
A High-Performance FPGA Architecture for Restricted
Boltzmann Machines

Daniel L. Ly and Paul Chow
Department of Electrical and Computer Engineering

University of Toronto
Toronto, ON, Canada M5S 3G4
{lyd, pc}@eecg.toronto.edu

ABSTRACT

Despite the popularity and success of neural networks in re-
search, the number of resulting commercial or industrial ap-
plications have been limited. A primary cause of this lack of
adoption is due to the fact that neural networks are usually
implemented as software running on general-purpose proces-
sors. Algorithms to implement a neural network in software
are typically O(n2) problems – as a result, neural networks
are unable to provide the performance and scalability re-
quired in non-academic settings.

In this paper, we investigate how FPGAs can be used
to take advantage of the inherent parallelism in neural net-
works to provide a better implementation in terms of scal-
ability and performance. We will focus on the Restricted
Boltzmann machine, a popular type of neural network, be-
cause its architecture is particularly well-suited to hardware
designs. The proposed, multi-purpose hardware framework
is designed to reduce the O(n2) problem into an O(n) imple-
mentation while only requiring O(n) resources. The frame-
work is tested on a Xilinx Virtex II-Pro XC2VP70 FPGA
running at 100MHz. The resources support a Restricted
Boltzmann machine of 128 × 128 nodes, which results in
a computational speed of 1.02 billion connection-updates-
per-second and a speed-up of 35 fold over an optimized C
program running on a 2.8GHz Intel processor.

Categories and Subject Descriptors

C.3 [Computer Systems Organization]: Special-Purpose
and Application-Base Systems; I.5.5 [Computing Method-
ologies]: Pattern Recognition—Implementation

General Terms

Design, Performance

Keywords

Restricted Boltzmann machines, neural network hardware,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’09, February 22–24, 2009, Monterey, California, USA.
Copyright 2009 ACM 978-1-60558-410-2/09/02 ...$5.00.

FPGA, high-performance computing, scalable hardware de-
signs, complexity reduction

1. INTRODUCTION
Neural networks have captured the interest of researchers

for decades due to their superior ability over traditional ap-
proaches for solving machine learning problems. They are
able to extract complex, underlying structure from the sta-
tistical distribution of data by using networks of simple, par-
allel processing elements. Of the many neural network va-
rieties, the Restricted Boltzmann Machine (RBM) is a pop-
ular architecture that is capable of unsupervised learning
and data generation through stochastic processes. These
unique properties have allowed them to be successfully ap-
plied to a wide variety of research areas ranging from recog-
nizing hand-written digits [1] to reducing the dimensionality
of data [2].

However, there are significant difficulties in adapting cur-
rent applications to commercial or industrial settings be-
cause software implementations on general purpose proces-
sors lack the required performance and scalability. Sequen-
tial processors iterate through every connection in the net-
work, which increases complexity quadratically with respect
to the number of processing elements. As a result, software
programs of large RBMs are unable to satisfy the real-time
constraints required to solve real-world problems. Further-
more, every processing element only utilizes a small fraction
of the processor’s resources, exacerbating the performance
bottleneck and limiting its cost-effectiveness.

To address these issues, a hardware RBM framework is
being designed for Field Programmable Gate Arrays (FP-
GAs). By taking advantage of the inherent parallelism in
neural networks, a high-performance system capable of ap-
plications beyond academic settings can be realized.

The balance of this section provides motivation for using
FPGAs and related work. Section 2 gives some background
on RBMs and Section 3 describes the RBM architecture be-
ing developed. The results and analysis of this work are
presented in Section 4 and concluding remarks are given in
Section 5.

1.1 Motivation for FPGA implementation
There have been many attempts to create hardware im-

plementations to speed up the performance of neural net-
works [3], [4]. Although many approaches, from analog
to VLSI systems, have been attempted, they have not re-
sulted in widely used hardware. These systems are typically
plagued with a variety of problems including lack of reso-

73

lution, limited network size, and a difficult to use or non-
existent software interface [5].

In addition to difficulties with the hardware platform, an-
other common problem is the choice of neural network archi-
tectures – most architectures are not particularly well suited
for hardware systems. The most common type of neural net-
work is the multilayer perceptron with back-propagation ar-
chitecture [6], [7]. Although this architecture is popular and
has many applications, the processing elements require real
number arithmetic as well as resource intensive components
such as multipliers and accumulators, and complex trans-
fer functions. As a result, each processing element requires
significant resources, which restricts the scalability of imple-
mentation. The common solution is to achieve parallelism
by creating a customized pipeline similar to the super-scalar
design used by processors. The pipeline is then replicated
as necessary – unfortunately, this approach does not result
in enough parallelism and speed-up to justify the cost and
effort of using such systems.

In comparison, RBMs are well suited for hardware imple-
mentations. First, RBMs can use data types that map well
to hardware. The node states are binary-valued – the prop-
erties of binary arithmetic ensures that operations can be
done with simple gates instead of multipliers. Next, RBMs
do not require high precision. Thus, fixed-point arithmetic
units can be used to reduce resource utilization and increase
processing speed. The simplicity in the neural network ar-
chitecture allows for clever hardware design, providing scal-
ability and parallelism.

In particular, FPGAs have many advantages over other
hardware platforms for RBM implementations. FPGAs are
growing rapidly, allowing entire systems to be implemented
on a single chip. In addition to the raw fabric, FPGAs have
numerous hard components, including on-board RAM, DSP
units, I/O transceivers and even processors, which aid in
designing full-scale systems.

