APPLICATION-DRIVEN DESIGN OF DSP ARCHITECTURES AND COMPILERS

Mazen A. R. Saghir, Paul Chow, and Corinna G. Lee

Department of Electrical and Computer Engineering, University of Toronto
10 King’s College Road, Toronto, Ontario M5S 1A4
CANADA

ABSTRACT

Current DSP architectures are designed to enhance the execu-
tion of computationally-intensive, kernel-like loops. Their pecu-
liar architectural features are often difficult for high-level
language compilers to exploit. Moreover, their tightly-encoded
instruction sets usually restrict the exploitation of instruction-
level parallelism beyond a few instances. The quality of compiler-
generated code is therefore poor when compared to hand-coded
assembly language. In this paper we argue for an application-
driven approach to designing flexible DSP architectures and
effective compilers. We show that the run-time behavior and
architectural characteristics of DSP kernels are different from
those of DSP applications. We also show that when given a suffi-
ciently flexible target architecture, a compiler is capable of effec-
tively exploiting instances of instruction-level parallelism and
DSP-specific architectural features. Finally, we show that a suit-
able DSP architecture is one that provides the functionality to sup-
port digital signal processing requirements, and the flexibility that
enables a compiler to generate efficient code.

1. INTRODUCTION

The current architectures of general-purpose, programmable
digital signal processors (DSPs) are tuned to efficiently execute
the computationally-intensive loops that typically characterize
digital signal processing algorithms. To fully exploit these archi-
tectural features, and to enhance overall performance and code
size, DSPs have traditionally been programmed using assembly
language. As digital signal processing applications become more
sophisticated, however, coding, debugging, maintaining and port-
ing large assembly language programs become less desirable.
Optimizing high-level language (HLL) compilers are therefore
seen as a better alternative for programming DSPs. However, the
quality of the code that is generated by current compilers is often
poor when compared to hand-coded assembly language programs.
This is due to the inability of compilers to utilize the peculiar
architectural features of DSPs. Furthermore, compilers are limited
in their exploitation of instruction-level parallelism by the tightly-
encoded instruction sets of current DSPs [1]{2][3]. Hence, there is
a need for an architecture that provides the functionality needed to
satisfy digital signal processing requirements, and the flexibility

that enables HLL compilers to effectively utilize the architecture
and exploit instruction-level parallelism.

Contemporary architectural design stresses the simultaneous
development of an architecture and its compiler, based on cost/
performance trade-off studies that rely on run-time data gathered
from benchmark programs [4]. These programs should represent
typical, envisioned applications and work loads. Current DSP
architectures, however, are designed to optimize the execution of
short, computationally-intensive loops [3]. These loops constitute
kernels that are often used to benchmark the performance of DSP
processors [1]. Using these kemels as a basis for designing new
architectures may therefore lead to specious conclusions.

In this paper, we investigate the differences in the run-time
behavior and architectural characteristics of DSP kernels and
applications. We also study the ability of a HLL compiler to
expose and exploit instances of instruction-level parallelism, and
to make use of a flexible DSP target architecture.

2. EXPERIMENTAL METHODOLOGY

We wrote several DSP kemels and applications in the C pro-
gramming language [5]. These were used as benchmarks to study
the availability of instruction-level parallelism, and the impact of
different compiler optimizations on execution performance.

Twelve kermnels, based on six common DSP algorithms, were
implemented. For each algorithm, two kemels of different prob-
lem sizes were used. The DSP algorithms that were used are:

» radix-2, in-place, decimation-in-time fast Fourier transform;
« finite impulse response (FIR) filter;

« infinite impulse response (IIR) biquad filter;

« normalized lattice filter;

+ least mean squared adaptive FIR filter; and

¢ matrix multiplication.

Six typical DSP applications, from the areas of speech and
image processing, were also used:

» ADPCM speech encoder;

» LPC speech encoder;

» spectral analysis using periodogram averaging;

- image compression using the discrete cosine transform;

» edge detection using Sobel operators and 2D convolution; and
» image enhancement using histogram equalization.

Figure 1 shows the DSP model architecture used for this study.
The model is based on a Very Long Instruction Word (VLIW)

11-437

0-7803-1775-0/94 $3.00 © 1994 IEEE

Instruction X Data Y Data
Memory Bank Memory Bank Memory Bank
_________________ Ty
i; fffs 33 fn 33 433
n) i 2
[Inferconnection Network I |
! 1) 1 I
Address Register File Integer Ragister Fite Floating—Point Register File
(32 x 32-bke) (32 x 32-bhs) (32 x 32-bits}
! 32 2 32 21 32 32

—_— —_—

Figure 1. Model DSP Architecture

architecture [6], and was chosen for the flexibility it offers the
compiler in exploiting parallelism. In VLIW architectures, the
compiler is responsible for specifying the parallel execution of
operations, by appropriately encoding the corresponding fields of
a long machine instruction. The parallel execution of these opera-
tions is similar to the execution of horizontal microcode [4].

