MICROPROCESSOR IMPLEMENTATIONS OF
DISCRETE FOURIER TRANSFORM MACHINES

Paul Chow, Zvonko G. Vranesic, J.L. Yen

Department of Electrical Engineering
University of Toronto
Toronto, Ontario, Canada

ABSTRACT

When computing the Fourier Transform
with a microprocessor, the speed and complexity
of the algorithm which is used become especially
important. The most frequently used algorithm
has been the Fast Fourier Transform. More re-
cently developed algorithms require fewer multi-
plications and about the same number of addi-
tions as the FFT. A comparison of these algor-
ithms is made and some possible structures of
machines are suggested. A description of a ma-
chine built to use one of the new algorithms is
given and the problems which were encountered
are discussed.

1. INTRODUCTION

Methods of computing the Discrete Four-
ier Transform (DFT) are always of interest. The
first practical algorithm, the Fast Fourier
Transform (FFT) {[1] is still the one which is

used most frequently. It allows computation of
the DFT
21
N-1 R

X =] X@WS L W=
n=0

in a reduced number of multiplications, of the
order of NlogN, where N is the number of points
in the transform. The FFT is very suitable for
implementation on a digital machine, particu-
larly if special purpose hardware is used. Re-
cent work by Winograd [2,3] has generated much
interest in new algorithms which require fewer
multiplications and about the same number of ad-
ditions as the FFT, With current technology, a
multiplication operation still takes signifi-
cantly longer to perform than an addition, lead-
ing to the expectation that these new algorithms
should provide some speed advantages over the
FFT,

————— e o o e o

This work was sponsored by the National Science
and Engineering Research Council of Canada under
research grants A3951, A5280.

CH1465-4/79/0000-0316$00.75 © 1979 IEEE

316

A comparison of these algorithms will be
made, with an emphasis on how a machine might be
structured in order to do the computations effi-
ciently. Several possible structures are pro-
posed for computing one of the new transforms
and a machine which was built using one of these
structures is described. The problems which
were encountered are outlined and some solutions
are given.

2. COMPARISON OF TRANSFORM ALGORITHMS

The FFT is based on the decomposition of
the IFT into successively smaller IFT's. The
most common form of the FFT is when the length
of the transform is a power of 2. The IFT is
reduced to 2-point transforms and the 2-point
transform is computed repetitively with differ-
ent data and constants. Keeping track of the
data and the constants to use is fairly straight
forward and well suited to a digital machine.

The Winograd Fourier Transform (WFT)
{3,4] and the Good-Winograd Transform (GWT,
called the prime factor FFT algorithm by Kolba
and Parks [5]) have resulted from Winograd's
work. They use combinations of a set of short
high speed prime length transforms to form
transforms of longer lengths. The WFT uses
about 20% of the number of multiplications re-
quired by the FFT, with about the same number of
additions. The GWT requires more multiplica-
tions than the WFT, but the number is still sig-
nificantly smaller than the number required by
an FFT.

The WFT and the GWT are much more diffi-
cult to compute than the FFT, mainly because the
algorithms are not as simply organized as the
FFT. Where the FFT is based only on the 2-point
transform, the new transforms require several
different structures to implement each of the
short transforms that make up the final trans-
form. For example, in a 252-point transform
which uses the 4-point, T7-point and 9-point
short transforms, there must be three different
structures to handle the short transforms.
These structures are not as simple as the
2-point transform.

The WFT and the GWT differ in the way
in which they use the short transforms. The WFT
nests the transforms and the GIT computes the
short transforms independently. However, the
data is ordered the same way for both trans-
forms. Each of the indices of the sample points
has a unique value when it is represented by the
set of residues modulo the numbers used in the
transform. The data is ordered according to
these residues with the result that computing
the ordering of the data is not as straight for-
ward as in the FFT.

When comparing the algorithms there is a
tradeoff of complexity versus speed. The FFT is
relatively simple to implement but it uses more
multiplications than either the WFT or the GWT.
A question of interest is how much the complex-
ity increases relative to the speed which is
gained when one of the new algorithms is used.