However, the most important aspect of FPGAs is recon-
figurability. Since the topology of the network defines its
application – the arrangement of processing elements will
dictate the capabilities and behaviour of the network. Appli-
cation Specific Integrated Circuit (ASIC) implementations
must balance the trade-off between performance and versa-
tility, and since a general solution is highly unoptimized, this
trade-off is a serious concern. Being able to design on a re-
configurable system allows hardware to be generated to suit
the exact required topology thus, optimizing performance
without sacrificing versatility.

2. RESTRICTED BOLTZMANNMACHINE

THEORY
This section briefly describes the terminology, mathemat-

ical background and procedure involved in the mechanics of
RBMs. Additional details, including the historical develop-
ment and statistical motivation, can be found in [8], [9].

Neural networks form a computational paradigm which is
used to model non-linear, statistical data. Inspired by their
biological counterparts, artificial neural networks consist of
a distribution of simple processing elements arranged in a
networked structure to exhibit emergent behaviours.

A RBM is a generative, stochastic neural network archi-
tecture. It is used to model the statistical behaviour of a
particular set of data – given a series of input vectors with

Figure 1: A schematic diagram of a Restricted
Boltzmann machine with labelled components.

some shared, underlying properties, the network will build
an internal model of the statistical distribution of that data.
This internal model can be used to recognize whether an
arbitrary datum point belongs to the original series of input
vectors. Furthermore, the internal model allows the network
to produce new data which is consistent with that distribu-
tion; this property is called generative.

The RBM is stochastic because it uses a probabilistic ap-
proach to modeling data. To capture statistical properties,
the RBM determines the probability distribution of a given
data set through the aid of random processes. These two
properties, generative and stochastic, makes RBMs a unique
neural network architecture.

Like all neural networks, the RBM is capable of learning.
The internal model is described mathematically by a multi-
tude of independent parameters. Due to the combinatorial
explosion of the parameter space, finding a correct set of
parameters is a non-trivial task. To learn the optimal pa-
rameters, the RBM processes a set of data vectors, called
the training data, and learning rules are applied iteratively.
The RBM repeatedly processes the training data until it is
able to reproduce the desired effect. At this stage, the RBM
is sufficiently trained. For verification, a new set of previ-
ously unexposed data vectors, called the test data, can be
used to confirm its behaviour.

The RBM was conceived as an amalgamation of ideas from
neural network and statistical mechanics – as a result, the
terminology is derived from both these otherwise distinct
fields. In neural networks, processing elements are often
referred to as nodes. The nodes in a RBM have binary states:
they can either be on or off. A RBM consists of two layers of
nodes, the visible layer and a hidden layer. The visible layer
is used for input/output access while the hidden layer acts as
an internal representation of the data for the network. There
are connections between every node in opposite layers, and
no connections between any nodes in the same layer. Each of
these connections have an associated weight, which provides
the learning parameters for the RBM.

The following notation system will be used: vi and hj

are the binary states of the ith and jth node in the visible
and hidden layer, respectively; wi,j is the connection weight
between the ith and jth node. The terminology and notation
is summarized in a schematic representation in Fig. 1.

2.1 Alternating Gibbs sampling
Alternating Gibbs sampling (AGS) is the operating pro-

cess for the RBM. It is the basis for generating node states
as well as the learning rules [10]. AGS is divided into two
phases, the generate and reconstruct phases. During the
generate phase, the visible layer is clamped to determine

74

Figure 2: A schematic diagram of the alternat-
ing Gibbs sampling for three phases. Uninitialized
nodes are white, clamped nodes are black, and com-
puted nodes are grey.

the node states of the hidden layer, while in the reconstruc-
tion phase, the hidden layer is clamped to generate the node
states of the visible layer. To begin the process, an initial
data vector is placed in the visible layer and the phases are
utilized in an alternating manner starting with the gener-
ate phase. The phases are numbered in counting succession,
starting with one for the first generate phase. To differen-
tiate nodes between phases, the node states will be indexed
with the phase number as a superscript. A schematic repre-
sentation of this process is summarized in Fig. 2.

To understand how the node states are determined, the
concept of global energy must first be introduced. Any rela-
tion to a physical manifestation of energy is lost during the
translation from statistical mechanics: it is best to think of
the energy as simply a numeric value that defines the op-
eration and behaviour of a RBM. The global energy, E, is
defined in Eq. 1.

E = −
X

i,j

wi,jvihj (1)

Because the connections only exist between nodes of oppo-
site layers, the energy can be redefined as a sum of partial
energies, depending on which AGS phase is being comput-
ing. The generate and reconstruct phase use Eq. 2 and Eq. 3,
respectively.

E = −
X

i

vi

X

j

wi,jhj

!

= −
X

i

viEi (2)

= −
X

j

hj

X

i

wi,jvi

!

= −
X

j

hjEj (3)

The formulation of the partial energies indicates that the
global energy can be determined using just the node states
and its respective partial energy. Since the partial energies
are independent of the related node states, they can be cal-
culated simultaneously allowing for a parallel computation
of global energy.

