How Useful Are Non-blocking Loads, Stream Buffers and Speculative Execution
in Multiple Issue Processors?

Keith I. Farkas’

farkas@eecg.toronto.edu
416-978-1653

JrDept. of Electrical and Computer
Engineering
University of Toronto
10 Kings College Road
Toronto, Ontario, Canada
MS5S 1A4

Abstract

We investigate the relative performance impact of non-
blocking loads, stream buffers, and speculative execution
both used individually and in conjunction with each other.
We have simulated the SPEC92 benchmarks on a statically
scheduled quad-issue processor model, running code from
the Multiflow compiler. Non-blocking loads and stream
buffers both provide a significant performance advantage,
and their combination performs significantly better than
either alone. For example, with a 64-byte, 2-way set as-
soctative cache with 32 cycle fetch latency, non-blocking
loads reduce the run-time by 21% while stream-buffers re-
duce it by 26%, and the combined use of the two yields a
47% reduction. The addition of speculative execution fur-
ther improves the performance of the systems that we have
simulated, with or without non-blocking loads and stream
buffers, by an additional 20% to 40%. We expect that the
use of all three of these techniques will be important in
future generations of microprocessors.

1 Introduction

A continuing trend in the design of computer systems
is the widening gap between microprocessor and memory
speeds. This speed discrepancy can have a significant im-
pact on the performance of a system since it increases the
time cost of servicing data cache misses. The performance
impact can be lessened through the use of techniques that
reduce the amount of time the processor is stalled for cache
misses. In this paper, we consider non-blocking loads,

0-8186-6445-2/95 $04.00 © 1995 IEEE

Norman P. Jouppi;t

jouppi@pa.dec.com
415-617-3305

78

Paul Chowt

pc@eecg.toronto.edu
416-978-2402

jr'Digital Equipment Corporation
Western Research Lab
250 University Avenue
Palo Alto, California 94301

stream buffers, and speculative loads. We investigate the
relative merits of these three techniques when used individ-
ually and in conjunction with each other, in the context of an
advanced quad-issue statically scheduled microprocessor.

Non-blocking loads reduce the time stalled due to cache
misses by allowing the processor to overlap the servicing
of a miss with the execution of other instructions. The
amount of overlap depends on the number of instructions
that are available for execution that do not use the register
being targeted by the load instruction. When an instruction
is encountered that depends on the value being loaded and
the load is still in-progress, the processor must stall until
the load completes; a true-data dependency is said to exist
between these two instructions. With a lockup cache, a stall
will also occur if during the processing of a cache miss,
other load or store instructions are executed. Such stalls
can be avoided by using a lockup-free cache. A lockup-
free cache allows multiple concurrent cache hits, misses,
or both. By overlapping the processing of cache misses,
the average time to service a miss decreases because the
processor will be stalled for less time and more loads will
complete in this time.

Prefetching also can reduce the time stalled due to cache
misses. The goal of prefetching is to bring data closer to
the processor before the processor requires it, rather than,
as is the case with non-blocking loads, waiting for a cache
miss to occur before initiating a fetch for missing data.
The prefetch is initiated by some triggering event. With
software prefetching, the trigger is prefetch instructions
that are inserted into the code by a sophisticated compiler or
user [3, 11]. With hardware prefetching, hardware is used
to determine when a prefetch might be useful. Software

prefetching has been most successful on numeric codes,
while hardware prefetching can be used with all types of
applications (including the operating system).

Examples of hardware prefetch techniques include Chen
and Baer’s lookahead PC reference prediction method [4]
and stream buffers [8, 12]. We study stream buffers as we
believe them to be simpler and less-invasive than the looka-
head scheme. The lookahead scheme is complicated by the
need for additional ports into the data-cache tags when
used in a superscalar processor. In such a processor, the
cache-tag ports are one of the most critical resources, and
increasing their number may result in a physically larger
cache andjor a slower cache, or may be infeasible. Stream
buffers, on the other hand, sit on the memory side of the
data cache and while they must be probed on every data
reference, they do not need access to the cache tags. Stream
buffers trigger a prefetch based on previous cache misses.
Also, they avoid polluting the cache by placing prefetched
data in special buffers.

Unlike non-blocking loads and stream buffers, specula-
tive execution is a software-based technique. It involves
moving code beyond branches (see [16] for more details).
Speculative execution of load instructionsis not the same as
software prefetching using non-blocking loads; the former
involves the movement of existing load instructions while
the latter involves the insertion of additional load instruc-
tions. Speculative execution can increase the performance
of a program in a number of ways. In superscalar designs,
the instruction-level parallelism can be increased if there is
a sufficient amount of hardware parallelism available. This
increase can also provide more flexibility when scheduling
load instructions for a machine with extensive support for
non-blocking loads. The result of this flexibility is a better
tolerance of the cache-miss latency and a reduction in the
average per-miss penalty due to allowing more misses to
be simultaneously outstanding.

The three techniques we consider can be used alone or
together. To illustrate their use, consider the code segment
in Figure 1 which, for simplicity, corresponds to a single-
issue machine. Assume that both loads miss in the cache
and that the miss penalty is 10 cycles. With none of the three
techniques in use, the processor has to stall twice and each
time for the full length of the miss penalty. If, however,
non-blocking loads are used with a lockup-free cache, the
processor will have to stall only once, that is, when it tries
to execute instruction 5 (due to a true-data dependency
between instructions 5 and 3). If instead stream buffers
are used, there will still be two stalls but the cache miss
caused by the first load will initiate the prefetch for the data
required by the next load (see Section 2.2 for details on
how a stream buffer works). Hence, the time to service
the second load is reduced. Finally, if both non-blocking

79

L2 subi rl,1,rl sl rl-1
bnz rl, L1 ;branchif rl isnonzero (1)
1d 16, 700(sp) ;16 + [sp+700] (2)
1d 18,732(sp) ;18 + [sp+732] 3)
addi sp,8,sp ;sp « sp+8 4
mult 18,18, 14 ;18 18 x4)
br L2 ; branch always

Figure 1: Code segment for a RISC single-issue processor.

loads and stream buffers are used together, there will be
only one stall and the stall time will be smaller than it was
with only non-blocking loads. Stream buffers used alone or
together with non-blocking loads also reduce the stall time
for subsequent iterations of the loop because the prefetch
for the required data will have been initiated in a previous
iteration.

