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Abstract

This paper explores the effect of the choice of logic block on the
speed of a Field-Programmable Gate Array (FPGA). A set of
logic circuits are implemented as FPGAs each using a different
logic block, and the speed of the implementation is measured.
While the result depends on the delay of programmable routing,
experiments indicate that wide input PLA-style AND-OR gates,
four and five-input lookup tables and certain multiplexor
configurations produce the lowest total delay over the important
values of routing delay. Furthermore, significant gains in
performance (from 10% to 41% reduction in total delay) can be
achieved by connecting a small number of logic blocks together
using hard-wired connections.

1 Introduction

The Field-Programmable Gate Array (FPGA) is a new ASIC
medium that provides instant manufacturing turmaround and
extremely low manufacturing costs. An FPGA can be designed
like a Gate Array but is user-programmed like a PLD. However,
an FPGA has both lower logic density and performance than a
Gate Array that is made in the same process technology. These
deficiencies can be addressed by improving the architecture of
the FPGA. The architecture of an FPGA consists of its logic
block function, interconnection structure, and I/O block design.
In previous work, we have investigated the effect of logic block
functionality on the area of FPGAs [Rose90a], and the effect of
switching block flexibility on routability [Rose90b]. In this
paper we look at ways to improve the speed of the FPGA by
architectural changes to the logic block.

The FPGA was introduced in [Cart86] and newer versions
have been presented in [Hsie90] [Ahre90] and [Wong89]. An
FPGA consists of an array of logic blocks surrounded by a
programmable interconnection structure. There are many
different kinds of interconnection structures, such as those
articulated in the commercial architectures and [Rose90b). It is
universally true, however, that the delay of the routing is
significantly greater than that of a simple metal wire in the same
process technology because programmable interconnects contain
significant resistance and capacitance. Connection delays often

This work was supported by NSERC Operating Grants #URF0043298,
#A4029, #OGP0036648, a MICRONET research grant, a research grant
from Bell-Northemn Research, and ITRC.

exceed the delay of the logic block, and this is one of the
fundamental limitations on FPGA speed.

The performance of an FPGA can be increased by reducing
the number of stages of programmable routing used in the
critical paths. One way to do this is to choose logic blocks with
high functionality so that the number of logic block levels in the
critical path is minimized, as illustrated in Figure 1. Figure la
gives the implementation of the logic function
f:abz +abc +acd using a 2-input nand gate as the logic block.
It requires four levels of the logic block in the critical path.
Figure 1b shows an implementation of the same function using
three-input lookup tables, which require only two levels. Since
the latter avoids two levels of slow programmable interconnect,
this will likely lead to a significant decrease in delay. Increasing
the functionality of the logic block, however, is likely to
increase its combinational delay. The increase is only profitable
if the reduction in routing delay more than offsets the increase in
total delay due to the logic block.

A second way to reduce routing delay is to connect basic
logic blocks with hard-wired non-programmable connections (a
wire with near-zero delay) so that programmable interconnect is
avoided. The questions addressed in this paper are:

1. What is a good choice for a logic block that minimizes the
total delay in an FPGA? Experiments indicate that wide
input PLA-style AND-OR gates, four and five-input lookup
tables and the Actel [ElGa89] logic block are roughly
equivalent in terms of total delay over a set of circuits using
each of those blocks.

2. Which hard-wired interconnection topology of four-input
lookup tables minimizes the total delay in an FPGA?
Experiments indicate that a major gain can be had with a
small number of blocks hard-wired in two-level and three-
level configurations - from 10% to 41% lower delay,
depending on the routing delay, as compared to the case
where no hard-wired connections are used.