Using the statistical mechanics approach of defining prob-
abilities with respect to energy functions, the node states

−5 0 5

0.0

0.5

1.0

Partial energy (E
i
, E

j
) →

P
ro

b
a

b
ili

ty
 o

f
n

o
d

e
 s

ta
te

 →

Sigmoid and threshold curves

Sigmoid

Threshold

Figure 3: A plot of a Sigmoid and Threshold func-
tion.

have a cumulative distribution function of a logistic/sigmoid
function. The probability of a node state turning on for a
visible and hidden node is expressed in Eq. 4 and Eq. 5,
respectively.

p(vi = 1) =
1

1 + e−Ei
(4)

p(hj = 1) =
1

1 + e−Ej
(5)

To determine the node state, a uniformly random variable
must be sampled against the cumulative distribution func-
tion. Occasionally, the probabilistic approach might be un-
desirable. Instead, a deterministic, first-order approxima-
tion threshold function can be used (Eq. 6 and Eq. 7). By
using the threshold function, the node states can be deter-
mined directly from the energies without any random pro-
cesses. A comparison of the sigmoid distribution function
and the deterministic threshold function are shown in Fig. 3.

vi =



0 , Ei < 0
1 , Ei ≥ 0

(6)

hj =



0 , Ej < 0
1 , Ej ≥ 0

(7)

2.2 Learning
One of the primary reasons for developing neural networks

is their capability for machine learning, and as a result the
learning rules for RBM are of great interest [11]. In review,
the weight values are parameters used to dictate the energies
and subsequently the node states. To model a given data set,
the weights are modified so the RBM generates the minimum
energy across the entire training set. To find the minimum,
the energy is differentiated with respect to the individual
weights (Eq. 8).

∂E

∂wi,j

= ǫ
`

〈vihj〉
1 − 〈vihj〉

∞
´

(8)

In this notation, the 〈. . . 〉X represents the expected values
of the Xth AGS phase for the entire training set and ǫ is the
learning rate of the network.

The node states are generated through the iterative pro-
cess of AGS, and as a result, the energy derivative shows

75

the direction vector of steepest descent in the weight space
to reach a minima. As a result, the weights must be iter-
atively modified according to this derivative at the end of
every training set.

This formulation raises several important points. First,
to properly descend the gradient, the expected values of the
node interactions are required over the entire data set; this is
called batch learning. However, for large batches, this will re-
quire a significant amount of time. As a result, the batch can
be divided into smaller groups, called mini-batches, which
allows the weight updates to occur with less data vectors.
If the mini-batch only includes a single data vector, this is
referred to as on-line learning.

Next, the formal definition of the gradient descent requires
the node states from the infinite AGS phases. Because this
is impractical, researchers have found that the infinite AGS
phase can be replaced with a small finite number. This pro-
cess is called contrastive-divergence learning, and is labelled
CDX, where X is the Xth AGS phase. RBMs have been
successfully trained with the lowest possible unique AGS
phase (CD3).

Finally, the learning rate is an independent parameter
which describes the factor of weight updates and thus the
magnitude of the gradient descent vector. Unfortunately,
there is a trade-off in picking learning rates – small learning
rates ensure convergence, while large learning rates decrease
learning times. Although there are only heuristics to suggest
a good learning rate, it is important to note that there are
some algorithms that suggest modifying the learning rate in
between batches to achieve a fast but convergent solution in
a process called simulated annealing [12], [10].

Although these learning algorithm shortcuts deviate from
the strict definition of gradient descent, they enhance oper-
ating speed and are widely popular. The learning rules are
updated in Eq. 9-10, with k batches of L vectors each:

wi,j [k + 1] = wi,j [k] − ǫ
“

〈vihj〉
1 − 〈vihj〉

X
”

(9)

〈vihj〉
X =

1

L

l
X

l=0

v
X
i h

X
j (10)

2.3 Matrix notation
For ease of understanding and computation, Eq. 1-10 can

be reformulated using matrix expressions. The basic nota-
tion must be redefined. For a RBM of i visible nodes and
j hidden nodes, the visible and hidden layers will be repre-
sented respectively as:

vX
l = [vX

0 . . . v
X
i−1] ∈ B

1×i

hX
l = [hX

0 . . . h
X
j−1] ∈ B

1×j

Thus, for the visible and hidden layers for an entire batch
can be written as:

VX =

2

6

4

vX
0

...
vX

L−1

3

7

5
∈ B

l×i
,HX =

2

6

4

hX
0

...
hX

L−1

3

7

5
∈ B

l×j
,

The weights can also be formulated as:

W[k] =

2

6

4

w0,0[k] · · · w0,j [k]
...

. . .
...

wi,0[k] · · · wi,j [k]

3

7

5
∈ R

i×j

Then, the Eq. 1-10 can be reformulated as:

VX+1 =

8

<

:

V0 , X = 0
f(EX

v) , X is odd
VX , X is even

(11)

HX+1 =



f(EX
h) , X is even

HX , X is odd
(12)

EX
v = (HX)WT

,∈ R
l×i (13)

EX
h = (VX)W,∈ R

l×j (14)

W[k + 1] = W[k] +
ǫ

l

“

(V1)TH1 + (VX)T(HX)
”

(15)

Where f(·) is the transfer function applied element-wise to
the matrix – it can either the sigmoid function random vari-
able test (Eq. 4-5) or the threshold function (Eq. 6-7).