Speculative execution is useful for increasing the
instruction-level parallelism and for improving the effec-
tiveness of non-blocking loads. The first of these effects
cannot be applied to this example because we are assuming
a single-issue machine. To show the second one, assume
we are using non-blocking loads. With speculative execu-
tion, the compiler can move the two load instructions above
the branch and thus execute them earlier. The end result is
that the processor will stall for less time when it executes
instruction 5. The use of stream buffers reduces the stall
time further because a prefetch of the data for instruction 3
will be issued before this load is executed.

Previous Work

Other researchers have investigated non-blocking loads,
prefetching, or speculative loads, but not their combination.
Rogers and Li [13] investigated software support for spec-
ulative loads with non-blocking caches using many of the
Livermore loop kernels; they compared the results to block-
ing caches. Sohi and Franklin, on the other hand, studied
non-blocking loads [14], while Callahan and Mowry have
studied software prefetching for scientific codes [3, 11].
Chen and Baer [4] investigated a combination of non-
blocking loads and prefetching, but used a lookahead-PC
reference prediction method with a production compiler,
instrumented with Pixie, and rescheduled only at a basic
block level. Comparing the effectiveness of the different
techniques used in these studies is difficult because of dif-
ferent assumptions used by each group of researchers, and
the fact that no group looked at all three techniques.

In this paper we look at the relative memory-system per-
formance improvement available from non-blocking loads,
hardware prefetching, and speculative execution used indi-
vidually and in combination. We do this investigation in
the context of an advanced quad-issue superscalar machine,

and a pipelined memory system made with recent RAM
techniques such as synchronous DRAMs. An important
part of this study was the advanced Multifiow Compiler
technology [9], which provided trace scheduling and sup-
port for speculative loads.

2 Simulation Methodology

We investigated the relative performance of non-
blocking loads and stream buffers by examining how their
use would affect the performance of current state-of-the art
microprocessor systems. This investigation was carried out
by simulating a number of machine configurations using a
processor model that resembles a number of commercial
processors including the PowerPC 604 {15], the DEC EV5
[5], the MIPS TS [2] and the SUN Ultrasparc [1]. All
configurations used the same hardware for servicing in-
struction requests and executing instructions. As a result,
the contributionto the execution time of a benchmark from
instructions was constant for all configurations. The ma-
chine configurations differ in the hardware that is available
for servicing the processor’s requests for data. This fact
allows us to better estimatc the impact of stream buffers
and non-blocking loads.

The processor model implements a RISC processor that
can issue four instructions per cycle and uses a conven-
tional, statically scheduled, pipeline. Static scheduling
is assumed since the performance benefits of dynamic
scheduling are not sufficiently clear in view of the impact
the more complex pipeline will have on the cycle time of
the processor. For example, the statically scheduled DEC
Alpha 21064 A achieves a clock frequency of 275MHz in a
0.5um technology, while the dynamically scheduled Pow-
erPC 604 achieves a clock frequency of 100MHzina0.5um
technology. (There are many other differences between
these machines, but in general dynamically scheduled ma-
chines announced to date have had significantly slower
cycle times than statically scheduled machines in the same
technology generation.)

The processor we model supports non-blocking stores
and can be configured to support non-blocking loads. There
are separate instruction and data caches with the instruc-
tion cache having a fixed miss penalty. The data cache is
always lockup-free irrespective of whether the processor
uses blocking or non-blocking loads!.

The model also can include one or more stream buffers
and these are used to prefetch data. The stream buffers may
use either unit strides or dynamically calculated strides.

'The only difference between these two modes of operation is that
with blocking loads, no subsequent instruction can execute until the load
is resolved. This restriction allows us to use the same cache model for
both modes.

80

processor core

« quad issue

* blocking/non-blocking loads
* non-blocking stores

* multi~ported register file

instruction cache data cache
* 32 Kbyte 2-way * lockup-free
set associative » 32 byte lines

* 1 cycle hit latency
« configurable size & associativity

NV
write buffer

* assume no memory
bandwidth consumed

« 32 byte lines
« 1 cycle hit latency
+ 16 cycle miss penalty

| stream buffers (optional) |
| » unit/non-unit strides {
| = allocation filters (optional) ‘
L non-overlapping prefetch paths

P eSS

interface to rest of memory system

« configurable bandwidth and
latency

Figure 2: Overview of machine model.

Finally, data is fetched from the next lower level in the
memory hierarchy through a bandwidth limited interface.
Figure 2 presents an overview of the above machine model.
Some of the model details are described further below.

2.1 Processor and Memory Models

Of the four instructions issued per cycle by the proces-
sor, each instruction word can contain at most: four inte-
ger operations, one floating-point division operation, two
floating-point operations, two memory operations (i.¢., two
loads, two stores, or one of each), and one control flow op-
eration (i.e., branch, subroutine call or return). All integer
functional units have single-cycle latencies except for the
multiply unit, which is fully pipelined and has a six-cycle
latency. All floating point units have threc-cycle laten-
cies and are also fully pipelined, with the exception of
the floating-point divider. The floating-point divider is not
pipelined and has an eight-cycle latency for 32-bit divides,
and a 16-cycle latency for 64-bit divides. Finally, stores
take one cycle to be resolved and there is a single load-delay
slot.

The instruction cache is 32K-byte, 2-way set associative
with a 1-cycle cache-hit latency and a 16-cycle cache-miss
latency. In addition to cache-miss induced stalls, branch
instructions may also introduce stalls if the branch-delay
slot(s) cannot be filled by the compiler or if the branch di-
rection is mispredicted. In view of the high correct predic-
tion rates reported by McFarling [10) and Yeh and Patt [17],
we assume that all branches are correctly predicted dynam-
ically with the exception of 5% of conditional branches.
For conditional branches, the model associates a two cycle

stall with each mispredict. We implement this penalty dur-
ing the simulation of a benchmark by adding a single-cycle
stall for every 10** conditional branch that is executed.