This paper is concerned only with the the speed of the FPGA
and so we ignore issues that affect the logic density.
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a) Logic Biock = 2-input NAND Gals, Number of Logic Biocks in Critical Path =4

b) Logic Block = 3-input LOOKUP TABLE, Number of Logic Blocks in Critical Path = 2

Figure 1 - Implementation of f=abd + abc + acd
2 Experimental Choices, Process and Model

To answer the above questions, our approach is to
implement a set of circuits in many FPGAs each of which uses a
different logic block, and then measure the resulting delay of the
circuit. The following section discusses the selection of logic
blocks. The implementation procedure, described in Section
2.2, takes a set of benchmark circuits and applies logic synthesis
techniques to produce a network of interconnected logic blocks.
The delay measuring process requires the determination of the
critical path length in each FPGA implementation and a model
for calculating the total delay given the logic block delay and the
routing delay. This process is discussed in Section 2.3.

2.1 Logic Block Selection

Thirteen different logic blocks of varying functionality were
selected for comparison, and are named and described in Table
1. These blocks were chosen to represent a wide cross-section of
the possible blocks:

e The nand2pi and nand3pi are simple nand gates that have a
programmable invert capability, which allows the inputs to
be passed in true or complement form.

s The mux21 and mux41 logic blocks can implement all
possible logic functions of a multiplexor using the primary

inputs and the selector inputs.

s The actel logic block is the one used by Actel Corp in their

e The A202pi gate implements the logic

ACT-1 series of FPGAs [ElGa89].

e The K2, K3, K4 and K5 logic blocks are lookup tables with

2 to 5 inputs. They are implemented as one large
multiplexor with the appropriate number of inputs.

function
f=AB + CD where A,B,C and D are the inputs. It has the
programmable invert capability.

e The A803pi, A1603pi, and A3205pi are wide AND-OR

gates. The gate A803pi has a total of eight inputs, each of
which can be selected to form three separate product terms
which are OR’d together. The gate A1603pi has 16 inputs
and three product terms, and the gate A3205pi has 32 inputs
and five product terms. These three gates have the

programmable invert capability.
Block Logic Delay (ns)
Name Function 1.2 pm CMOS
nand2pi 2-input nand with prog inv 1.26
nand3pi 3-input nand with prog inv 1.42
mux21 2 to 1 mux 1.08
mux41 4 to 1 mux 131
actel Actel logic block [E1Ga89] 131
K2 2-input 1-output lookup table 139
K3 3-input 1-output lookup table 144
K4 4-input 1-output lookup table 1.71
KS S-input 1-output lookup table 2.03
A202pi f= AB + CD with prog inv 1.58
A803pi 3-wide OR of 8-wide AND 2.69
A1603pi | 3-wide OR of 16-wide AND 3
A3205pi | S-wide OR of 32-wide AND 595

Table 1 - Logic Block Selection and Delay

Table 1 also gives the worst-case delay of each logic block
determined using the Spice 2G6 circuit simulator, in a 1.2um
CMOS process. The simulation includes a small buffer
following the logic function, but no loading or delay due to
routing.
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2.2 Logic Synthesis Procedure

Each test circuit is converted into a network of logic blocks
using the procedure below. This procedure deals only with
combinational circuits.

1. Collapse the logic circuit into a two-level representation,
using the misIl [Bray87] collapse command so that each
output is only a function of its primary inputs. Optimize the
two-level expression using Espresso [Bray84].

2. Factor each output separately into a multi-level logic
expression using the misll decompose command [Bray87].
Remove any fanout created by the decompose by re-
substituting logic that has fanout back into the original logic
expression. This step is necessary because the technology
mapping in step 3 does a poor job across fanout. By
removing fanout the delay is reduced but the area is
increased. As such the results presented below are
optimistic. Note also that without fanout some circuits, such
as a parity tree, have a size that is exponential in the number
of inputs. It is not possible to run this class of circuits in
these experiments.