2.4 Complexity Analysis
To understand why sequential processors are not well suited

for RBM implementations, the algorithm to implement Eq. 11-
15 must be analyzed. A pseudocode sketch of the algorithm
is summarized in Fig. 4.

for every batch :
visible[] = get_datavector(batch)

for every AGS_phase :

if AGS_phase is odd :
Energy compute Eq.14 - 2 loops -> O(n^2)
for every hidden_node :

for every visible_node :
energy[j] += visible[i]*weight[i][j]

Node select Eq.12 - 1 loop -> O(n)

for every hidden_node :
hidden[j] = transfer_function(energy[j])

else :
Energy compute Eq.13 - 2 loops -> O(n^2)

for every visible_node :
for every hidden_node :

energy[i] += hidden[j]*weight[i][j]

Node select Eq.11 - 1 loop -> O(n)

for every visible_node :
visible[i] = transfer_function(energy[i])

Weight update Eq.15 - 2 loops -> O(n^2)
if ABS_phase == 1 :

for every visible_node :
for every hidden_node :

weight_update[i][j] += visible[i] * hidden[j]
else if ABS_phase == ABS_limit :

for every visible_node :

for every hidden_node :
weight_update[i][j] -= visible[i] * hidden[j]

Weight update Eq.15 - 2 loops -> O(n^2)

for every visible_node :
for every hidden_node :

weight[i][j] += learning_rate/batch * weight_update[i][j]

Figure 4: A Python-like pseudocode sketch of the
algorithm required to process a RBM

For ease of analysis, the restriction that the RBM must
have symmetric layers will be applied (i = j = n). By sim-
ply tracing the loops in Fig. 4, the complexity analysis of
the algorithm is straightforward. For a more detailed look,
the algorithm is divided into three sections by their compu-
tation; node select (Eq. 11-12), energy compute (Eq. 13-14),

76

Procedure Complexity Equation

Node select O(n) 11, 12

Energy compute O(n2) 13, 14

Weight update O(n2) 15

Table 1: The complexity analysis for each section of
the RBM algorithm

Figure 5: A schematic diagram of a dual layered
Restricted Boltzmann machine.

and weight update (Eq. 15). The complexity of these indi-
vidual sections is summarized in Table 1.

2.5 Layered networks
RBMs only have one layer of hidden nodes, and as a result,

are only able to capture first order statistics. The underly-
ing structure in a given set of data may require higher-order
statistics for complete description, and thus, a single layer
RBM will be insufficient. However, increasingly complex
structures can be modelled by layering RBMs so that the
hidden layer of one is the visible layer of another. This pro-
cess of stacking RBMs can be done indefinitely to increase
the modelling capabilities as long as the number of nodes
match. This is illustrated schematically in Fig. 5.

The layering of the RBM modifies the global operating
and learning algorithms slightly: the individual RBMs oper-
ate in the exact same way, but there is a macro-algorithm to
organize how the layers operate with respect to each other.
However, this section is only meant to introduce the basic
concepts of RBMs. The idea of layered RBMs is raised be-
cause a hardware architecture must also support this highly
popular extension. Further details are left to a more ad-
vanced paper on this matter [1].

3. RESTRICTED BOLTZMANNMACHINE

FPGA ARCHITECTURE
Before the FPGA architecture is described, the two pri-

mary goals of the project will be outlined:

Scalable The FPGA implementation must be scalable with
respect to both resources and performance - the de-
sign should fully utilize any hardware resources and the
performance should benefit from additional resources.
Specifically, an O(n) resource utilization is desirable.
The resources in an FPGA are growing fast and the im-
plementation must be able to take advantage of the ad-
ditional resources from new technology. Furthermore,
there is an increasing trend for high-performance com-
puting to include multiple FPGAs. In preparation for

Figure 6: A block diagram of a single FPGA imple-
mentation. The processor and two hardware cores
are connected though various interfaces used to sup-
port TMD MPI.

future systems, the implementation must be able to
scale across multiple FPGAs as well.

Performance The FPGA implementation must be signif-
icantly faster than any software implementation. For
hardware systems, the time and effort required for
development and end-user application is much higher
than software implementations, and thus, the perfor-
mance must be significantly faster to justify the design.

These two goals drive the design decisions of the RBM ar-
chitecture on an FPGA. In addition, since the RBM op-
eration is well-defined, the computational hardware can be
controlled through a finite state machine, removing the need
for general-purpose processors of any complexity.

The FPGA implementation currently consists of two hard-
ware cores: the Restricted Boltzmann Machine Core (RBMC)
and the Node Select Core (NSC). The decision to divide
the system into a number of hardware cores is motivated
by the desire to increase multi-FPGA scalability – although
the work presented here is developed on a single FPGA, the
implementation framework is designed for large system scal-
ability. The cores communicate with each other and the soft-
ware front-end using the Message Passing Interface (MPI).
An example of a single FPGA implementing a single RBM
engine is shown in Fig. 6. It uses a hardware variant of the
Message Passing Interface (MPI) called TMD-MPI [13].

The MPI communication network enables large system
integration. MPI is a message-based communication spec-
ification that is used in a variety of high-performance ap-
plications. Of the many distributed communication proto-
cols, it was decided that the MPI approach would be best
suited for this implementation for several reasons. First,
its widespread popularity in the scientific computing com-
munity means many of the target end-users will have some
familiarity with this system. Next, since the data vectors
will need to be retrieved from a shared file system or a sen-
sor, a processor with any MPI implementation provides a
software abstraction layer that allows for easy integration.
Finally, the MPI protocol allows for the implementation to

77

be scaled across multiple FPGAs. By connecting the ap-
propriate hardware cores, an extremely large RBM can be
implemented on a collection of FPGAs.

The implementation uses two different hardware cores from
TMD-MPI. The PowerPC processor uses a plb mpe, which
resides on the Processor Local Bus (PLB), while the two
hardware cores use the tmd mpe. These hardware interfaces
allow the cores to communicate through a low-latency and
high-bandwidth communication network with little resource
and computational overhead.