Stores are assumed to be implemented using write-
around (i.e., no-write-allocate) and write-through policies
with a write buffer situated between the data cache and
lower levels in the memory hierarchy. Since our goal is
to compare the effectiveness of .stream buffers and non-
blocking loads while keeping constant other contributions
to the execution time, we assume that no memory band-
width is required to retire stores in the write buffer. This
assumption prevents any stalls due to a full write buffer
and prevents stores from delaying the servicing of stream
buffer or cache fetches.

The lockup-free data cache can resolve cache hits in a
single cycle and employs an inverted MSHR (Miss Sta-
tus Holding Register) organization [6] to process cache
misses. An inverted MSHR organization can support as
many in-flight cache misses as there are registers and other
destinations for data in the processor. Hence, there can
be a cache miss outstanding to each of the processor’s 32
integer and 32 floating-point registers. The register file has
eight read ports and sufficient write ports to prevent any
write-port conflicts arising when registers are filled on the
resolution of a cache miss.

Requests for blocks of data are sent via the memory
interface to the next level in the memory hierarchy. The
memory interface returns the requested block in a constant
number of cycles, called the fetch latency. The bandwidth
of the interface is constrained by controlling the number
of cycles between the launching of fetch requests. A fetch
spacing of one allows the memory interface pipeline to be
full whereas a spacing equal to the fetch latency allows at
most one in-flight fetch. Thus, the time required to resolve a
cache miss is not deterministic but has a lower bound equal
to the fetch latency. When a block is returned to the cache,
the cache line is written simultaneous with the writing of the
appropriate words into all registers with loads outstanding
to this block (updating all pending registers requires the
multiple write ports mentioned above). This simultaneous
writing is represented in Figure 2 by the arrows that bypass
the data cache. Writing aregister or a cache line is assumed
to take one cycle.

2.2 Stream Buffers

Our stream buffer model is based on the model origi-
nally proposed by Jouppi 8] with the four enhancements
described below. In the original model, stream buffers
consist of a number of entries that are managed as a FIFO
queue. Each entry in the queue can store a block of data
and the corresponding address. All entries at the head of
the stream-buffer queues are probed at the same time as the

81

data cache probe is done. If the data cache probe results in
a hit, the stream buffers are not touched. However, if a data
cache miss occurs, and the desired block is in a head entry,
the cache block is read out and it is written into the cache.
The stream buffer then issues a prefetch request to the next
lower level in the memory hierarchy to fill the empty entry
with subsequent blocks.

‘When a miss occurs to both the cache and the stream
buffers, a request for the block containing the miss ad-
dress is issued. Then, a stream buffer is allocated and told
to begin fetching blocks subsequent to the missing block.
Because each block that is fetched has a block-address one
greater than the last, the stream buffers are said to use a unit
stride. Once the request for the first block to be prefetched
is launched into the memory subsystem, the stream buffer
can issue another prefetch request if there remain empty
entries in the quene.

Enhancements to the Original Model

In this study we have made four enhancements to the orig-
inal stream buffer model:

1. allocation filters

2. hardware support for dynamic strides

3. the enforcement of non-overlapping prefetch paths
4. direct access to the stream buffer entries.

These enhancements are described below.

First, in the original stream buffer proposal, a stream
buffer is allocated whenever a data reference misses in the
cache and in the entries at the head of the stream buffer
queues. This allocation policy can result in prefetching
down a subsequently unused stream should the data ref-
erence be isolated. Prefetching down such a stream will
generate excess traffic to the memory system as well as po-
tentially discarding useful data from a previously allocated
stream buffer. To prevent this situation from occurring, an
allocation filter can be used. We implement the filter pro-
posed by Palacharla and Kessler {12]. This filter prevents a
stream buffer from being allocated until two misses occur
for the same stream. On the second miss, a stream buffer
is allocated and it begins prefetching the block subsequent
to the one corresponding to the second miss.

Second, instead of limiting prefetch strides to the unit
stride of the original proposal, the stride can be determined
dynamically based on previous miss addresses. We im-
plemented a scheme based based on the minimum delia
scheme proposed by Palacharla and Kessler [12]. With this
scheme, on a stream buffer miss, the allocation filter is ap-
plied to determine whether a unit-stride should be used. If
there is a filter miss, then the minimum signed difference
between the miss address and the last N miss addresses

to register file

-
data
cache
tags data
.
I e
lallocation’! ta £
| filter | # cache block F
| {optional) | | comparator 3
tag 3
stride |— cache block s
calculator | | comparator S
™
tag
cache block
comparator _ o
T s

from next lower
level memary

Figure 3: The stream buffer model. In this example, there
are four stream buffers with 3 entries each.

is determined; this minimum delta, which may be positive
or negative, is the stride. In our model, a stream buffer is
allocated if the miss is the third miss in a series to blocks
that are separated by this stride. Our stream buffer model
with the filter and stride predictor is shown in Figure 3.

Third, when there are multiple stream buffers, we en-
sure that a given block of data resides in at most one stream
buffer. In other words, the stream buffers always prefetch
down non-overlapping paths. Non-overlapping paths pre-
vent duplication and thus ensure that the maximum benefit
is obtained from the available stream buffers. To achieve
non-overlapping paths, a comparator must be associated
with each stream buffer entry. While these comparators in-
crease the design complexity, in practical systems, they
need to be included for enforcement of multiprocessor
cache consistency anyway.

Fourth, we have extended the original stream buffer
proposal to include direct access to non-head entries in the
queues (this extension is not shown in the figure). This
extension reduces the time required to load the cache with
data not in the entry at the head of the queue since there
is no need to first shift out the blocks closer to the head.
‘We assume that it takes one cycle to extract a block of data
from a stream buffer.

2.3 Simulation Framework

To perform the simulations for this study, we used an
object-code translation and instrumentation system. This
system emuiates the execution of a benchmark as it would
run on a target machine by running the benchmark on an
existing machine. As a result both the functional behavior
and the memory behavior of the application are simulated.

82

The first step in performing a simulation is to compile the
benchmark using instruction scheduling rules pertaining to
the architecture of the processor to be modeled. We use
a modified version of the Multiflow VLIW Compiler [9]
for this purpose?. Next, the resulting assembly language
(i.e., object code) is translated into the assembly language
of the machine on which the simulations are run, namely,
Alpha AXP workstations. Instrumentation and modeling
code is then inserted into the translated code. Finally,
the augmented, translated binary is linked with similarly
compiled and instrumented run-time libraries and support
routines.

