V4.12

A STREAMLINED DSP MICROPROCESSOR
ARCHITECTURE

Michael Takefman* and Paul Chow
Dept. of Electrical Engineering, University of Toronto
Toronto, Canada

ABSTRACT

This paper describes a microprocessor architecture
for Digital Signal Processing. The architecture offers al-
most twice the performance of the Motorola DSP56000
microprocessor, while maintaining assembly-code com-
patibility. Improved performance is achieved by stream-
lining the instruction set, using a seven-stage pipeline,
and adding a second memory write stage late in the
pipeline.

1 INTRODUCTION

The methodology for Reduced Instruction Set Computer
(RISC) design has significantly increased the performance of
General Purpose (GP) microprocessors [1, 2]. This paper de-
scribes the first results of the application of RISC principles

to the design of a microprocessor architecture for Digital Sig-

nal Processing (DSP) [3]. This research investigated an exist-
‘ing DSP microprocessor, profiling the execution of programs,
and examining the effects of deeper pipelines on the perfor-
mance of the instruction set. The result is a streamlined version
of the Motorola DSP56000 microprocessor using a seven-stage
pipeline that can execute an instruction each clock cycle, dou-
bling the performance on a per clock basis.

2 METHODOLOGY

We studied an existing microprocessor architecture for two
reasons. The primary reason was the availability of application
source code. A tenet of RISC design is to make design deci-
sions based upon the impact of design alternatives on the per-
formance of real programs. We did not have access to a retar-
getable optimising compiler, so we could not begin with appli-
cations written in a high-level language, and we did not wish to
hand-code all of the benchmarks. By selecting an existing mi-
croprocessor, we could use available libraries of hand-optimised
code. The second reason for studying an existing microproces-
gor was to determine the viability of our ideas for improving
performance before exploring architectures that would also be
more efficient targets for compilers.

The Motorola DSP56000 microprocessor was chosen as the
base architecture for the following reasons: it was a recent
architecture; it contained all the features required for use as
an efficient DSP processor; it had a high degree of internal
parallelism[4, 5]. Furthermore, source code was readily avail-
able from Motorola’s Dr. Bub bulletin board service, and Bell

*Michael Takefman is now with Bell Northern Research, Ottawa, Ont.

Northern Research made some of its application code available
for analysis.

A fully-metered high-level simulator of the DSP56000 was
written in C++[6]. Fourteen programs were selected as bench-
marks and were run using the simulator to profile execution.
The benchmarks include: FFTs, FIR filters, IIR filters, a Lat-
tice filter, an LMS adaptive FIR filter, matrix multiplication,
Reed Solomon encoding, RSA encryption and a Sliding Window
Correlator. The profiling results were used to design an initial
experimental architecture. The experimental architecture was
captured as a high-level simulator written in C++. To verify
the correctness of the simulation results, the states of the sim-
ulators were checked against the DSP56000 simulator provided
by Motorola. The benchmark programs were then run on the
experimental simulator. Performance bottlenecks were identi-
fied and the simulator was modified as the architecture evolved
over several iterations. The final iteration was designated X56k
and a floorplan of the chip was proposed. ’

3 DSP56000 REVIEW

To understand the differences between the DSP56000 and
X56k, a brief review of some of the DSP56000 features is pre-
sented below. The interested reader will find full details in
the DSP56000 manual [7, 8]. An important feature of the
DSP56000 is the parallelism and .memory bandwidth avail-
able internally. Each instruction cycle (two clock cycles) the
processor can perform up to three memory accesses (one pro-
gram, two data), a multiply/accumulate operation using the
Data ALU, and two addressing operations using the Address
Generation Unit (AGU). The microprocessor is organised as
a three-stage pipeline (instruction fetch, decode and execute),
with each stage operating in a minimum of two clock cycles.
Some instructions require greater than two cycles at certain
pipeline stages.