In addition to understanding the hierarchical structure, it
is also important to explain how the RBM operation (Eq. 11-
15) can be accelerated at an architectural level. The most
obvious approach would be to adapt some existing FPGA
matrix accelerated hardware; however, the implementations
often use some form of super-scalar pipeline to achieve a
basic level of parallelism. Since the RBM operation is well
defined and these cores can utilize all the FPGA resources,
an architecture that takes more advantage of the parallelism
can be designed. Thus, the basic principle behind the per-
formance speed-up is to achieve a massively parallel vector-
operator that can reduce the time complexity of the system
from O(n2) to O(n) by operating on an entire row of the
weight matrix simultaneously. Furthermore, rather than at-
tempting to operate on the entire batch as defined by Eq. 11-
15, the FPGA implementation calculates a single data vector
and stores its contribution in memory. As the implementa-
tion finishes iterating through the batch, the weight updates
are committed to the weights and cleared for the next batch.
This redefines the problem as vector-matrix calculations as
opposed to the matrix-matrix formulations.

3.1 Restricted Boltzmann machine core
The Restricted Boltzmann Machine core (RBMC) is the

primary computational core of the FPGA implementation.
The RBMC is designed specifically to take advantage of the
data locality of the weight – as a result, it is responsible for
calculating partial energies and updating weights (Eq. 11-12
and 15). Recalling the complexity analysis (Table 1), these
are the O(n2) sections that must be reduced to O(n). Fur-
thermore, the transmission of weights requires O(n2) words,
while transmitting the partial energies or the node states
are only O(n). This core itself is divided into three compo-
nents: the memory organization, the energy compute engine
and the weight update compute engine. A summary of how
these cores are connected and what data needs to be trans-
ferred is described in Fig. 7.

3.1.1 Capabilities and Limitations

To achieve a significant speed-up, rather than attempting
to create hardware to suit the computational problem, it
is far more efficient to restrict the computation problem in
a manner that is well-suited for hardware design. Because
FPGAs are reconfigurable, this approach is acceptable be-
cause the restrictions can be overcome through additional
hardware. The following is a description of the limitations,
their desired effect, and how they will be overcome.

• The weights will use a 32-bit fixed-point representa-
tion. A fixed-point representation is desirable because
the simplified arithmetic units require less resources
and are faster. This is acceptable since a 32-bit fixed-
point number can provide sufficient resolution.

Figure 7: A block diagram of how the RBMC is
organized.

• The layers must be symmetric; the number of nodes
in the visible and hidden layers must be the same
(i = j = n). This maximizes hardware usage since
the same hardware can be used to calculate the local
energies (Eq. 13-14). To understand how this limita-
tion is acceptable, two cases must be analyzed: nearly
symmetric RBMs and vastly asymmetric RBMs.

– For nearly symmetric RBMs (i ∼ j), the larger
layer size will be instantiated. The relative cost
of wasting resources is negligible compared to the
speed-up achieved. To ensure proper function-
ality, all the associated weights of non-existing
nodes should be set to zero.

– For vastly asymmetric RBMs (i ≫ j or i ≪ j),
multiple RBMCs will be instantiated. First, it is
important to remember that the RBMC achieves
it performance by taking advantage of the local-
ity of the weights. Weights are both plentiful and
large – as a result, it is undesirable to transmit
them since this requires 32n2 bits of total band-
width. Instead, if the weights are kept in local
memory, an identical RBM can be achieved by
running two RBMCs in parallel and adding addi-
tional logic to ensure that the node states remain
consistent. This method requires reconfiguration
for different network topology and will be inves-
tigated in future work.

• The number of nodes in a layer must be a power of two
(n = 2a). Specific hardware, such as binary trees, can
take advantage of this constraint for maximum speed-
up for a given resource utilization. This is acceptable
because the number of nodes have approximately this
resolution and exact numbers are not mandatory.

• Batch sizes must be a power of two (l = 2b). This is
desirable because calculating the weight update accu-
mulation (Eq. 10) requires a division that can be im-
plemented by an arithmetic bit shift only if this con-
straint is satisfied. This is acceptable because batch
sizes can be chosen within this resolution.

• CD values and learning rates are software inputs. This
is a benefit rather than a limitation since it provides
the end-user the ability to update the learning rate and
CD values without hardware updates.

78

Figure 8: The BRAM-based matrix transpose data
structure for a n = 4 example. a) This is the orga-
nization of the weights in the standard matrix. The
index under the weights corresponds to the BRAM
and address of that weight. Notice how no BRAM
has two elements on the same row or column. b)
This is a reorganization of the weights in BRAM
formation. c) A depiction of a row-wise access to
the weights organized by the BRAM ports. k is
a counter indicating the row access. Notice how
every row has the same elements as a row in the
weight matrix. d), A depiction of a column-wise
or (transpose row-wise access) to the weights orga-
nized by the BRAM ports. Notice how every row
has the same elements as a column in the weight
matrix. The formulation for the proper addresses
are included.

3.1.2 Memory core

The design of the RBMC revolves around the memory core
since the compute engines would be memory bandwidth lim-
ited otherwise; for a 128 × 128 hardware RBM running at
100MHz, the peak bandwidth usage is 205GB/s. As a re-
sult, the system takes advantage of the hardware distributed
Block RAMs (BRAM) on the FPGA – the BRAMs have low
latency and collecting them in parallel provides an aggre-
gate, high-bandwidth port to support the compute engines.

The memory core is organized into storing five variables.
There are two sets of registers for the visible and hidden
nodes to allow for parallel access to all the node states si-
multaneously. There are two sets of BRAMs: one for weight
storage and one for weight update accumulation. All of
the BRAMs are also dual-ported, allowing them to be writ-
ten and read simultaneously as long as address conflicts are
avoided. There is a single BRAM for storing the partial en-
ergies; only a single BRAM is required since the compute
engine and the communication can only support serial data
transfer. For the majority of the variables, the design and
access to the memory hierarchy is straightforward.