The model consists of nine functional units: two floating-point
arithmetic units (FPUO and FPU1); two integer arithmetic and
logic units (DUO and DU1); two address arithmetic units (AUO
and AUL); two memory access units (MUO and MU1), used for
accessing the dual data memory banks (X and Y); and a program
control unit (PCU), used to fetch and decode the long machine
instructions, and to execute control-type operations. Three sepa-
rate, multi-ported register files are also used to store the operands
of the floating-point, integer, and address units respectively. Other
features, typically found in DSP architectures, are also supported.
These include multiply-accumulate operations, support for low-
overhead looping and specialized addressing modes.! All opera-
tions are assumed to execute in a single clock cycle.

E

GNU C-Based | Machine Operalions | pogy_oiimizing
Front End Back End
l Long Instructions
Object Code

Figure 2. Optimizing C Compiler

Figure 2 shows a block diagram of the optimizing C compiler
developed at the University of Toronto [7], and used in this study.
The compiler front-end is based on the GNU project optimizing C
compiler [8], and is used to compile source programs and generate
a sequence of machine operations. The back-end then applies a
number of DSP- and architecture-specific optimizations on these
operations. Of interest to this study are the low-overhead looping

1. Modulo and bit-reversed addressing modes are supported at the
instruction set level.

(LOL), memory partitioning (MP), and operation compaction
(OC) optimizing passes.

In the LOL pass, the set-up and test operations associated with
the loops of a program are replaced, whenever possible, by a sin-
gle operation that controls the body of the loop. The MP pass
attempts to expose available parallelism in memory access opera-
tions by assigning simultaneously executable load or store opera-
tions to different memory units. The data being accessed is also
partitioned to their appropriate data memory banks. Finally, the
OC pass attempts to exploit the parallelism in the basic blocks of a
program by packing simultaneously executable operations into a
single, long instruction. The long instructions are then generated
by the compiler.

After compiling a source program, the resulting code is exe-
cuted on an instruction-set simulator that we developed to gather
data on a program'’s run-time characteristics. This data is also used
to assess the impact of the model architecture and the different
compiler optimizations on execution performance. In the remain-
der of this paper, data gathered from the benchmark programs are
presented and analyzed.

3. RESULTS AND ANALYSIS

3.1. Distribution of Operation-Level Parallelism

Table 1 summarizes the average distribution of operation-level
parallelism among the instructions of the kernel and application
benchmarks. While parallelism in the kernels is concentrated
around 2, 3, and 5 operations per instruction, parallelism in the
applications is concentrated around 1, 2, and 3 operations per
instruction. The kernels therefore exhibit an average parallelism
of 3.48 operations per instruction, while the applications exhibit
an average parallelism of 2.11 operations per instruction. This
shows that there is generally more parallelism in the kernels.

The difference between the levels of parallelism found in the
kernels and the applications is to be expected. Kemnels consist
mostly of short loops where high levels of parallelism are avail-
able. Application programs contain other sections of code, such as
control code or the intervening code between loops, where less
parallelism is available. This reduces the average parallelism in
application programs.

Moreover, since parallelism is exploited at the basic block
level, little average parallelism, beyond two or three operations,
can typically be found [9]. The low levels of parallelism found in
the applications are therefore typical, while the high levels of par-
allelism found in the kernels are not common in more general
code.

Available Parallelism
1 2 3 4 5
Kernels 9.1% [27.0% | 153% | 3.7% | 44.9%
Applications | 39.6% | 28.0% | 21.6% | 3.3% | 7.5%

Table 1. Distribution of Operation-Level Parallelism

11-438

3.2. Functional Unit Utilization

Table 2 summarizes the average run-time utilization of func-
tional units by the benchmarks, which also describes their
dynamic functional behavior.

For the kemels, the utilization of functional units is almost
evenly distributed between the memory units, the address units,
and the floating-point unit that executes the multiply-accumulate
operation (FPU1). This distribution shows that DSP kernels spend
most of their execution time in loops performing operand fetch,
address update, and multiply-accumulate-type operations. The
even distribution also shows that the compiler is successful in
finding, exposing and exploiting the high levels of parallelism
available in these loops.