The instrumentation code is inserted to record the em-
ulated run-time behavior of the benchmark. This code
records various statistics including cache miss rates, the
number of (simulated) instructions executed, and the num-
ber of (simulated) clock cycles. The modeling code is
inserted to allow the factoring in of the time required to
resolve memory and register accesses. This modeling is
accomplished by inserting before every emulated load and
store instruction a call to a procedure that models the mem-
ory. These calls pass to the procedure the address of the
item being loaded or stored and the procedure returns the
amount of time required to process the access. For ex-
ample, for non-blocking loads, this time will be the time
required to launch the load whereas for a blocking-load it
will be the time required to load the data into the cache if
it is missing. A mechanism in the simulator adjusts these
addresses so that they do not reflect the presence of the sim-
ulation infrastructure. Calls to a scoreboard procedure are
also inserted before every emulated instruction that uses the
result of a load. This procedure factors in the time required
to validate the source registers of the instruction.

3 Performance Trends

We investigated four processor designs: one with block-
ing loads and no stream buffers, known as the unenhanced
design (“un”), one with non-blocking loads (“nbl”), one
with stream buffers (“sb”), and one with both stream buffers
and non-blocking loads (“nbl+sb”). For the designs in-
cluding stream buffers, we considered two types of stream
buffers: those that used a unit stride and those that also
included an allocation filter and dynamic stride calculator
(“+fds”). These six processor design cases are listed in
Table 1(a). For those designs including a stream buffer, we
assume eight stream buffers each with four entries. The
allocation filters and dynamic stride calculators use a table

2The compiler was modified to produce RISC-like object code for a
processor with 32-bit addresses, 32-bit integers and 64-bit floating -point
numbers. The compiler uses a common backend for both C and Fortran
code.

Processor Details
Abbrev. blocking stream
loads buffers
un none
sb yes unit stride
sb+fds filter & dynamic stride
nbl none
nbl+sb no unit stride
nbl+sb+fds filter & dynamic stride
(a) Processor Designs
Memory System Details
Abbrev. cache fetch
spacing | latency
ideal assume 100% data cache hit rate
8DM 8 KB direct 1 8
mapped 8 32
64SA 64 KB 2-way 1 8
associative 8 32
(b) Memory Configurations

Table 1: System details with associated abbreviations.

that stores the 16 last addresses that were found neither in
the cache nor in the stream buffers. Since we used 32B
cache lines throughout our study, the total data storage of
the stream buffers was 1KB.

We studied the relative performance of each of the six
processor designs under five memory systems configura-
tions. A memory system configuration comprises a cache
and an interface to the next lower level in the memory
hierarchy. The organizations we considered are given in
Table 1(b). The fetch spacing and latency numbers chosen
correspond to a pipelined memory system. These systems
are becoming more common with the use of new DRAM
technologies such as synchronous DRAMs and pipelined
SRAMs. The fetch latency of 8 and spacing of 1 is meant
to be representative of microprocessors with two-level on
chip caches. Having the backing store for the primary
cache on-chip allows a relatively low latency and a very
high bandwidth. The fetch latency of 32 and spacing of
8 is intended to be more representative of a system with a
single-level of on-chip caching and an optional cache off-
chip. For processors with clock frequencies of 200MHz,
these latencies and spacings correspond to latencies of 40ns
and 160ns and bandwidths of 6.4GB/sec and 800MB/sec.
6.4GB/sec should be achievable on-chip, while 800MB/sec
could be easily obtained to an off-chip interface using syn-
chronous DRAMs.

The ideal configuration assumes all data cache refer-
ences hit in the cache and hence the six processor designs
will all achieve the same performance. The other configu-

83

rations are non-ideal and thus cache misses occur. It is the
number of such misses and the time that the processor is
stalled that differentiates the six processor designs.

We have simulated the eighteen SPEC92 benchmarks
which are listed in Table 2 along with some run-time char-
acteristics. In the table, the columns under the heading “In-
structions (millions)” give the dynamic instruction, load
and conditional branch counts. Because the same object
code and the same input-data sets were used for all simula-
tions of a given benchmark, these numbers remain constant.
Thus, we use the average number of cycles per instruction
(CP1) as our primary performance measure.

While the numbers of instructions executed are signifi-
cant, the instruction-word miss rate for each benchmark is
usually less than 1%; the exceptions are doduc and xlisp
with a 3% miss rate, and fpppp with a 19% miss rate. The
next column in the table gives the ideal instructions per
cycle, that is, the number of instructions issued per cycle
when all stalls are ignored. Observe that the averages are
significantly smaller than the maximum of four, a reflection
of the scheduling rules and functional unit latencies.

The rest of the columns in the table give statistics for
three different memory systems. The first system corre-
sponds to the ideal system and the CPI values for this sys-
tem are given in the column marked “ideal CPI”. In the ideal
system, the number of cycles executed for a benchmark is a
function of the number of: (1) instruction words executed,
(2) stalls caused by functional-unit conflicts, (3) instruc-
tion cache misses, and (4) conditional branches. These
factors remain constant for all memory configurations and
processor designs.

The remaining columns in the figure give statistics for
an unenhanced processor using the two memory configu-
rations noted in the caption. For a given benchmark, the
portion of the CPI value due to accessing data, the memory
CPI, can be found by taking the difference between its ideal
CPI1 and the CPI values measured with a non-ideal memory
system. This difference is given in the column with heading
“MCPI%” as a percent of the ideal CPI. Observe that for
many of the benchmarks the MCPI% value is greater than
20%. Hence, the performance of these application is sig-
nificantly affected by having to access data, and therefore,
it is desirable to reduce the data-access cost.