3. IMPLEMENTING THE NEW ALGORITHMS

The architecture of a machine which can
compute the WFT or the WT efficiently is not
clearly indicated. A machine which is to be
dedicated to performing a transform at very high
speeds must be hardwired controlled. Introduc-
ing some programmability will provide some flex-
ibility, but also decrease the rate at which the
machine can compute the transform.

In the FFT, the structure of the algor-
ithm suggests that the basic unit of an FFT ma-
chine is the 2-point transform, composed of some
adders, a multiplier and including a way of han-
dling the complex operands. If a WFT or GWT ma-
chine is to be built along the same lines then
there must exist a separate unit for each of the
short transforms used. As mentioned previously,
the short transforms are much more complicated
in structure and they will therefore be more
difficult to build. The only advantage they
have over the FFT is that the constants used are
not complex so that the multiplications will not
have complex operands. Even as a hardwired ma-
chine, the FFT can be more flexible than these
new algorithms. If the basic structure of the
FFT machine cycles the data through one 2-point
transform unit, then the length of a transform
can be adjusted by adjusting the constants and
the number of times the data is cycled through
the wit. A WFT or a GAT would require the
aility to change the short transform units
which are being used. This is not as simple a
problem to solve.

In a machine which is programmable, the
complexity of the new algorithms is not as ap-
parent. Instead of considering the problem as
it applies to using a high level language, spe-
cial purpose programmable hardware will be con-
sidered. In order to investigate the problems

317

of implementing the new algorithms a micropro-
grammable machine structured to compute the GWT
in real time was built. A description of the
development of this machine, its performance and
some conclusions are presented.

4. POSSIBLE STRUCTURES

The GNT was chosen as the algorithm to
be used mainly because it is more modular than
the WFT. This makes the implementation easier,
because the short transforms can be computed in
independent sets, instead of being mixed to-
gether in the nesting required by the WFT.

Several possible implementations using
microprocessors and bit slices were examined.
The main criteria used to judge these designs
were the ease of implementation and the maximum
possible throughput.

A microprocessor implementation with an
added hardware multiplier is the most straight
forward to build but with current microprocessor
technology the machine would be quite slow. A
possible configuration is shown in Fig. 1.
There are basically two identical halves, each
operating on one half of the data. The data is
split into the real and imaginary parts. Some
communication between the two channels is neces-
sary to handle the case when a constant is imag-
inary requiring the resulting product to switch
channels. An estimated sample rate is around
4-5 kHz for a 252-point GWT using the 8085 [6]
microprocessor.

Using bit slices is a way of obtaining
more speed. A possible configuration is shown
in Fig. 2. This is basically the implementation
of yet another computer with its own special in-
struction set. It is more complex than the mi-
croprocessor version because the writing of mi-
crocode and the decoding of instructions is re-
quired. An estimated sample rate is about 15
KkHz maximum using the AM2903 [7] slices as a ba-
sis.

By combining a microprocessor with the
bit slices the advantages of both technologies
can be exploited. The reason for using bit
slices is their speed and the reason for using a
microprocessor is that it is simple and it does
not have to be microprogrammed. When implement-
ing the GWT, the two major problems are managing
the data because of the required permutations
and performing the computations. The micropro-
cessor provides a simple means of manipulating
the data, because it is relatively easy to pro-
gram. It is then only necessary to microprogram
the bit slices to compute the transforms, which
is a reasonably easy task to achieve.

The machine that was built contains a
microprocessor (an LSI-11 [8]) and a micropro-
grammable bit slice unit (called FASTCR), under
the control of the microprocessor. Its struc-
ture is shown in Fig.3.)

5.

Using the new algorithms, the problem of
handling data becomes significant because of the
data permutations required. The host LSI-11 is
used only to manage the data and send instruc-
tions to FASTOR. All of the arithmetic computa-
tion is done by FASTOR under the control of the
LSI-11. The basic structure of FASTOR is shown
in Fig. 4.

FASTOR has been designed to be fairly
simple to implement. The main sections are the
central processor, the memory and the micropro-
gram control unit. Communication with the
LSI-11 is done through the registers, the in-
struction register and some status bits.