For the applications, the utilization of the memory and address
units is also dominant. However, there is also significant utiliza-
tion of the integer arithmetic units and the program control unit.
This shows that in addition to kernel-like loops, applications per-
form a significant amount of integer arithmetic and logic opera-
tions, as well as control-type operations. The less even
distribution in the utilization of the memory and address units
shows that the compiler is generally less successful in exposing
and exploiting parallelism in memory access and address arith-
metic operations.

Functional Unit Kernels Applications
MUO 21.2% 25.1%
MU1 15.4% 5.4%
AUO 22.9% 24.3%
AUl 14.2% 8.2%
DUO N/A 8.1%
DU1 N/A 2.5%
FPUO 3.9% 4.2%
FPU1 19.2% 9.8%
PCU 3.2% 12.4%

Table 2. Functional Unit Utilization

3.3. Overall Impact of Optimizing Passes

Table 3 summarizes the individual and overall impact of the
different compiler optimizing passes on the execution perfor-
mance of the benchmarks. Performance is measured by the aver-
age speedup in execution time. The speedup attained by the
application of an optimizing pass P is the ratio of the number of
cycles needed to execute a benchmark with all optimizing passes
except P activated, to the number of cycles needed to execute the
benchmark with all optimizations active.

Optimizing Passes
LOL MP OC |Overall
Kernels 1.78 149 | 348 | 4.86
Applications | 1.23 1.07 | 211 2.83

Table 3. Impact of Optimizing Passes on Benchmark Performance

The overall impact of the optimizations on performance is an
average speedup of 4.86 for the kernels and 2.83 for the applica-
tions. This shows that the compiler is generally successful in
exposing and exploiting parallelism, and in enhancing the run-
time performance of the benchmarks. The difference in average
speedup between the kernels and the applications is mainly due to
the higher levels of parallelism available in the kemel bench-
marks.

3.4. Impact of Low-Overhead Looping

Table 3 also shows that the average speedup attained by the use
of the LOL pass is 1.78 for the kernels, and 1.23 for the applica-
tions.

The higher speedup attained for the kernels is mainly due to a
significant reduction in loop overhead. When the LOL pass is not
applied, only a few instructions inside the kernel loops can be
used by the OC pass to pack loop test operations. In most cases,
these operations require separate, dedicated instructions. The
overhead of executing these additional instructions is significant,
especially since kemels are usually short programs.

In the application benchmarks, there are generally more
instructions inside the loops, and this provides a better opportu-
nity for the OC pass to pack loop test operations within other loop
instructions. The overhead of executing additional loop test opera-
tions is therefore less pronounced, and the speedup from the LOL
pass is relatively low.

3.5. Impact of Memory Partitioning

Table 4 summarizes the distribution of data memory accesses
made to the X and Y memory banks. The kemels show a more
even distribution of data memory accesses, and Table 3 shows a
speedup of 1.49 attained from the application of the MP pass.
These are mainly due to the memory access patterns of the ker-
nels, which easily lend themselves to parallelization.

The applications exhibit a less even distribution of data mem-
ory accesses, and a speedup of only 1.07 is attained from the
application of the MP pass. This shows that the compiler is gener-
ally less successful in exploiting the parallelism in memory access
operations.

X Y
Kermnels 579% | 42.1%
Applications | 82.3% | 17.7%

Table 4. Data Memory Access Distribution

3.6. Impact of Operation Compaction

Table 5 summarizes the impact of the LOL and MP passes on
average operation-level parallelism. The parallelism available in a
program is the ratio of the total number of operations executed, to
the total number of instructions executed. Recall that instructions
consist of operations that are packed together to execute in one
clock cycle. Thus, the impact of an optimizing pass P on parallel-
ism is the parallelism measured when all optimizing passes other
than P are activated.

11-439

For the kernels, the LOL pass increases parallelism from 2.95
to 3.48 operations per instruction. This increase is due to the elim-
ination of the additional instructions needed to execute the loop
set-up and test operations, which often exhibit very low parallel-
ism. Similarly, the MP pass increases parallelism by exposing the
parallelism in memory access operations to the OC pass.

For the applications, the LOL pass decreases parallelism from
2.24 to 2.11 operations per instruction. When LOL is not applied,
the compaction pass generally succeeds in packing the loop set-up
and test operations within the instructions of a loop. Since the
LOL pass eliminates these operations, the parallelism in the
instructions of the loop is reduced. This reduction in parallelism,
however, does not result in reduced performance. Table 3 shows
that the use of the LOL pass increases performance by 23%. The
use of the MP pass slightly increases parallelism by exposing the
parallelism in memory access operations.

The high levels of speedup attained by the use of the OC pass,
for both the kernels and the applications, shows its importance in
exploiting operation parallelism. The higher average speedup
attained by the kemels again shows that they have more parallel-
ism.