Note that this way of calculating the MCPl is valid only
if the processor uses blocking loads. If non-blocking loads
are used, a true-data dependency induced stall might be
avoided because an instruction cache miss will delay the is-
suing of the first instruction to use the data. In other words,
an instruction cache stall may atlow any of the outstanding
data cache misses to be resolved, resulting in fewer stall
cycles being directly attributable to data references. Thus,
for systems with non-blocking loads, it is not possible to

Bench- Instructions Ideal | Ideal Non-ideal data memory system
mark (in millions) IPC | CPI 8K DM 64K 2-way
total loads cbranch CPI MCPI% 1d miss% | CPI MCPI% 1d miss%

alvinn 3208 942 460(1.85 |1.12 |1.37 22 105 1.72 53 64
compress| 173 29 16]1.76 |0.66 |0.96 45 223 1.15 74 90
dnasa 6858 1644 42212.16 |0.76 | 1.70 124 49.1 221 190 189
doduc 1042 238 741190 |1.17 | 135 15 103 1.20 305
ear 9506 2035 890|1.76 (1.03 [1.08 5 28 1.03 0 <«
eqntott 1774 220 189[1.92 |0.59 {0.64 5 55 0.67 14 35
espresso | 2707 550 402(1.54 [0.74 |091 23 65 083 12 04
foppp 4294 1131 83(245 (054 |1.98 267 119 1.74 222 01
hydro 5834 1355 32811.84 1092 [1.28 36 19.1 190 107 131
mdljdp2 | 3228 381 313|161 [1.18 [1.34 14 167 127 8 26
mdljsp2 | 4953 656 8812.23 10.69 |0.76 10 72 (073 5 09
ora 4551 90 33]1.68 |1.08 |1.10 2 18 1.08 0 ~0
spice 23504 5297 1909(133 [1.01 {154 53 296 1.65 63 9.0
su2cor 5144 1100 1471248 |0.50 {1.13 56 363 1.19 138 100
swm 11172 2144 240)2.59 | 047 [0.62 32 97 1.04 121 9.2
tomcaty | 1084 307 141250 (054 (1.10 56 249 1.36 152 9.0
wave 3673 694 221(2.14 |0.67 |0.82 15 89 0.77 15 14
xlisp 5869 1444 745(1.47 {0.83 |1.27 53 40 1.12 35 01

Table 2: Dynamic statistics for each benchmark simulated using an unenhanced processor and three memory system
configurations: (1) ideal, all data references hit in the cache, (2) an 8K direct mapped cache with a fetch spacing of 1 cycle
and a latency of 8, and (3) a 64 KB 2-way set associative cache with a fetch spacing of 8 cycles and a latency of 32. MCPI%,
the memory CPI, is the difference between the ideal and non-ideal CPI values as a percent of the ideal CPI.

determine exactly what portion of the CPI is due to access-
ing data. It is always true, however, that it is better to have
a smaller ratio of the non-ideal to ideat CPI values.

We begin by presenting the performance data for wave
to introduce the our methodology and to point out key
characteristics. We then present the data for all benchmarks
and discuss the common trends.

3.1 Common Trends
Figure 4(a) presents the CPI for wave measured using

a memory system with an 8-Kbyte direct-mapped cache,
a fetch spacing of 8 and a fetch latency of 32. In this

cpl ‘3 design | times better
> un 1.00
! 2 3 sh 1.18
S |3 | sb+fds 131
Q W
8 3 nbl 1.17
EHE = b ‘ 35
Siig = nbl+sb i 1.
o nbl+sb+fds | 1.43

(a) CPI values (b) CPI improvement factors
Figure 4: CPI values and ratios for wave using an 8 Kbyte
direct mapped cache, a fetch spacing of 8 and latency of
32.

84

figure, each bar corresponds to one of the six processor de-
signs and its height reflects the measured CPI; the numbers
above each bar give the actual CPI value. The figure also
includes a bar representing the CPI obtained using the ideal
memory system. The table in the figure gives the improve-
ment factor for each design in relation to the unenhanced
design. These factors are calculated by dividing the unen-
hanced CPI value by the enhanced CPI value. Note that
the CPI factors for the non-blocking load and stream buffer
designs cannot be obtained by multiplying together the CPI
factor for non-blocking loads and for stream buffers; the
combined use of these techniques changes the run-time dy-
namics of a program.

From the table, we see that the use of unit-stride stream
buffers (the “sb” design} results in a CPI improvement of
18%. When allocation filters and dynamic strides are used,
this improvement increases to 31%. Non-blocking loads,
on the other hand, improve the CPI by 17%, but when used
with dynamic strides and allocation filters, the CPI is re-
duced by 43%. From these percentages, we observe that (1)
both non-blocking loads and stream buffers reduce the CPl
by a minimum of 17%, (2) non-unit-stride stream buffers
give better performance than éither non-blocking loads or
unit-stride stream buffers, and (3) non-blocking loads and
non-unit-stride stream buffers together yield significantly
better performance than either technique used alone.

When the miss penalty is reduced, the performance of

design miss penalty
large | small

[CPI [un [1.233703819 |
sb 1.18 | 1.06
times | sb+fds 131 | 1.09
better | nbl 1.17 | 1.09
nbl+sb 135 | 1.14
nbl+sb+fds | 143 | 1.15

(a) 8K DM cache CPI improvement factors

design miss penalty
large | small

[CPT Jun [0.767] 0.705 |
sb 1.06 [1.01
times | sb+fds 1.08 | 1.02
better | nbl 101 | 1.01
nbl+sb 107 | 1.02
nbl+sb+fds | 1.09 | 1.02

(b) 64K 2-way SA cache CPI improvement

factors
Table 3: CPI values and ratios for wave for the large miss
penalty (fetch spacing 8 cycles, latency 32 cycles) and the
small miss penalty (fetch spacing 1 cycle, latency 8 cycles)
memory configurations.

non-blocking loads gets better with respect to the stream-
buffer-only designs. This improvement is illustrated by the
data presented in Table 3(a). This table gives the unen-
hanced CPI and the improvement factors for the memory
configuration used in Figure 4 and for a memory configura-
tion with a smaller miss penalty. The smaller miss penalty
is achieved by decreasing the fetch latency to 8 cycles
and increasing the memory bandwidth (by decreasing the
fetch spacing to 1 cycle). Observe that the improvement
factor for non-blocking loads (“nbl” design) is equal to
that for the non-unit-stride stream buffer design (“sb+fds”
design) when the miss penalty is smaller. This relative
improvement for non-blocking loads occurs with smaller
miss penalties because it is more probable that the time re-
quired to service a cache miss will be overlapped with the
execution of unrelated instructions. Observe also that the
improvement factors are smaller. This fact is due to each
cache miss requiring less time to be resolved and hence the
miss contributes less to the number of cycles executed.
The unenhanced CPI values and improvement factors
are given in Table 3(b) for a 64 Kbyte, 2-way set-associative
cache and for the same two memory interface configura-
tions. With the larger cache, we see that all the improve-
ment factors have dropped as have the unenhanced CPI