The DSP56000 is not a pure load/store machine. All Data
ALU and AGU instructions only operate on register operands,
but some of the other instructions can specify memory operands
as well. We refer to instructions that utilise memory operands
as miscellaneous instructions. The miscellaneous instructions
include branch, zero-overhead looping, and bit-manipulation
instructions. Bit-manipulation instructions can also cause in-
divisible read/modify/write memory cycles. As well, some of
the memory-move instructions perform a read from one mem-
ory location and a write to another location in one instruction.

10ur thanks to Messr. B. O'Higgins, M. Wiener, A. Wierich and
Q. Meek for their help.

- 1257 -

CH2977-7/91/0000-1257 $1.00 © 1991 IEEE

Animportant feature of thie DSP56000 pipeline is that there
are no load/store delays when accessing Data ALU registers,
and there is a single instruction cycle load delay when writing
registers in the AGU. Thus, any value created in the Data ALY
in the current instruction can be written to memory in the next
instruction, and any value read from memory to a Data ALU
register can: be used in the next instruction.

The Data ALU contains two: 56-bit accumulators and four
24-bit input registers. The AGU contains two register banks,
each containing 12 16-bit registers organised as four register
triples (Rn, Nm, Mn). The R register is used to reference a
memory operand. The N register provides an offset to be added
to R in address calculations. The M register value selects the
type of arithmetic used in the address calculation (linear, mod-
ulo, or FFT). Finally, there are. a number of registers used for
hardware looping and other microprocessor control functions.

4 X56K ARCHITECTURE

A Block diagram of the X56k architecture is shown in Fig:
ure I. The hashed lines indicate bypass paths between the
functional units. It is a load/store architecture with four logi-
cal pipelines. The' AGU pipeline performs memory operand ad-
dress calculations while the Memory pipeline performs the ac-
cesses. The Data ALU pipeline performs multiply /accumulate
and other ALU operations, and the Program Control Pipeline
(PCP) performs all other instructions (branches, loops, bit tests
etc.). Bypass logic is used extensively within each pipeline to
remove pipeline dependencies. Bypass logic is also used to by-
pass values to and from the Memory pipeline, and the other
pipelines. The four logical pipelines are partitioned as three
functional units, namely the AGU, the Data ALU and the PCP.
The Memory pipeline is distributed and portions of it are repli-
cated across the tliree functional units. The replication of the
memory pipeline causes an increase in the area of each pipeline,
but decreases the amount of global routing (for bypassing) be-
tween functional units. The first two stages of the pipeline are
shared among the logical pipelines and the longest pipeline is
seven stages.

4.1 Instruction Streamlining

Statistics were gathered to determine how the DSP56000 in-
struction set was being utilised. The measurements revealed
that the use of memory operands by tle miscellaneous instruc-
tions were infrequent enough to justify their removal, mak-
ing X56k a true load/store machine. Furthermore, instruc-
tions that required two memory operations (peripheral memory
move, and read/modify/write] were also rarely used. Table L
shows the instruction: distribution across the benchmarks. For
each: benchmark the following information is given: the num-
ber of instructions executed, the number of Data ALY instruc-
tions as a percentage of all instructions and the percentage of
Data ALV instructions with a Move operation in parallel. The
number of NOPs (generally parallel Move operations with no
available:Data ALU operation}, non-parallel Move instructions,
branch instructions and other miscellaneous instructions are
given as a. percentage. This table shows that the branch and
miscellaneous instructions are executed infrequently. Table 2
shows. the operand usage for tle instructions. The Cnt col-
umn: denotes the number of instructions that can use memory
operands. The Reg column lists the percentage of instructions

that use a register operand. The Mem column denotes the use
of a memory operand, and Lit lists the usage of literal operands.
The table indicates that. the majority of the operands are held
in registers or within literals. Therefore, designing X56k as a
true load/store machine and' removing instructions that require
multiple memory operations would not have a disastrous effect
on performance. DSP56000 instructions that are not imple-
mented directly in the X56k instruction set are implemented:
using multiple X56k instructions. The expansion is handled
automatically by the X56k simulator during execution®. There
is no reorganisation performed on the resulting code. There-
fore, our performance estimates represent a lower bound on
performance:

4.2 Memory Pipeline

The most unique feature of the X56k architecture is the memory
pipeline. The DSP56000 has a high peak memory bandwidth,
and a number of the benchmarks utilise almost all the available
bandwidth. X56k uses a deep pipeline to achieve single-cycle
operation with a reasonable clock period. Unfortunately, due
to the small number of Data ALU accumulator registers, results
computed in the ALU are often written to- memory within the
next two instructions to free the registersfor reuse. With a deep
pipeline, dependencies prevent the: ALY result from being used
in either of the next two: instructions. The obvious solution
is' to add more registers. A larger register set would decrease
the frequency of register reuse, and would make it pessible to
schedule the code so that a store instruction could be delayed
until the result is available. However, we did not add any ad-
ditional Data ALU registers to X56k because of our constraint.
of being code compatible.

The solution used is the addition of a second memory write-
back stage late in the pipeline. The MEM_2 stage is located
in parallel with the accumulator (ALU) stage of the Data ALU

pipeline as shown in Figure 1. Consider the case where an in-
struction creates a result (in the accumulator} and one of the
next two instructions writes the result to memory. Without the
MEM_2 stage NOPs must be: inserted to resolve the pipeline
dependency. The MEM_2 stage allows the program to execute
without the addition of NOPs because the ALU stage forwards
the result to the MEM_2 stage. If the memory write operation
occurs after two instructions, the bypass logic forwards the re-
sult to the MEM_1 stage. Unfortunately, a resource conflict
occurs if the MEM_I stage and the MEM.2 stage both attempt
to access the same memory bank. In this case, the operation
is serialised and the operation of the MEM_1 stage and the mi-
croprocessor are stalled while the MEM2 stage completes its
operation first. Bypasslogic is used within the memory pipeline
to handle dependencies, and between the memory pipeline and
the other pipelines. The bypass logic must also handle the case
where an instruction is scheduled to write a value in MEM2
when the next instruction is reading the same memory location
in MEM_1. In this case, the result is forwarded by the ALU
stage to the MEM.1 stage and then to the MEM.2 stage.

’An X56k assembler would take DSP36000 assembly code and freat the
P d i ictions as

- 1258 -

4.3 PCP Pipeline

The PCP is five stages long and includes the instruction fetch
and decode stages. The PCP is responsible for executing all
instructions that do not use the AGU or Data ALU pipelines
such as branches, loops, bit tests and microprocessor control
instructions. The MISC stage actually performs the opera-
tions. The DSP56000 uses the Global Data Bus to transfer
data between functional units to avoid conflict with the inter-
nal memory busses. X56k uses the same bus to transfer data
to the PCP from the register files of the other pipeline units.
The result is returned to the source pipeline using one of the
memory buses during the MEM.1 (Delay) stage.

4.4 AGU Pipeline

The AGU pipeline is five stages long including the instruction
fetch and decode stages. The register read operation occurs
simultaneously with decoding. The AGU uses two stages to
perform the addressing arithmetic. The AGU.1 stage performs
linear and FFT addressing. AGU.1 also performs modulo ad-
dressing if the offset is one. In the case where the offset is not
one, the AGU_2 stage performs the additional add operation to
complete the modulo operation. If the AGU.2 stage is required
for an address calculation, the next instruction cannot reference
the result register of the instruction in the AGU-2 stage. By-
pass logic removes all other pipeline dependencies. If the offset
addressing mode is used in conjunction with modulo arithmetic
(which was not used in our benchmarks), multiple instructions
are required to correctly access the memory operand. To re-
duce the area required for bypass logic, only the R registers are
bypassed from the memory pipeline. Profiling results showed
that it was rarely necessary to bypass N or M register values
to the AGU pipeline. To reduce area in the register file, only
a single writeback port is provided. This restricts the use of
move operations that utilise an addressing mode that updates
an address register. The destination register of such a move
instruction cannot reside in the same register file. Profiling re-
sults showed that this instruction was never executed. Both
of these results indicate that the area saved causes very little
performance degradation.