The central unit uses four AM2903 bit
slices to form a 16-bit wide processor. The re-
gister files have been organized with two sepa-
rate files of 32 registers plus the 16 on chip
registers. This allows the loading and unload-
ing of one set of registers by the LSI-11 at the
same time that FASTCR is using the other set.
This gives FASTOR 48 double-port general purpose
registers. Double-port registers are used along
with a three address architecture so that many
of the operations can be performed in a single
read-mod ify-write cycle.

FASTOR executes microcode loaded into a
RAM control store. An instruction sent to FA-
STOR is an address in the microprogram at which
FASTOR is to begin execution. This is loaded
into the microprogram controller when FASTOR re-
ceives a signal from the LSI-11 to start.
Therefore, there is no requirement for an in-
struction decoder which makes the implementation
much simpler,

The machine is organized so that the
I[SI-11 handles the input and output of data and
manages the data buffers. There are three data
buffers required for real time processing.
These are the input buffer, the output buffer
and the current work area. The ISI-11 program
maintains these buffers and swaps pointers when
the input buffer 1is full in order to start the
next transform.

The LSI-11 is also responsible for cont-
rolling FASTOR and loading its registers. The
system has been structured so that FASTOR can be
used to caompute any of the short transforms once
the data has been loaded 1in its registers. The
ISI-11 signals FASTOR to start by giving it a @

318

signal and an instruction to tell it which
transform to perform. When FASTOR is finished,
the LSI-11 is signalled so that a new transform
can be started. The LSI-11 program must there-
fore be able to keep track of the sets of points
which make up the short transforms.

6. RESULTS

The machine which was built is capable
of computing the 252-point GWT with a sample
rate of 6 kHz. FASTOR can handle a sample rate
of about 18 kHz but the LSI-11 is not capable of
handling the data at this rate. The data permu-
tation is implemented by using a set of tables
containing the permuted addresses. This re-
quires the use of a fairly slow addressing mode,
which combined with the amount of data that must
be moved in and out of FASTOR's registers, pre-
cludes faster operation. The major problem is
how to organize the data in memory so that com-
puting the addresses can be done easily. Micro-
programming the short transforms is not very
difficult.

The speed can be improved by loading and
unloading FASTOR's registers using direct memory
access (DMA) into main memory. However, this
DMA transfer is not as straight forward as the
normal block transfers that are usually associ-
ated with IMA. The interface must be able to
compute the addresses of the data required, be-
cause the data is not necessarily stored sequen-
tially in memory.

Possible schemes for this interface in-
clude having the address tables stored as part
of the interface. The tables can be initialized
by the controlling program. The main disadvan-
tage of this method is that it requires a lot of
memory. A slower variation of the method is to
give the controller the starting address in me-
mory where the table is stored. The controller
first accesses the table by IMA to get the re-
quired addresses. A small memory is required to
store these addresses so that they can be used
to retun the data. In both of the above
schemes, the LSI-11 1is relieved of the task of
loading and unloading FASTOR's registers. Its
main control over FASTOR is to tell it which
data table to use and which transform to perform
on the data. The remainder of the time can be
spent doing the input and output.

Another possible way of building the DMA
interface is to give it the intelligence to com-
pute the required addresses. By arranging the
data in memory in a particular order, and given
the first address (base address), it is possible
to access the data for a short transform by
stepping through memory with a fixed address in-
crement determined by the prime factors in the
transform being computed. For example, in a

252-point transform, the data can be organized
so that for the 9-point transforms the base ad-
dresses are 0,1,400,6, 63,64,...,69,
126, 127,...,132. For the base address of 1, the
nine points are at 1,8,15,22,...,57. Calculat-
ing the base addresses 1is also fairly easy.
Therefore, with an adder and some controls it is
possible to build an interface which can compute
the addresses required to access the correct
data.

In all of the schemes mentioned above
for improving the speed of performing the trans-
forms, the cammon characteristic is a IMA inter-
face which has the intelligence to determine the
addresses required to access the permuted data.
This reduces the number of memory accesses re-
quired by the LSI-11 by 60% which will improve
the speed significantly.

7. CONCLUSIONS

The experience gained in this work has
shown that the effort to reduce the number of
multipl ications has made the accessing of the
data much more difficult and the structure of
the algorithms much more complex in comparison
to the FFT. In an implementation where it is
possible to program the new algorithms, it is
much easier to cope with these problems, but for
a special purpose hardware implementation these
factors are important considerations because it
is always desirable to build a machine with as
simple a structure as possible to make debugging
much easier.

