1S C

(Reduced Instruction Set Computers)

Reduced Instruction Set Computers or RISC. Those of
you who follow the marketing propaganda about the latest
microprocessors are probably very familiar with the term.
Steven Przybylski, a designer of the MIPS RISC processor at
Stanford University, now defines a RISC as "any computer
announced after 1985."

The original term, RISC, came from the RISC project at
Berkeley, led by Professor David Patterson. The first processor,
RISC I, was designed in 1982 and was followed by the RISC
IT processor in 1984. During the same period, Professor John
Hennessy at Stanford University was leading the MIPS project.
Although these projects are probably the most well known,
there was prior work done at IBM, Yorktown Heights, on a
machine known as the 801 Minicomputer. These projects
resulted in machines with smaller numbers of instructions than
the popular architectures of that time, thus the name. However,
this was really a result of the design methodology used, rather
than a necessary and sufficient feature of the architecture.

The RISC approach

The design of a RISC processor begins with the definition
of the computer system being designed. For most RISC
machines today, this means a system running the UNIX*
operating system with programs written in high-level languages
such as C, Fortran, or Pascal. The compilers generate the
instructions that are executed by the hardware in the CPU. The
operating system manages the hardware resources of the
system. To build an efficient system, the designers must pay
close attention to the compiler/hardware interface, and the
operating system/hardware interfaces. For this discussion, let us focus on the
compiler/hardware interface.

Early programmers used assembly language because of limited memory and
inefficient compiler technology. With VLSI technology, limited memory is
essentially gone, and compilers are good enough so assembly language is not
needed. We measure the performance of a computing system by how long it takes
to execute a program. Define the execution time as:

Yy Clock Period (
Instruction

Execution Time = Path Length (Instructions) X
cycle

By examining this equation we can look for ways to reduce the total execution time.
Complex instruction set computers (CISC) attempt to reduce the semantic gap
between high-level languages and the machine instructions implemented in the
hardware. This is done by using instructions that can support many of the
constructs found in high-level languages. For example, accessing an element in
an array requires the computation of a memory offset from the starting address of
the array in memory. The size of this offset is dependent on the size of the array
elements and the array index. Complex addressing modes (ways to specify memory
addresses) make it possible to access the elements of an array using a single operand
specifier. For example, consider the high-level language statement
ARRAYX(50)=0

Paul Chow

28 00278-6648/91/0010-0028 $1.00 © 1991 IEEE

IBM RISC System/6000* VLSI CMOS logic chips

seconds)

where ARRAYX is an array of integers
starting at address 1000. An example
CISC instruction might be:

clear.word 1000 (r2)

where Register 12 contains the index,
50 in this case. Assume each array
element is a word that requires four
memory locations, and the starting
addressis 1000. To compute the operand
address, this instruction first multiplies
the contents of the register by four, and
adds 1000toit. This philosophy attempts
to reduce execution time by minimizing
the path length, or number of instructions
executed.

In the RISC philosophy of design, a
more quantitative approach is taken.
Since compilers are generating the
machine code, we examine the kinds of

* UNIX is a trademark of AT&T

IEEE POTENTIALS

11 IF RF ALU WB

13

2 IF RF ALU WB

IF RF ALU WB

Fig. 1: Timing for a nonplpelmedCP :

11 IF RF ALU WB
2 IF RF ALU WB
I3 IF

RF ALU WB

Fig. 2 Timing for a pipelined processor

2 add r3,r4,r5

In equal add r5,r5,r7

11 beq rl,r2,equal ;branch to equal if r1 =12

i35 13 + 14

176 r5+15

Fig. 3 Using a branch‘instmcﬁéﬁk;‘ '

equal add r7rlrl
add rl,r2,r3
beq r3,r5,equal
nop
Program 1
4 cycles per iteration

add r7,rl,rl
equal add r1,r2,r3
beq r3,r5,equal
add r7rlrl
Program 2
3 cycles per iteration

Fig. 4 Using the b"an“f‘hfd:e‘lia;y{é &

instructions actually generated by a
compiler. This is done by collecting
statistics showing the frequency of
instruction usage as programs execute.
Data from programs compiled for
machines, such as the VAX, show that
most instructions are simple. If we
examine the equation for Execution
Time, adifferent tradeoff from the CISC
approach canbe seen. Instead of focusing
on minimizing the pathlength, wereduce
the average number of cycles per
instruction. This can be achieved by
implementing just the simple instructions
in hardware. An added benefit is that
simpler hardware is required so a shorter
clock period is feasible. However, using
only simpler instructions means the path

OCTOBER 1991

“length will inc

¢, because complex
operations that could have been done in
one instruction, now require several
instructions. This effect is small
compared to the reduction in average
instruction cycles and cycle time.

Pipelining

Several features that characterize
most RISC processors result from using
pipelining. Although CISC machines are
often pipelined, the instruction set of a
RISC processor has been designed
specifically to take advantage of
pipelining.