4.5 Data ALU Pipeline

The Data ALU pipeline is seven stages long including the
instruction fetch and decode stages. Two stages .are al-
located for the multiplier and one stage is allocated for
the accumulate/ALU operation. The latency of the multi-
plier/accumulator causes pipeline dependencies when an ALU

result is required as a multiplier input in a subsequent in- .

struction. Profiling results show that for a three-stage mul-
tiplier/accumulator no such dependencies occur in our bench-
marks. However, pipeline dependencies would occur for a four-
stage multiplier/accumulator. Normally, the assembler would
check for such dependencies and insert the appropriate NOPs
(if required).

4.6 Inter-Pipeline Dependencies

One performance bottleneck that cannot be removed with-
out extensive global routing occurs when the results from one
pipeline are used as the source operands in another pipeline

(excluding the memory pipeline). The most glaring example of
this is the Reed-Solomon Encoder (rs.enc), whose performance
is only a factor of 1.36 better than on the DSP56000. The
rs_enc program is essentially a table look-up routine where the
Data ALU is used to create an index into a table, and the AGU
is used to perform the addressing operation. Due to the deeper
pipeline used in X56k, NOPs must be inserted in the code to
resolve the inter-pipeline dependencies. The Sliding Window
Correlator suffers minor performance loss due to the same type
of dependencies. The RSA Encryption program suffers some
performance loss due to dependencies between the AGU and
the PCP. It is possible that code reorganisation could remove
some of the NOPs, reclaiming some of the lost performance.
This was not investigated.

5 PERFORMANCE

Table 3 shows the performance of the X56k architecture
compared to the DSP56000. The first two columns give the
number of clock cycles required to complete the program exe-
cution. The first column is labelled D56k and gives the results
for the DSP 56000, and the second column gives the results
for X56k. The next column gives the ratio of X56k cycles to
DSP56000 cycles. The next four columns indicate the num-
ber of cycles lost to code expansion (Extra), inter-pipeline con-
flicts (Conflicts), memory resource conflicts between MEM.1
and MEM.2 (Mem), and addressing mode dependencies in the
AGU (AGU).

The FIR filters achieve speedups greater than two due to
a more efficient implementation of the zero-overhead loop in-
structions. The FFTs lose the majority of their performance
due to memory conflicts. However, without the use of the sec-
ond memory write stage the speedup falls below unity. In fact;
with the exception of the rs_enc and rsa_192 benchmarks, mem-
ory conflicts account for the majority of lost performance.

6 CONCLUSIONS

The X56k architecture can deliver over twice the perfor-
mance of the DSP56000 on our set of benchmarks while main-
taining assembly code compatibility. The improvement is
achieved through instruction streamlining, and the use of a
seven-stage pipeline, single-cycle operation, and a second mem-
ory writeback stage. It is estimated that this can be done with
about 30% more hardware and no effect on the cycle time. Fur-
ther development of X56k should investigate a much wider set
of real application programs.

This research has shown that deep pipelines are a viable
method of improving the performance of a DSP architecture,
and that there are many opportunities for even better perfor-
mance if there is no constraint on code compatibility to an
existing architecture. Possible directions to explore would be
the addition of more registers, simpler instruction sets, and the
use of advanced optimising compiler technology to help design
better instruction sets.

REFERENCES

[1] J. Hennessy and D. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufman, 1990.

[2] J. Hennessy. VLSI Processor Architecture. JEEE Transac-
tions on Computers, C-33(12), December 1984.

- 1259 -

{3] M. Takefman. Improving the Performance of DSP Mi- AGU MEM Data ALU PCP
croprocessor Architecture. Master’s thesis, University of ,]
Toronto,, 1990, | Eich

ASSP Magazine, 5(4):4-19, October 1988. §

[5] E. Lee. Programmable DSP Architectures: Part II. IEEE"
ASSP Magazine, 6(1):4-14, January 1989.