3. Perform the technology mapping of the boolean network.
This converts the logic into a network of logic blocks. This
was done two ways, depending on the logic block:

i.  For all of the logic blocks except A803pi, A1603pi and
A3205pi, technology mapping was done using the MIS
1I technology mapping program [Det;j87]. The mapper is
set to optimize the critical path delay. This mapper was
used for all the logic blocks, (even though superior
mappers were available for some of the blocks) so as to
create a "level” playing field.

ii. For logic blocks A803pi, A1603pi and A3205pi, the
MIS II mapper couldn’t be used because these gates are
too big for it to handle. For these blocks, step 2 was
omitted. The two-level expressions are mapped into a
minimum-depth tree of gates in the following way:
Consider the general case where the logic block has p
inputs to the AND gates and can OR together s product
terms. For these three gates p is one of 8, 16 or 32, and
s is either 3 or 5. If the logic expression to be mapped
has a product term with v variables in it then the number
of levels in the logic tree to implement the product term
is [logpv . Similarly if the number of product terms in
the expression is ¢ then the depth of the OR tree would
be |log,t |. When the two trees are combined, there is a

saving of one logic level and so the total depth in logic

blocks is [logpv1 + [log,t] -1.

2.3 Model for Measuring Delay

The speed of a circuit implemented in an FPGA with a given
logic block is a function of the delay of the logic block (Dyz),
the number of logic blocks in the critical path (V.), and the
delay incurred in the routing between each logic block, (Dg).
Assuming that each stage of logic block incurs one routing delay
and one logic block delay, then the total delay (Dror) can be
calculated as:

Dror = Ny X (Dpg + Dg) 1)

The value of N, can be measured for each circuit after it is
mapped into a logic block using the procedure described above.
The value of D, 5 was determined as described in Section 2.1.

The value of Dy is much more difficult to determine. Itis a
function of the routing architecture, the fanout of a connection,
the length of the connection, the process technology and the
programming technology. Since our purpose is to understand
general architectural principles, it is important not to fix any of
these parameters. As such, most of the results below will be
given as a function of Dg, rather than choosing a specific Dg.

3 Experimental Results

The experimental circuits that were used are a selection of
15 logic synthesis benchmarks provided by the Microelectronics
Center of North Carolina (MCNC) and one standard cell-based
circuit from Bell-Northem Research. They range in size from
28 to over 700 two-input nand gate equivalents. Each circuit
was passed through the implementation procedure described in
Section 2.2 once for every logic block listed in Table 1.

Table 2 gives the average and standard deviation of the
number of logic blocks in the critical path (N.) over all 16
circuits for each logic block, and the calculation of Dror from
equation (1). The Dy calculation uses N, from Table 2, Dy
from Table 1 and values of 0, 2, 4 and 10ns for Dg. These
values of Dy were chosen because they range from the minimum
possible to the point where the rankings of the logic blocks
based on Dyor don’t change. Figure 2 is a plot of the same data:
Dror versus Dy for all the different logic blocks.

A number of conclusions arise from this data. If the routing
is very fast, such as Dy = 0, the data from Table 2 indicate that
the Actel logic block is the fastest, followed closely by the three-
and four-input lookup tables. This can be explained by the fact
that the Actel block has slightly more logic levels than the
others, but its delay is significantly less, and so with no penalty
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Logic N, | St Dror =N x(Dyg + Dg)

Block DV. | Dp=0 | Dg=2 | Dg=4 | Dp=10
(ns) (ns) (ns) (ns)

mux21 114 | 46 123 351 579 126.3

K2 108 | 45 15.0 36.6 58.2 123.0

nand2pi | 108 | 4.5 13.6 352 56.8 121.6

nand3pi 93 | 38 13.2 31.8 504 106.2

mux41 73 | 22 9.6 242 38.8 82.6

A202pi 69 | 2.6 109 24.7 38.5 79.9

K3 62 | 24 8.9 213 33.7 70.9
actel 62 | 1.8 8.1 20.5 329 70.1
K4 52| 18 89 19.3 29.7 60.9
K5 48 | 19 9.7 193 289 577

A3205pi 33 113 19.6 26.2 328 52.6

A803pi 40 | 1.6 10.8 18.8 26.8 50.8

A1603pi 36 | 15 13.6 208 28.0 49.6

Table 2 - Average Critical Path Length and Total Delay
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Figure 2 - Dy, vs D, for all Blocks
for routing its total delay is the lowest.