85

8 KB direct mapped 64 KB 2-way set associative

O benchmark g 0
data point S

@ geometric
average

CPI improvement factors

Figure 5: The CPI improvement factors for all benchmarks
shown graphically; dotted lines connect points associated
with the same benchmark. The “small penalty” points
correspond to a fetch spacing of 1 cycle and a fetch latency
of 8 while the “large penalty” points correspond to a fetch
spacing of 8 and a fetch latency of 32.

values. However, observe that same performance relation-
ships between designs mentioned above also apply here.

The performance relationships just discussed in the con-
text of wave occur for many of the other benchmarks. The
improvement factors for all 18 benchmarks for the same
four memory configurations are presented graphically in
Figure 5°. In this graph, there is an unfilled circle for each
benchmark for each of the 24 machine configurations, and
the filled circles give the geometric average of the improve-
ment factors. Observe the following:

o For each memory configuration, there are a number
of benchmarks that incur essentially the same CPI for
all processor designs. For these benchmarks, data
cache accesses contribute little towards the run-time
of the benchmark. However, for other benchmarks,
the choice of memory system can make a significant
impact.

e Though the improvement factors for all benchmarks
are quite different for a particular memory configu-
ration, they vary in similar ways with the different
processor designs. These variations are reflected in
the geometric averages (the filled circles).

o Stream buffers with dynamic strides and allocation fil-
ters have somewhat larger improvement factors (i.e.,
better performance) than unit-stride stream buffers, al-
though for many benchmarks the additional hardware
may not be cost-effective.

3The data from which this graph was prepared is in [7].

8 KB direct mapped
a.

64 KB 2-way set
[

© 34
2

o 9
a2l o o ° A alvmn‘v [Q
230 B E [}
228 <] [I ear
° oo o0 : . : 800000
226]e o a0 08
ga4lo of
3 [< G- 0.0 00
§_ o 2o g o s
5,16 o EEE 2o OB o 583
Selgignes o cxc FNIENE
2 . 3. g o g .
‘i12 i zg»o--o--a ,ﬁf 5§: A48 2 5]
tojgeeisd fegien il
W —now W — o v w— a
558588 598298 5583848
small penalty large penalty small penalty large penalty

Figure 6: Run-time speedup for each processor design and
memory configuration brought about by compiling the code
with speculative execution. The “small penalty” points
correspond to a fetch spacing of 1 cycle and a fetch latency
of 8 while the “large penalty” points correspond to a fetch
spacing of 8 and a fetch latency of 32.

e The combined use of stream buffers and non-blocking
loads gives a significantly larger performance increase
than either technique alone.

« Non-blocking loads have smaller improvement factors
(i.e., are less effective) than stream buffers for the
large miss penalty. With smaller miss penalties, non-
blocking loads are relatively more effective.

e Non-blocking loads are relatively more effective in
smaller caches than in larger ones.

Speculative Execution

The effectiveness of non-blocking loads can be in-
creased if more unrelated instructions can be scheduled
between the load and first-use instructions. Loop unrolling,
and the more general notion of trace scheduling, are tech-
niques that aid in this task by increasing the size of the basic
block and hence the pool of unrelated instructions. The re-
sults we have presented so far correspond to the use of
both of these techniques. Another technique is to allow the
compiler to move safe instructions past branch points and
thereby allow the instruction to be executed earlier. The
Multiflow compiler can implement such code movements
by using speculative execution.

To investigate the effect of speculative execution, we
re-compiled the benchmarks with speculative execution
enabled and simulated their execution on the 24 machine
configurations (six processor designs times four memory
configurations); speculative execution was allowed for all
instructions with the exception of stores and floating-point
divides. The two main observations from this investigation
are that speculative execution (1) improves by 20 t040% the

86

run time of about half the benchmarks on all processor de-
signs, and (2) increases the effectiveness of non-blocking
loads. Data supporting the first of these observations is
shown graphically in Figure 6; Section 4.2 presents data
for the second. This graph presents the speedup in the
run-time due to speculative execution. The speedup is
calculated on a per-processor-design basis by taking the
run-time without speculative execution and dividing it by
the run-time with speculative execution. The run-time is
used here rather than CPI because speculative execution re-
sults in an increase in the number of instructions executed;
this increase is discussed further in Section 4.2.

4 Understanding Performance

In the preceding section, we presented data showing
that stream buffers and non-blocking loads are effective
in improving the performance of a quad-issue processor.
‘We have also seen that speculative execution increases the
performance of all six processor designs. In this section,
we explore further the causes for the performance gains
and explain why these causes are not tied to the specific
architecture we simulated.

4.1 Without Speculative Execution

We have seen that non-blocking loads, when acting
alone, tend to be more effective when used with caches
that have higher miss rates (e.g., smaller caches with less
associativity). This is because when the miss density is
higher there is a higher probability of being able to overlap
more than one miss at a time.

We have also seen that stream buffers, when acting
alone, tend to be more effective than non-blocking loads.
For non-blocking loads, the fetching of missing data is
initiated by the instruction that loads the data into a regis-
ter. For stream buffers, however, the fetch can be initiated
by a previous cache miss with the subsequently executed
load instruction loading the register. These fetch-initiating
events in effect implement the prefetching of the source
operands for a dependent instruction. Non-blocking loads
can be viewed as implementing after-the-load, or explicit
prefetching whereas stream buffers can be viewed as im-
plementing before-the-load, or predictive prefetching. The
goal for after-the-load prefetching is to have the data needed
by an instruction loaded into registers before the instruction
is executed. The goal for before-the-load prefetching is to
have the data nearby so that it can be quickly loaded into
the registers when the load is executed.