[4] E. Lee. Programmable DSP Architectures: Part I. IEEE ny\“} * r—--
LN
| Decode |

o
W

RRRNAY
=
£
2
2
N

Y
bon?
/ -t
ry
g p
ww‘ 3
ey
——
A
€
3;“

Y

e
— 3

[6]: B. Stroustrup. The C++ Programming Language. Addison
Wesley, 1986.

ol

o~
r

[7). K. Kloker. The Architecture and Applications of the Mo-
torola DSP56000 Digital Signal Processor Family. In IEEP
International Conference on: Accoustics Speech and Signal
Processing, pages 523-526, April 1987.

{8] Motorola. DSP56000/DSP56001 Digital Signal Processor
User’s Mgnual, 1988.

We would like to acknowledge: the support received from the Mo-
torola DSP' University Support Program, Bell Northern Research,
URIF and NSERC grant OGP0036648. Michael Takefman was sup-
ported by an. NSERC Postgraduate Scholarship and a Bell Northern
Research Postgraduate Scholarship.

[Benchmark | Instrs | ALU | // Move | NOP | Move | BRA | Misc | | Reg Wr |
11024 32354 | 93.0 96.9 | L7 | 3.6 | 1.7 |
fit.256 8067 | 76.44 821 | 3.5 | 16.9 | 3.3 | Figure 1. X56k Pipeline Block Diagram
 fir.256.1 268 95.9 | 992 | L1 2.2 0.8
| fir.32.64 2312 914 | 999 | 0.1 | 57 L 2.8 |
iir2 3769 61.8 | 54.0 1.0 | 352 | 0.1 | 2.0
iir3 265 634 | 683 | 53 [294 | 08 | L1 |
| fir-4 406 53.2 73.7 150 | 19.0 | 0.5 [123

| latnrm 64 [1736 | 62.7 | 77.2 IL2 | 187 | 74 |
Imsfir.256 | 1042 | 493 496 | 0.5 | 50.0 | . 0.2
‘mat_13.33 | 19 474 56.3 10.5 | 42.1 | |
| mat.33.33 | 102 . 35.3 365 | 59 | 46.1 | - 12.8 |
: IS-eRC - 4217 34.7 42.0 16.8 | 47.9 | 0.5 |
 rsa.192 : 113162 | 69.3 80.8 | 4.6 16.1 | 28 | 7.2 |
ewc.32.256 [9753 | 91.9 | 944 | 0.1 | 53 | 36 |

Table 1. Instruction Distribution of Benchmark Programs

Benchmark | Ont | Reg | Mem | Tit | Benchmark | M56k | W56k | Speedup | Extra | Confiicts | Mem | AGU |

fri-l024 | 547 1987 2.3 ft1004 | 66248 | 44311 | 150 | 0 | 336 | 9212 | 2341 |

flt256 | 266 | 989 11 "F056 | 16604 | 10430 | 160 & 2295

fr2561 | 3 100.0 fro56.1 | 54 | 271 | 201 0

fe3264 b G5 1000 | Fr3264 | 5010 | 2378 | 2.1l 63

12 | 26 1923 2.2 Tir 2. 7588 | 4157 | 183 360

L 2 1 1000 § s 532 | 317 | 168 T

4 1 2 10991 814 | 4% | 181 20

lasturm 64 | 129 i 1008 Tatarm 64 | 3730 | 1866 | 2.00 127

Imsfir256_| 2 100.0 Tmshir256 | 2090 | 1046 | 2.00

‘mat 1333 § 0 ‘ mat 1333 38 | 25 | 1.52

olojlolioleloleo|oiele
ele|eo|olole|o|e

mat33ds L B | ooe [maess3s | w0 | i | oo
1s-enc 22 | il "Is.enc 9724 | 7149 | 1.36 | O 2496 | 408

Ro|ml ool o|B|e el <

-3

m‘w;_g mgg;g L1 232 1366017 152102 | 243416 | 127436 | 1.91 | 1395 | 4996 | 2289 |
| swe-32.256 | 257 | 1000} Fwc32.256 | 20022 | 11300 | 177 | 256 | 1028 | ©

o2

Tablﬂ 2:” Operand Usage of Miscellaneous Table 3 X56k Benchmark Performance
Instructions :

- 1260 -