As the routing delays increase (D, = 2ns and 4ns), the
fastest block becomes A803pi followed closely by the four- and
five-input lookup tables. The Actel logic block and the three-
input lookup table are also close to the minimum. Increasing the

routing delays reduces the advantage of the faster logic blocks
so that the total number of logic block levels becomes the more
important factor. Within the accuracy of these experiments the
delay for the K3, K4, K5, Actel, A803pi, A1603pi and
A3205pi gates are roughly equivalent.

When the routing delay is very large (Dg = 10ns), the wide
AND-OR gates with programmable inversion (A803pi,
A1603pi, A3205pi) dominate the field. The four- and five-
input lookup tables are roughly 20% slower, and the Actel and
three-input lookup table blocks are about 40% slower. At this
point the small N; values of the wide AND-OR gates dominates
all the other effects, and these logic blocks win out.

It should be noted that these results depend heavily on the
quality of the logic synthesis tools. As indicated in the
following section, a technology mapper tuned for lookup tables
[Fran91] produces significantly better values of N for the
lookup tables. If that mapper was used in these experiments, the
lookup tables would have better D;or across all values of Dg. It
is possible that a mapper tuned specifically for the other logic
blocks would greatly improve their Dyop as well.

4 Increasing Speed with Hard-Wired Connections

Even using the A803pi gate or four- and five-input lookup
tables as logic blocks, FPGAs cannot achieve speeds
comparable to a gate array in the same process technology. This
is due to the large propagation delay of each routing stage. An
architectural technique to reduce the number of general purpose
routing stages is to create hard-wired (non-programmable)
connections between two or more basic logic blocks. In this
section we answer the question posed in the introduction: what
topology of hard-wired connections will result in the lowest total
delay?

For this experiment, we focused on the four-input lookup
table since it achieved close to the minimum total delay for
values of Dy ranging from Ons to 4ns, and also because it has a
small number of inputs. Figure 3 illustrates the eight different
configurations of four-input lookup tables that were investigated,
and gives the associated name. Each block is named in the
form Lx.y. The x value gives the number of levels in the tree,
and y gives the number of lookup tables.

A two-level hard-wired structure that forms a complete tree
(block L25 in Figure 3) will reduce the number of
programmable interconnect levels by up to a factor of two, since
a fanout-free network will trivially map onto these blocks. The
important question, then, is how close will a smaller group of
blocks (such as L2.2 or L2.3) come to reducing the number of
programmable interconnects (Nz) by two. Note that if the
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Figure 3 - Hierarchical Logic Block Selection

number of programmable connections in the original circuit is
three, then this can only be reduced to two. A similar argument
can be made about three, four and five level hard-wired logic
blocks: they can at most reduce the number of programmable
connections by three, four or five. The maximum reduction in
average Ny over all 16 circuits can be calculated by dividing Ny,
in each 4-input lookup table circuit by the number of levels in
the logic block, and using a ceiling function for the division.
For the 16 test circuits the minimum possible average N for the
two, three and four level blocks is 2.25, 1.63 and 1.44
respectively.

4.1 Hierarchical Logic Synthesis Procedure

The logic synthesis procedure described in Section 2.2
above was modified to use the Chortle-d technology mapping
program [Fran91] for lookup tables instead of the MIS I
mapping program, because Chortle-d is tuned to optimized delay
for lookup tables. Note that the average depth is significantly
smaller using Chortle-d.

To map into the hierarchical logic blocks shown in Figure 3,
an additional mapping step is needed. A new mapping tool,
called Tempt [Chun91] was developed. The input to Tempt is a
network of lookup tables and the output is a network of
hierarchical logic blocks optimized for delay. The resulting
mapping is simply a set of groupings of logic blocks that fit into
the topology of the selected hierarchical logic block; it does not
change the function within the lookup table.

Note also that degenerate cases of the larger blocks are also
used. For example, the L2.2 structure appears within the 1.3.3
structure, and we assume that a "tap-off" from the second logic
block in L3.3 will provide the output of that logic block to the
external routing with no delay penalty.