Figure 9: A circuit diagram of the binary adder tree
set to calculate the hidden partial energies (Eq. 13).

However, access to the weight BRAMs provides an in-
tegrated data structure that is essential to obtaining per-
formance speed-up. To calculate the energies, the weight
matrix must be transposed (Eq. 13). There are a number
of assumptions that can be safely made to allow for the use
of this data structure. First, the computation requires a
matrix-matrix operation to be done in hardware in a row-
or column-wise manner; there will be no random access to
an individual row or column in the matrix. The next as-
sumption is that there are sufficient BRAMs; to reduce the
O(n2) single memory accesses to O(n) vector accesses, n

BRAMs must be dedicated to implement this system. The
final assumption is that a non-standard element order in
the vector is acceptable – as long as the non-standard or-
der is deterministic, the compute engine can account for it.
Reordering the matrix elements is extremely resource inten-
sive. Instead, it is more efficient to manipulate the binary
valued node states to mimic the non-standard element or-
der. The actual operation of the transposing data structure
is described in Fig. 8.

3.1.3 Energy compute engine

The energy compute engine is responsible for calculating
the energies (Eq. 13-14). To complete the vector-matrix op-
eration, it requires one of the layers and the weights. At
every clock cycle, the compute engine multiplies the vector
layer with one of the columns or rows in the weight matrix
to generate a scalar element in the column of the energy ma-
trix. Because of the restrictions defined in Section 3.1.1 and
the binary states of the nodes, the computation can be done
with simple hardware components: AND gates, multiplex-
ers and registered, fixed-point adders. The binary tree of
adders effectively reduces a O(n2) time complexity to O(n),
while only requiring O(n) resources. A circuit diagram of
the pipelined, binary adder that is responsible for energy
calculation, (Eq. 13-14), is described in Fig. 9.

3.1.4 Weight update compute engine

The weight update compute engine has two roles: to keep
track of the weight update term for the entire batch as well

79

as to commit and clear the weight update terms (Eq. 15).
During the first and last AGS phases, the weight update
compute engine reads both layer registers in parallel and ac-
cumulates the learning rates. When the entire batch is com-
plete, the weight update accumulation is then committed to
the weights. These operations only require AND-gates, mul-
tiplexers and fixed-point adder/subtractor units. The low
level implementation is straight forward and a circuit dia-
gram will not be presented. Since the memory is updated
in parallel, the time complexity is reduced from O(n2) to
O(n), while only requiring O(n) resources.

3.2 Node select core
The Node Select Core (NSC) is the secondary compute

core of the system. It is responsible for calculating the node
states based on the partial energies (Eq. 11-12). Unlike the
RBMC, which uses internal memory to alleviate bandwidth
limitations, the NSC is designed to provide the maximum
throughput given the limitations of the communication net-
work – the communication network is limited to transferring
a single 32-bit word per cycle and cannot be further paral-
lelized. In addition, the software energy compute imple-
mentation was reduced to a time complexity of O(n). This
coupled with the transmission limitations makes it difficult
and unnecessary to further decrease the complexity.

However, the goal is to ensure maximum data throughput
while minimizing resources. This is achieved by creating a
streaming pipeline; this implementation does not require the
storage of any data and ensures maximum data throughput.

At the moment, only the threshold function has been im-
plemented (Eq. 6-7). Although there is nothing prohibiting
the design of a hardware sigmoid cumulative distribution
function (Eq. 4-5), it would add unnecessary complexity to
the prototype. However, there are plans to incorporate the
sigmoid in the next phase of the project.

3.2.1 Threshold select compute engine

The threshold select compute engine is ideal for this pro-
totype system since it is easy to implement while still pro-
viding an acceptable transfer function. Because the partial
energies are 32-bit fixed-point numbers, the node state is set
as the inverse of the sign bit of the corresponding energy –
due to the simplicity, a circuit diagram will not be presented.

4. RESULTS AND ANALYSIS
Unfortunately, there is a lack of a standardized bench-

mark for comparing FPGA implementations. The majority
of hardware accelerated platforms are designed for a specific
application in mind. As a result, an in-house application is
often used as a point of comparison.

Since there are no widely available benchmarks, a custom
software application is used. Due to the research based na-
ture of development, most neural network implementations
are written in MATLAB. The MATLAB RBM algorithm in
an available database for a popular handwritten digit recog-
nition RBM is used as the basis for a software benchmark
written in C [2]. The results of the benchmark are verified
against the MATLAB implementation. Furthermore, since
all the results used fixed-point representations, the hardware
FPGA implementation produces the exact same results as
the C software program.

The benchmark is compiled with gcc version 4.3.1 with
optimization level 2. An Intel Pentium 4 processor running

20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90

100

Number of nodes in the visible and hidden layers (n) [#] →

R
e
s
o
u
rc

e
 U

ti
liz

a
ti
o
n
 (

%
)

→

The resource utilization on a XC2VP70

BRAM

LUT

Flip−flops

Figure 10: The resource utilization with respect to
the Xilinx Virtex II-Pro XC2VP70 FPGA.

Debian at 2.8GHz with 2GB of DDR RAM is the baseline
machine. Cache optimization is not considered a significant
factor since the entire program (data and instructions, com-
bined) uses less than 150kB of memory – which fits in the
512kB L2 cache. In addition, gcc is unable to automati-
cally vectorize the software implementation with SSE/SSE2
instructions using the -msse2 flag. Hand-optimized vector
operations could potentially lead to faster software imple-
mentations. However, this did not warrant further investiga-
tion since the maximum speed up of four fold of the 128-bit
vectors compared to 32-bit scalar software implementation
is considered insignificant.