Average Parallelism
wfo LOL w/fo MP Fully Opt.
Kernels 295 2.38 348
Applications 2.24 1.96 2.1
Table 5. Impact of Optimizing Passes on Parallelism
4. CONCLUSIONS

In this study, we have shown that the dynamic behavior of DSP
kernels differs from that of DSP application programs. Kernels
are typically short loops that repetitively perform computation-
ally-intensive arithmetic operations, address calculations and
operand fetches. Application programs, on the other hand, contain
larger loops and perform more integer and control-type opera-
tions. Furthermore, kernels exhibit almost 1.6 times more parallel-
ism than applications. Thus, kernels can achieve almost twice the
speedup achieved by typical applications, due to their smaller
loop sizes and their higher levels of parallelism.

Using DSP kernels as benchmarks can therefore be misleading,
especially when evaluating the performance of DSP architectures.
DSP applications are better suited for assessing the true perfor-
mance of DSP architectures, while kernels are better suited for
assessing peak performance. Thus, when performing architectural
and compiler trade-offs, it is necessary to rely on data gathered
from DSP application programs. This shows the need for a stan-
dardized set of public domain applications that can be used as
benchmarks for comparing various DSP architectures. However,
until a standard programming language is available, and the reli-
ance on assembly language programming decreases significantly,
distributing and evaluating such benchmarks will be difficult.

Our study has also shown that a HLL compiler can generate
efficient code for DSP applications when given a flexible target
architecture. This was demonstrated by the compiler’s ability to
exploit an average operation parallelism of 3.48 operations per

instruction in kernel-like loops, and 2.11 operations per instruc-
tion outside inner loops. It was also demonstrated by the compil-
er’s ability to effectively exploit such DSP architectural features
as low-overhead looping, multiple memory banks, and multiple
functional units. The application of the LOL pass resulted in a
speedup of 1.78 for the kernels, and 1.23 for the applications. The
MP pass resulted in a speedup of 1.49 for the kernels, and 1.07 for
the applications. This shows the compiler’s difficulty in exposing
memory access parallelism outside kernel-like loops. Finally, the
OC pass resulted in a speedup of 3.48 for the kernels, and 2.11 for
the applications. The overall impact of these optimizing passes
was a speedup of 4.86 for the kernels, and 2.83 for the applica-
tions. It is therefore possible to program DSPs efficiently using a
high-level language. However, to achieve the maximum benefit,
DSP architectures that are more fiexible than what are currently
offered are required.

Finally, our study has shown that a VLIW-based architecture is
suitable for DSP applications. This is due to its ability to provide
the functionality that is necessary for supporting DSP require-
ments, and the flexibility that enables the exploitation of available
instruction-level parallelism. One drawback of a VLIW architec-
ture is its high instruction bandwidth requirements, which place a
heavy demand on the memory system. Implementing the model
architecture used in this study is therefore not presently feasible.
We are currently exploring solutions to the instruction bandwidth
problem.

5. REFERENCES

[1] Edward A. Lee, “Programmable DSP Architectures: Part 1,”
IEEE ASSP Magazine, pages 4-19, October, 1988.

[2] Edward A. Lee, “Programmable DSP Architectures: Part II,”
IEEE ASSP Magazine, pages 4-14, January, 1989.

[3] Nelson R. Manohar Alers, “The Architecture of VLSI Signal
Processors,” Proceedings of the 22nd Asilomar Conference
on Signals, Systems and Computers, pages 626-630, 1988.

[4] John Hennessy and David Patterson, Computer Architecture:
A Quantitative Approach, Morgan Kaufmann Publishers,
Inc., 1990.

[5]1 Mazen A. R. Saghir, Architectural and Compiler Support for
DSP Applications, M.A.Sc. Thesis, Dept. of Electrical and
Computer Engineering, University of Toronto, 1993.

[6] Joseph A. Fisher, “Very Long Instruction Word Architectures
and the ELI-512,” Proceedings of the 10th Symposium on
Computer Architecture, pages 140-150, IEEE, June, 1983.

[7] Vijaya K. Singh, An Optimizing C Compiler for a General
Purpose DSP Architecture, M.A.Sc. Thesis, Dept. of Electri-
cal and Computer Engineering, University of Toronto, 1992.

[8] Richard M. Stallman, Using and Porting GNU CC, Free
Software Foundation, Inc., 1990.

[9] David W, Wall, “Limits of Instruction-Level Parallelism,”
Proceedings of the Fourth International Conference on

Architectural Support for Programming Languages and
Operating Systems, pages 176-188, ACM, April, 1991.

T1-440