In comparing the algorithms, the GWT was
found to be easier to implement than the WFT be-
cause it is more modular. Several possible ma-
chine structures were studied in an effort to
find one which would be easy to build and suita-
ble for performing the GWT.

The selected design uses a microproces-
sor (an [SI-11) controlling a uwnit (FASTOR)
built using bit slices. The LSI-11 is program-
med to manipulate the data and FASTOR is used to
do the arithmetic computations. It was found
that the slowest part of computing the transform
was the ISI-11. This was because of the amount
of data which was being moved and the difficulty
in accessing the data. Several ways of handling
the problem by the use of IMA interfaces were
discussed. These interfaces would be capable of
computing the addresses required to access the
permuted data.

The new algorithms do provide a faster
way of calculating the DFT compared to the FFT
even though the programs are longer and more
complex.
the arithmetic it was found that the speed of
canputing a transform using a microprocessor be-

By providing a fast processor to do

319

comes limited by the number of memory accesses
required and the problem of calculating the ad-
dresses to do the accesses. A future direction
might be to study the problem of accessing the
data when these transforms are used.

8. REFERENCES

1. J.W. Cooley and J.W. Tukey, "An Algorithm
for the Machine Computation of Complex
Fourier Series," Math. Computation,
Vol.19, Apr. 1965, pp.297-301.

S. Winograd, "On Computing the Discrete
Fourier Transform," Proc. Nat. Acad.
Sei., U.S.A., Vol. 73, No. 4, April
1976, pp. 1005-1006.

S. Winograd, "On Computing the Discrete
Fourier Transform," IBM T.J. Watson Res.
Ctr., Yorktown Heights, N.Y., IBM Res.
Rep., RC-6291, Nov. 1976.

H.F. Silverman, "An Introduction to
Programming the Winograd Fourier
Transform Algorithm (WFTA), IEEE Trans.
Acoust. Speech, Signal Processing, Vol.
ASSP-25, April 1977, pp. 152-165.

D.P. Kolba and T.W. Parks, "A Prime Factor
FFT Algorithm using High-speed
Convolution," IEEE Trans. Acoust.
Speech, Signal Processing, Vol. ASSP-25,
August 1977, pp. 281-2%4.

"MCS 8 User's Manual," Intel Corporation,
Santa Clara, Cal., 1977.

"Am2903 Four-Bit Bipolar Microprocessor
Slice, An2910 Microprogram Controller
Technical Data," Advanced Micro Devices,
Inc., Sunnyvale, Cal., January 1978.

"Digital Microcomputer Handbook," Digital
Equipment Corporation, Maynard, Mass.,
1977.

REAL
IN
MPU
MEMORY
MULTIPLIER
REAL
ouT
"1 wmaisox
IMAGINARY
N
MPU
MEMORY
MULTIPLIER
IMAGINARY
out

Fig. 1

REAL
IN

IMAGINARY
IN

T

Using Microprocessors

Lsi=1l

MEMORY

REAL /MAG.
ouT

IMAG./PHASE
ouT

I1

FASTOR

Lsi-ti
Q Bus

Fig. 3 Using an LSI=11 and FASTOR

REAL
IN

i

IMAGINARY
N

T

MEMORY

REAL
ouT

i

IMAGINARY
ouT

T

CPU

MULTIPLIER

Fig. 2 Using Bit Slices

320

TRUCTION REG
s
n
CONTROLLER
[
4-8IT SLICES{4)
JAPROGRAM
MEMORY A 8 ADBD
32
LoOKUP
PIPELINE REGISTER)| TABLE
=
! MUX
A ADDRESS
8 DEST ADDRESS
8 SRC ADD
A DATA
8 DATA
D DATA
REQISTER LEL S
FILE © FILE ROM
L ® 0 I
A [REGISTER 8 Al A
0 » SELECT LOGIC o o a0
o) ADDRESS o
1 ADDRESS
¥ le DATA
INTERFAGE INTERFACE I
CONTROLS
I +22— Lsi-11 QBUS

Fig. 4 Basic Structure of FASTOR