These two types of prefetching are complementary when
used together as our results have shown. When used to-
gether, the goal is the same as for after-the-load prefetching

but the fetch trigger can be the load or can be a previously
detected miss.

Stream buffers work well as a before-the-load prefetcher
if there is a reasonable correlation between the block ad-
dresses of cache misses since stream buffers must guess
what to fetch. If a correct guess is made, the reduction
in the stall time is a function of the temporal separation
between the fetch trigger and the execution of the load
instruction for the data. In our simulations of the SPEC
benchmarks with single-, dual- and quad-issue machines,
we have observed two trends among the benchmarks that
explain why stream buffers work. First, the cache miss ad-
dresses are highly predictable and thus it is likely that the
correct data will be prefetched. And second, with larger
caches, cache misses tend to occur at uneven intervals and
in groups. This grouping results in there being time spans
when no cache misses occur thereby allowing the stream
buffers to fill all their entries. As a result, when a cache
miss does occur, it is more likely that the needed data is
already resident in a stream buffer. Hence, the stall time is
much shorter.

In our simulations of the quad-issue processor, we have
observed that most of the SPEC92 benchmarks achieve
over a 50% hit rate in the stream buffers, an indication of
the sequential nature of the miss addresses. Some of the
data on which this observation is based is available in a
technical report [7]. We have also found that the unit-stride
(32 bytes) is by far the most popular stride. The preference
for the unit stride suggests that the allocation filter is more
important than the dynamic stride calculator. This result
differs from the results reported by Palacharla and Kessler
[12] in their study of the NAS and PERFECT benchmarks.
They found that some of the benchmarks obtain noteworthy
improvement with the use of dynamic strides. That we do
not see the same trend in our results is perhaps an artifact
of the compiler we are using, or more likely, an artifact of
the SPEC92 benchmarks.

The allocation filter prevents a stream buffer from being
allocated when a miss occurs to a rarely used part of the
address space. By preventing such allocations, prefetched
data is likely to remain longer in a stream buffer and thus
it is more likely to be used to satisfy a cache miss. For the
machine configuration discussed above, the average per-
cent of stream buffer prefetches that are used to resolve a
cache miss increases from 22% to 47% when allocation fil-
ters are employed. Allocation filters also help by reducing
the bandwidth consumed by stream buffer prefetches and
thus reduce the time required to fetch data missing from
the cache. For some benchmarks (e.g, alvinn and tom-
catv), there is very little change in the bandwidth utilization
because these benchmarks rarely access infrequently-used
parts of their address space. For other benchmarks (e.g.,

87

compress and dnasa), there are many such references and
the allocation filters can dramatically decrease the band-
width utilization. The most dramatic drop occurs for com-
press where the average number of in-progress memory
fetches drops from 2 to 0.5.

4.2 With Speculative Execution

With speculative execution we observed that its use (1)
improves by 20 to 40% the run time of about half the
benchmarks on all processor designs, and (2) increases the
effectiveness of non-blocking loads. There are a number of
effects that give rise to this behavior. First, the use of spec-
ulative execution gives rise to an increase in the average
number of instructions issued per cycle (ideal IPC). This
fact is shown in Table 4 for each benchmark by the data in
the columns headed “ideal IPC”. Note that these average
values apply to all 24 machine configurations because the
number of instructions issued per cycle is determined at
compile time. A second effect is that a given benchmark
spends less time stalled due to functional-unit conflicts.
This reduction occurs because with speculative execution,
the compiler can schedule potentially useful instructions
between the two that caused the stall rather than scheduling
the stall. A third effect is that the compiler can schedule
load instructions earlier. This effect is shown in the table
by the increase in the weighted average number of instruc-
tion issue cycles between the load instruction and the first
instruction to use the loaded value (see the columns headed
“UAL distance™). Observe that while some benchmarks
show greater than a 100% increase, many do not. This
lack of change is in part due to our scheduling the code for
cache-hit penalty rather than a larger value. The benefits
of scheduling for larger values have been demonstrated by
Farkas and Jouppi [6] though without the use of speculative
execution. However, in quad issue machines scheduling for
significantly larger latencies than the cache hit latency be-
comes infeasible due to a lack of sufficient registers. Due to
the small change in the load-use separation, the only config-
urations that show a significant performance improvement
when enhancing speculative execution with non-blocking
loads are those using the smaller cache. This result is due
to smaller caches being more sensitive to the small changes
in non-blocking load dynamics.

5 Conclusions

‘We have investigated the relative performance impact of
non-blocking loads, stream buffers, and speculative loads
used individually and in conjunction with each other. We
used a quad-issue microprocessor that resembles a number
of state-of-the art commercial microprocessors. We have

benchmark | UAL distance ideal IPC
without| with |without| with
alvinn 14 31 | 18 3.6
compress 19 191 18 2.1
dnasa 40 45| 22 3.0
doduc 6.8 65| 19 24
ear 20 97 | 1.8 32
eqgntott 15 22 | 19 34
espresso 18 23 1 15 24
fpppp 5.1 49 | 24 2.6
hydro 33 42 | 18 2.5
mdljdp2 47 76 | 1.6 2.5
mdljsp2 59 69 | 22 29
ora 5.8 52 | 17 1.8
spice 3.0 30 | 13 2.1
su2cor 4.8 4.7 | 25 29
swm 32 54 | 26 3.7
tomcatv 50 51| 25 27
wave 32 40 | 2.1 2.7
xlisp 1.8 21| 15 1.9
average 32 42 | 19 2.6

Table 4: The effects of with and without speculative ex-
ecution. The first set of columns (UAL distance) gives
the weighted average number of instruction issue cycles
between a load instruction and the first instruction to use
the target register. The second set of columns (ideal IPC)
gives the average number of instructions issued per cycle
in a machine without stall cycles.

simulated 18 of the SPEC92 benchmarks and evaluated
the three techniques by their ability to reduce the number
of clock cycles required to execute each benchmark. An
important part of this study was the use of the Multiflow
Compiler Technology to compile the benchmarks. Using
the compiler, we were able to generate object code that
was optimized for the microprocessor architecture that we
modeled, and to employ trace scheduling and speculative
execution, both of which are important for wider-issue ma-
chines.