4.2 Hierarchical Delay Model

The delay model described in Section 2.3 must be modified
to take into account the fact that the hard-wired (internal)
connections in Figure 3 have effectively zero delay. Thus the
total delay becomes a function of the same factors in equation
(1) (N, Dyg, and Dy) as well as an additional variable: Ng, the
number of programmable interconnect connections in the critical
path. Since only those connections incur the D delay, the total
delay is now given by:

Dm=NLXDw+NRXDR 2)

5 Results for Hard-Wired Blocks

Table 3 gives the measured average values of N, and N, for
each of the hierarchical blocks in Figure 3, and includes the
results for a single four-input lookup table. These values are
averaged over all 16 circuits. As mentioned in Section 4.1, the
N, value for the four-input lookup table smaller than in Table 2
because the Chortle-d technology mapper is tuned for delay
optimization of lookup tables [Fran91].

As mentioned in Section 4, the two-level blocks can achieve
a theoretical minimum average Ny of 2.25, and this is achieved
by the complete two-level tree, L2.5, in the experiments. The
two-level blocks L2.2, L2.3, L2.4 and L2.5 attain progressively
lower average Np values, from 3.38 to 2.25. The most
significant gains, per added block, are achieved by L2.2 and
L2.3.

Of all three-level blocks that were used (including many not
illustrated in Figure 3) none obtained an N lower than 2.13.
The 2.13 value was achieved by the nine-block L3.9. In all our
experiments with two, three, four and five level blocks, we
observed that the hierarchical blocks with symmetry attained the
best performance. This is likely due to the Chortle-d
Technology mapping program [Fran91], which typically
produces very balanced trees of logic, in the effort to minimize
delay.

Table 3 also gives the total delay for FPGAs using the
hierarchical logic blocks for Dy = 0,2,4 and 10 nanoseconds.
For Dy = 0 all delays are the same, since the programmable
interconnect is the same speed as the hard-wired interconnect.
For Dy = 2 the two-level blocks achieve a decrease in delay
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Logic | N, N Dror =Nyx Dig+Ngx Dy

Block Avg | St. | Dp=0 | Dg=2 D=4 | Dp=10
Dv (ns) (ns) (ns) (ns)

K4 41 | 413 | 2.1 71 15.3 23.6 484

L22 41 [ 338 | 1.2 7.1 13.8 20.6 40.9

L23 41 | 256 | 1.1 71 122 17.3 327

124 41 | 244 | 10 7.1 11.9 16.8 315

125 41 | 225 | 0.8 7.1 11.6 16.1 29.6

133 41 {331 | 11 71 13.7 20.3 40.2

L3s 41 |1 225 | 09 71 11.6 16.1 29.6

L3.6 41 | 219 | 08 71 11.4 15.8 29.0

139 41 | 213 [ 07 7.1 11.3 15.6 284

Table 3 - Programmable Connection Length and Total Delay

from 10% (L2.2) to 24% (L2.5) relative to the single four-input
lookup table (K4). The three-level blocks decrease the delay
from 10% to 26%. Experiments with higher level blocks did not
achieve any further reduction - those experiments were limited
to use fewer than 10 four-input lookup tables in the hierarchical
logic block. For Dy = 4 the two-level blocks achieve a decrease
in delay from 13% to 32%. The three-level blocks decrease the
delay from 14% to 34%. For Dy = 10 the two-level blocks
achieve a decrease in delay from 16% to 39%. The three-level
blocks decrease the delay from 17% to 41%.

6 Conclusions and Future Work

This paper has explored the relationship between logic block
architecture and the speed of the resulting FPGA. The principal
conclusions are, first that Wide-input PLA-style AND-OR gates,
four and five-input lookup tables and the the Actel [ElGa89]
logic block are all good choices for a logic block for mid-range
values of programmable routing delay. These results depend
heavily on the quality of the logic synthesis tools, particularly
how well the tools optimize delay. Second, significant gains in
performance can be had by hard-wiring several logic blocks
together, with reductions in delay ranging from 10% to 41%
depending on the hard-wired configuration and the routing
delay. Most of these gains in performance can be made with

only a few logic blocks hard-wired together. Configurations that
are symmetric are superior to asymmetric configurations.

In the future, we will adapt these experiments and tools to
account for the area cost of the gain in delay.
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