed to execute each of the seven kinds of the instructions 
in the datapath, which is listed in Table 1. The FPGA device of 
the development board is 2v2000ff896-4. The device utilization 
summary is listed in Table 2. 
 In order to investigate the extra hardware cost that is 
required for adding the FLP-to-LNS, LNS-to-FLP, and LNS-Add 
and LNS-Sub instructions into the FLP arithmetic processor, we 



remove the circuits in the hybrid processor that are used for 
executing the four LNS-related instructions, and then we estimate 
the hardware cost after this modification. The device utilization 
summary of the FLP processor is listed in Table 2. 

Table 1. The execution clock cycles of the instructions in 
the FLP/LNS datapath. 

Instruction LNS-
to-FLP 

FLP-
to-

LNS 

LNS 
Add 
and 
Sub 

FLP_MPY_
Add 
and  
Sub 

FLP_DIV

No. of 
cycles 

4 3 7 3 3 

       
Table 2. The number of slices used for the FLP/LNS processor. 

 Used number Percentage used  

Hybrid FLP/LNS 3415 31 

FLP processor 1274 11 

 
8.2 Test results 
 The hybrid FLP/LNS processor is tested thoroughly in 
the manner described in the following. The test is divided into 
three phases. The first phase is to test all the possible cases of the 
special values of the operands. The second phase is to test the 
cases with all the possible values of the integer part of the LNS 
numbers or the exponent of the FLP numbers, by fixing the values 
of the fractional parts. The third phase is to test as many cases as 
possible with different values of the fractional parts or the 
mantissas of the operands, while the values of their integer parts 
or exponents are fixed. The number of the test cases for each of 
the seven instructions is more than 2323× . The maximum errors 

of these cases for all the instruction are all less than 232− . 
 
8.3 Discussions   

From Table 1, we can see that the datapath delay of the 
LNS add/sub instruction is about 2.3 times that of the FLP 
multiply-and-add/sub instruction. However, the LNS 
multiply/divide instructions take only one clock cycle. From our 
experiments, the maximum clock rate of the FLP/LNS processor 
is less than half the clock rate of the FLP processor. One method 
to improve the clock rate of the FLP/LNS processor is to divide 
the exponential stage in the FLP/LNS processor into two stages 
and further optimize its circuit design. 

Comparing the hardware cost of the FLP/LNS processor 
and the pure FLP processor in Table 2, we can see that the 
hardware cost of the FLP/LNS processor is roughly about 2.5 to 3 
times that of the FLP processor. The extra 1.5 to 2 times the 
hardware cost of the FLP processor is mainly due to the high-
precision cost in the LNS subtraction.  Our proposed hybrid 
processor can save at least about one quarter 

(
3)processor( LNS/FLP ofCost 1)processor( FLP ofCost 

)1processor( FLP ofCost 
+

) the 

hardware of the processor with separate FLP and LNS datapaths. 

9. CONCLUSIONS 
This research has proposed a versatile and cost-effective hybrid 
FLP/LNS arithmetic processor. It is versatile because it can 
execute the FLP-to-LNS and LNS-to-FLP conversions, the FLP 
multiplication-addition/subtraction and FLP division operations, 
and the LNS addition/subtraction operations in one single 
datapath with uniform data representation format. It is cost-
effective because it allows the FLP hardware be shared by the 
LNS computation.  This 32-bit hybrid FLP/LNS processor is 
implemented on the Xilinx Virtex II multimedia FF896 
development board. From the synthesis results, we found that the 
hardware of the 32-bit hybrid processor is at most three times that 
of a 32-bit pure FLP processor. It is concluded that practical 
design of very large word-length LNS arithmetic processors is 
possible by using our proposed hybrid FLP/LNS approach. 

10. Acknowledgement 
This work is financially supported by the National Science 
Council of Taiwan. 
 

11. REFERENCES 
[1] Ki-Il Kum, Jiyang Kang, and Wonyong Sung, “AutoScaler for 

C: an optimizing floating-point to integer C program 
converter for fixed-point digital signal processing,” IEEE 
Transactions on Circuits and Systems-II: Analog and Digital 
Signal Processing, vol. 47, no. 9, Sept. 2000, pp. 840-848. 

[2] E. E. Swartzlander Jr., et al., “Sign/logarithm arithmetic for 
FFT implementation,” IEEE Tran. on Computers, vol. 32, 
no. 6, pp. 526-534, June 1983. 

[3] M. L. Frey and F. J. Taylor, “A table reduction technique for 
logarithmically architected digital filters,” IEEE 
Transactions on Acoustics, Speech, and Signal Processing, 
vol. ASSP-33, no. 3, pp. 718-719, June 1985. 

[4] J. N. Coleman, E. I. Chester, C. I. Softley, and J. Kadlec, 
“Arithmetic on the European logarithmic microprocessor,” 
IEEE Transactions on Computers, vol. 49, no. 7, pp. 702-
715, July 2000. 

[5] Chichyang Chen, Rui-Lin Chen, and Chih-Huan Yang, 
“Pipelined computation of very large word-length LNS 
addition/subtraction with polynomial hardware cost,” IEEE 
Transactions on Computers, vol. 49, no. 7, pp. 716-726, July 
2000. 

[6] Mark G. Arnold, Thomas A. Bailey, John R. Cowles, and 
Jerry J. Cupal, “Redundant logarithmic arithmetic," IEEE 
Tran. on Computers, vol. 39, pp. 1077-1086, Aug. 1990. 

[7] E. Hokenek, R. Montoye, and P. W. Cook, “Second-
generation RISC floating-point with multiply-add fused,” 
IEEE J. Solid-State Circuits, vol. 25, no. 5, pp. 1207-1213, 
1990. 

[8] Chichyang Chen, Rui-Lin Chen, and Ming-Hwa Sheu, “A 
hardware algorithm for fast logarithmic computation with 
exponential convergence rate,” Journal of the Chinese 
Institute of Engineers, vol. 28, no. 4, pp. 749-752, July, 2005. 