The hardware platform is implemented on a single Xilinx
Virtex II-Pro XC2VP70 FPGA. The layout used in Fig. 6
is synthesized. The standalone PowerPC processor is re-
sponsible for retrieving the initial data and sending it to the
hardware cores. The PowerPC is running at 300MHz while
the hardware cores are running at 100MHz. Layer sizes of
n = {32, 64, 128} were synthesized – the 32 × 32 RBM is
considered the limit of efficient implementation and the size
is increased in powers of two until it is resource limited.

In terms of the goals outlined in Section 3, scalability and
performance are measured quantitatively. For scalability,
the number of BRAMs, Flip-Flops (FFs), and Look-up Ta-
bles (LUTs) are recorded. For performance, the lack of a
standard neural network metric raises some issues. For com-
paring two different implementations of the same architec-
ture, the update period is a simple and effective metric. The
update period is the time it takes for the implementation
to complete a single batch of data. The speed-up will be
measured by the ratio described in Eq. 16, where S is the
speed-up, and Thw and Tsw are the update periods for the
hardware and software implementations, respectively.

S =
Tsw

Thw

(16)

An absolute measure of performance is also desirable. Al-
though it cannot account for the differences in neural net-
work architectures, a common metric for computational per-

80

Component Qty FFs LUTs BRAMs

RBMC 1 30403 (45%) 29885 (45%) 257 (78%)
NSC 1 48 (0%) 100 (0%) 0 (0%)

FIFOs 18 126 (0%) 792 (1%) 0 (0%)
switch 3 387 (0%) 1737 (3%) 0 (0%)

tmd mpe 2 576 (0%) 1724 (1%) 4 (1%)
plb mpe 1 1071 (1%) 2580 (3%) 2 (0%)

Table 2: The distribution of resources for the 128 ×
128 RBM on the XC2VP70 with the percentage of
total FPGA utilization in brackets. The values rep-
resent the combined utilization of every instance.
The table is divided into compute cores and network
resources.

formance is the number of Connections Updates per Seconds
(CUPS) that can be computed [4] – described by Eq. 17,
where n is the node count and T is the update period.

CUPS =
n2

T
(17)

For the software program, the function gettimeofday() in the
standard C time.h library is used to time stamp the software
implementation at the beginning and end of every batch. For
the hardware implementation, the PowerPC used the MPI
function MPI TIME() to time stamp every batch.

4.1 Scalability
In the implementation of this prototype, only a single

FPGA design is developed and tested. Multi-FPGA scal-
ability will be undertaken as future work.

The resource utilization with respect to the RBM layer
size count is summarized in Fig. 10. All three components
maintain the desirable O(n) complexity, which is important
for ensuring scalability for FPGAs with additional fabric.
The distribution of resources for the 128×128 RBM is shown
in Table 2. The majority of resource utilization is due to
the RBMC – the NSC and the network infrastructure have
a light weight design which adds a small resource overhead.

4.2 Communication to computation ratio
As with all parallel applications, the communication to

computation ratio plays a critical role in the performance of
the design. The distribution of communication and compu-
tation components for the 32×32 and 128×128 RBMs with
an on-line, CD3 learning algorithm are shown in Fig. 11.
The PowerPC to hardware communication creates a signifi-
cant overhead – despite the limited data transfer, there is a
large software overhead to prepare the MPI function calls.

Fig. 11 indicates that the MPI software communication
overhead for the PowerPC is significant and reducing com-
munication to computation ratio would result in greater
speed-ups. However, the communication overhead is rela-
tively constant with respect to node size and there are two
methods that can be used to minimize the ratio. First, the
number of CD learning cycles can be increased – for every
data set, the time spent in hardware computation will in-
crease compared to the software communication overhead.
Increasing the batch size is the second method – the majority
of the MPI function calls are only required at the beginning
of each batch (denoted by the grey boxes in Fig. 11). Thus,
larger batches will minimize the effect of the communication
overhead required at the beginning of the batch.

Figure 11: The distribution of time used by the
hardware implementation for communication and
computation. Each axis represents the time elapsed
during one update period with the total time
recorded underneath. The results are obtained
through a behavioural, hardware simulation. The a)
and b) diagrams are for the 32× 32 and the 128× 128
RBMs, respectively.

20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Number of nodes in visible and hidden layers (n) [#] →

T
im

e
 [
m

s
]

→

Update periods for software implementation on 2.8GHz
processor vs. FPGA implementation at 300MHz

Software − CD3

Software − CD11

Software − CD25

FPGA − CD3

FPGA − CD11

FPGA − CD25

Figure 12: The update periods for the FPGA and
software implementations.

4.3 Performance
The respective update periods and speed-up for a number

of CDX parameters are shown in Fig. 12 and 13, respec-
tively. Fig 12 shows that the software implementation has
the expected O(n2) complexity, while the hardware imple-
mentation has the desired O(n) scaling. This results in a
speed-up of O(n2), seen in Fig. 13. Specifically, the 128×128
RBM’s performance is measured at 1.02GCUPS, resulting in
a speed-up of 35 fold over the software benchmark.