The combined use of stream buffers and non-blocking
loads yields significantly better performance than is
achieved with either technique acting alone. This comple-
mentary behavior is a result of stream buffers being good
at reducing the cost of servicing a miss when one occurs,
while non-blocking loads are good at hiding the cost of
servicing a miss.

Speculative execution was found to improve the perfor-
mance by 20% to 40% of processors using neither non-
blocking loads nor stream buffers as well as those using
one or both of these techniques. The performance gains

88

were found to be fairly constant across all processor de-
signs for a given cache configuration and miss penalty.
This performance gain occurred because the compiler was
able to schedule approximately 37% more instructions per
instruction word and to reduce the number of stalls caused
by functional unit conflicts. With speculative execution,
the non-blocking load effectiveness increased but this in-
crease was noticeable only with the smaller cache con-
figuration. The non-blocking load improvement occurred
because speculative execution resulted in a small increase
(from 3.2 instruction issue cycles to 4.2 instruction issue
cycles) in the distance between a load instruction and the
first instruction to use the loaded value. This increase is
nevertheless significant in view of the issue width of the
processor we modeled.

The primary benefit from the use of allocation filters
and dynamic strides is a reduction in the memory band-
width consumed by prefetching. In our simulations of the
SPEC92 benchmarks, we found that the SPEC92 bench-
marks are dominated by unit-stride memory accesses. This
observation is in contrast to the conclusion reached by
Palacharla and Kessler that some of the NAS and PER-
FECT benchmarks favor dynamic strides.

Finally, consistent with previous studies, we have found
that stream buffers are better able to tolerate larger cache
miss penalties, and that the effectiveness of non-blocking
loads is improved with smaller caches. This improvement
appears to be caused by the higher miss rate and the higher
frequency of misses.

Based on our results, the combination of speculative
non-blocking loads and stream buffers can reduce the CPI
incurred in a blocking system without stream buffers by
an average 37% for a 64-Kbyte cache when used with a
memory system that can service one request every 8 cy-
cles and has a 32 cycle latency; with an 8-Kbyte cache,
the improvement jumps to 61%. We expect that the com-
bination of these techniques will be crucial in removing
memory system bottlenecks for processors that attempt to
aggressively exploit instruction-level parallelism.

Acknowledgments

The research described in this paper has been partially
funded by the National Sciences and Engineering Research
Council of Canada and by Digital Equipment Corporation.

We thank Joel Emer, Geoff Lowney, Bob Nix, and David
Webb for their guidance and answers to numerous questions
as we modified and used the simulation infrastructure they
developed. We also thank Alan Eustace, Joel McCormack,
Amitabh Srivastava, Annie Warren, and the other WRL-ites
for both helping out and putting up with the simulations.

Finally, we thank Digital Equipment Corporation for pro-
viding us with the Alpha AXP workstations on which we
ran ~6000 simulations, requiring ~540 days of run-time,
in 5 months.

References

[1] Anant Agrawal. Utrasparc: A 64-bit, high-
performance sparc processor. In the proceedings of
MicroProcessor Forum, October 1994,

(2] John Brennan. TS: A high-performance superscalar
mips processor. In the proceedings of MicroProcessor
Forum, October 1994,

[3]1 David Callahan, Ken Kennedy, and Allan Porterfield.
Software prefetching. Proceedings of the 4th ASPLOS
Conference, pages 40-52, 1991.

[4] Tien-Fu Chen and Jean-Loup Baer. Reducing mem-
ory latency via non-blocking and prefetching caches.
Proceedings of the 5th ASPLOS Conference, pages
51-61,1992.

{51 John Edmondson and Paul Rubinfeld. An overview
of the 21164 alpha axp microprocessor. In the pro-
ceedings of Hot Chips VI, August 1994.

(6] Keith I. Farkas and Norman P. Jouppi. Complex-
ity/performance tradeoffs with non-blocking loads.
Proceedings of the 21st Intl. Symp. on Computer Ar-
chitecture, pages 211-222, 1994,

[7] Keith 1. Farkas, Norman P. Jouppi, and Paul Chow.
How useful are non-blocking loads, stream buffers
and speculative execution in multiple issue proces-
sors? Digital Equipment Corporation Western Re-
search Laboratory Technical Report, 94/8.

[8] Norman P. Jouppi. Improving direct-mapped cache
performance by the addition of a small fully-
associative cache and prefetch buffers. Proceedings of
the 17th Intl. Symp. on Computer Architecture, pages
364-373, 1990.

[9]1 P. Geoffrey Lowney et al. The multifiow trace
scheduling compiler. Journal of Supercomputing,
7(1-2):51-142,1993.

[10] Scott McFarling. Combining branch predictors. DEC
WRL Technical Note TN-36, 1993,

[11] Todd C. Mowry, Monica S. Lam, and Anoop Gupta.
Design and evaluation of a compiler algorithm for
prefetching. Proceedings of the 5th ASPLOS Confer-
ence, pages 62-73, 1992,

89

[12] Subbarao Palacharla and R. E. Kessler. Evaluating
stream buffers as a secondary cache replacement. Pro-
ceedings of the 21st Intl. Symp. on Computer Archi-
tecture, pages 24-33, 1994,

[13] Anne Rogers and Kai Li. Software support for spec-
ulative loads. Proceedings of the Sth ASPLOS Con-

ference, pages 38-50, 1992.

[14] Gurindar Sohi and Manoj Franklin. High-bandwidth
data memory systems for superscalar processors. Pro-
ceedings of the 4th ASPLOS Conference, pages 53-62,

1991.

[15] S. Peter Song. Power pc 604. In the proceedings of

Hot Chips VI, August 1994.

[16] M. Srinivas, Alexandru Nicolau, and Vickie H. Al-
lan. An approach to combine predicated/speculative
execution for programs with unpredictable branches.
In the proceedings of the International Conference
on Parallel Algorithms and Compilation Techniques,
1994,

[17] Tse-Yu Yeh and Yale N. Patt. Alternative implemen-
tations of two-level adaptive branch prediction. Pro-
ceedings of the 20th Intl. Symp. on Computer Archi-

tecture, pages 124-134, May 1992.