Both of the scalability results have important implications
about the future of this framework since newer generations
of FPGAs will allow for larger RBM instantiations. Moore’s
Law states that the number of transistors on a chip doubles
every 18 months. Current trends in processor design suggest
that additional transistors will be used for additional cores
– however, increased thread-level parallelism will not reduce
the computation complexity. On the other hand, the addi-
tional transistors results in increased FPGA fabric: the O(n)
scalability can be utilized for each generation to take advan-

81

20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

Number of nodes in the visible and hidden layers (n) [#] →

S
p
e
e
d
−

u
p
 →

Acceleration of FPGA implementation at 100 MHz over
software implemenation running on a 2.8GHz processor

CD3

CD11

CD25

Figure 13: The speed-up of the FPGA over software
implementations.

tage of the O(n2) acceleration. By measuring the software
benchmark and extrapolating the hardware’s linear trend in
Fig. 12, a single Virtex 5 XC5VSX240T is expected to sup-
port a network of 512× 512 nodes resulting in an estimated
speed-up of 250x.

Although the hardware architecture will perform increas-
ingly better with new generations, the current implementa-
tion on the two-generation old XC2VP70 can still be used
in a number of applications. For example, the CDX pa-
rameter has important implications on the efficiency of the
learning algorithm. For higher CDX values, the weight con-
verges faster and less training is required. Although CD3
is functional, higher CD values are of special interest to re-
searchers [14]. Typical software applications rarely go above
CD25 due to the computation limitations. For the same
run time as CD25 running on the software benchmark, the
RBMC implementation can achieve CD800.

5. CONCLUSIONS
This paper shows that a high-performance, reconfigurable

system can be designed to drastically speed-up the perfor-
mance of Restricted Boltzmann machines. Deviating from
the typical approach of most hardware neural network im-
plementations, which consists of duplicating super-scalar,
customized pipelines, this project focuses on creating a set
of highly scalable compute engines that reduce an O(n2)
problem on general-purpose processors into an O(n) hard-
ware implementation that scales with O(n) resource uti-
lization. On a single Xilinx Virtex II-Pro XC2VP70 run-
ning at 100MHz, a maximum performance of 1.02GCUPS
is achieved for a network of 128 × 128 nodes, resulting in
a speed-up of 35 fold over an optimized C benchmark on a
2.8GHz Intel Pentium 4 processor.

Although this work focuses on presenting a prototype on
a single XC2VP70, the architecture is designed to allow for
larger implementations to be scaled across multiple FPGAs.
These initial building block cores are the first step towards
building the world’s largest and fastest RBM neurocom-
puter. Additional future avenues of research include how

this architecture can be modified to provide the scalability
and performance for a range of neural network systems.

6. ACKNOWLEDGEMENTS
We acknowledge the CMC/SOCRN, NSERC and Xilinx

for the hardware, tools and funding provided for this project.
We also acknowledge Geoffrey Hinton, Graham Taylor, Arun
Patel and Manuel Saldaña for their advice and feedback.

7. REFERENCES
[1] G. E. Hinton, S. Osindero, and Y. Teh, “A Fast

Learning Algorithm for Deep Belief Nets,” Neural
Computation, vol. 18, pp. 1527–1554, 2006.

[2] G. E. Hinton and R. R. Salakhutdinov, “Reducing the
Dimensionality of Data with Neural Networks,”
Science, vol. 313, pp. 504–507, July 2006.

[3] C. S. Lindsey and T. Lindblad, “Survey of neural
network hardware,” Applications and Science of
Artificial Neural Networks, pp. 1194–1205, 1995.

[4] Y. Liao, “Neural Networks in Hardware: A Survey,”
tech. rep., Santa Cruz, CA, USA, 2001.

[5] J. Zhu and P. Sutton, “FPGA Implementations of
Neural Networks - A Survey of a Decade of Progress,”
Lecture Notes in Computer Science, no. 2778,
pp. 1062–1066, 2003.

[6] P. Ferreira, P. Ribeiro, A. Antunes, and F. M. Dias,
“A high bit resolution FPGA implementation of a
FNN with a new algorithm for the activation
function,” Neurocomputing, vol. 71, pp. 71–77, 2007.

[7] D. Shen, L. Jin, and X. Ma, “FPGA Implementation
of Feature Extraction and Neural Network Classifier
for Handwritten Digit Recognition,” Lecture notes in
computer science, vol. 3173, pp. 988–995, 2004.

[8] P. Smolensky, Information processing in dynamical
systems: Foundations of harmony theory. Parallel
Distributed Processing: Volume 1: Foundations, MIT
Press, Cambridge, MA, 1986.

[9] Y. Freund and D. Haussler, “Unsupervised Learning of
Distributions on Binary Vectors Using Two Layer
Networks,” NIPS, pp. 912–919, 1992.

[10] D. Geman and S. Geman, “Stochastic Relaxation,
Gibbs Distributions, and the Bayesian Restoration of
Images,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 6, no. 6, pp. 721–741, 1984.

[11] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A
Learning Algorithm for Boltzmann Machines,”
Cognitive Science, vol. 9, pp. 147–169, 1985.

[12] G. E. Hinton and T. J. Sejnowski, Learning and
relearning in Boltzmann machines. Parallel
Distributed Processing: Volume 1: Foundations, MIT
Press, Cambridge, MA, 1986.

[13] M. Saldaña and P. Chow, “TMD-MPI: An MPI
Implementation for Multiple Processors across
Multiple FPGAs,” IEEE International Conference on
Field-Programmable Logic and Applications (FPL
2006), pp. 329–334, 2006.

[14] M. A. Carreira-Perpiñán and G. E. Hinton, “On
Contrastive Divergence Learning,” Artificial
Intelligence and Statistics, 2005.

82