Pipelining is a technique for
increasing the effective throughput of a
system. Consider the steps that must be

performed to execute a typical add
instruction. Assume that the operands
are available in the CPU registers. The
instruction must be fetched and decoded
(IF); the operands must be fetched from
the registers (RF); the addition is
performed in the ALU (ALU), and then
the result must be written back to the
registers (WB). If each step requires one
clock cycle, then it will take four cycles
to execute this instruction. Figure 1
shows the timing for a sequence of these
instructions. Each instruction completes
before the next one begins so the
instructions are issued at a rate of one
every four clock cycles.

Figure 2 shows how a pipelined
version of this processor would work.
The hardware is designed so that when
I1 has completed the IF step, then the IF
for I2 can begin. Similarly, all other
stepsin the instructions can be sequenced
in the same way. In this scheme, the
instruction throughput is one instruction
percycle, assuming no pipeline hazards.

A pipeline hazard occurs when an
instruction needs the result of a previous
instruction not yet completed. An
important hazard has to do with branch
instructions. A branch instruction is a
decision point in the program and
generally means that the flow of the
program can take one of two possible
paths. Figure 3 shows how a branch
instruction (beq) might be used. A simple
implementation of a branch instruction
will read two register values and check
whether they are equal. If they are equal,
then the branch is taken. In Figure 3, we
would like a taken branch to continue
execution at instruction /n, whereas a
non-taken branch should fall through to
instruction I12. Assume in Figure 2 that
Instruction I1 is a branch instruction. At
the end of RF, the branch instruction has
determined whether the branch is to be
taken. However, by this time 12 has
already been fetched and the IF in I3 is
the first one that occurs after the RF in
I1. In this example, the hazard occurs
because the branch decision is made too
late to affect the IF in I2.

There are two solutions. One is to
always wait for the branch instruction
to determine if a branch is going to be
taken before fetching the next
instruction. This means that all branch
instructions will effectively take two
cycles toexecute. The other technique is
to use a delayed branch, which allows
the instruction following the branch to
always execute, independent of the
outcome of the branch instruction. This
instruction is said to be in the branch

29

delay slot. The simplest way to fill the
delay slot is to put in an instruction that
does nothing (nop). If this is done, the
nop does not affect the program and the
correct sequence of instructions is always
executed. If we want to be more clever,
we can try to use the instruction in the
delay slot to do something useful. This
requires a more sophisticated compiler
to predict what instructions can go into
the slot. If the compiler guesses correctly
then the cycle is not wasted. If the
compiler guesses wrong, the instruction
should be one that does not affect the
program's outcome. Figure 4 shows an
example of how a branch delay slot can
be used. Program 1 takes four cycles per
loop iteration because of the nop that is
used in the branch delay slot. Program 2
rearranges the code slightly to use the
branch delay slot, and requires only three
cycles per iteration. It also assumes that
the contents of Register R1 are not used
after the loop is exited since the value
will be different than in Program 1.

Simple instruction
encoding

Pipelining and the desire to reduce
cycle time, makes it important that
instructions canbe decoded quickly. This
leads to a few other characteristics.

RISC processors have fixed-length
instructions. In CISC machines,
instructions can vary in length from a
fraction of a memory word to several
memory words. All instructions in a
RISC are the same length, usually one
memory word. This makes the decoding
logic simpler, because it does not have
to figure out how much has to be fetched
from memory before the actual decoding
can begin.

RISC processors have a simple
instruction encoding. Forexample, each
instruction needs to specify the registers
that are to be used. If the register
specifiers always appear in the same
location in the instruction encoding,
they can be used immediately without
the instruction decoder needing to fig-
ure out that one instruction type specifies
registers in bits O to 14, and another
instruction type specifies registers in
bits 10 to 24. A simple encoding means
less hardware is needed for decoding.

A symmetric use of the registers is
also characteristic of RISC instruction
sets. This means that all registers can be
used by any instruction. This makes the
compilation process easier; because it
does not have to keep track of what
registers can be used in each instruction.

It also makes decoding easier.

Memory instructions

Animportant aspect of any computer
architecture is how memory is accessed.
This is reflected in the types of
instructions and the addressing modes.
A CISC processor generally has very
sophisticated addressing modes and
instructions that can read operands from
memory, do an operation, and store the
result back to memory. These are called
memory-to-memory instructions. For a
high-performance CPU, operations that
access operands in memory always take
longerto execute than operands found in
the CPU registers. This is because of the
electrical properties of accessing
memory compared with accessing the
registers. That's why modern compilers
attempt to keep variables in the CPU
registers as much as possible. This also
means memory-to-memory instructions
become less useful.

RISC processors use a load-store, or
register-register, architecture. The only
instructions that access memory are load
and store instructions. Load instructions
read a value from memory into a register
and store instructions, take a value in a
register and write it to memory. All
instructions that operate on data, read
the operands from the registers and store
the results into registers.

The addressing modes of RISC
machines are also very simple. The
simple modes fit well in the pipelined
model where time is limited to compute
the address of an operand in memory.
Complex addressing modes are replaced
withasequence of instructions. Analysis
of compiler output also supports this
design decision.

Optimizing compilers

‘When examining the components of
a RISC system, don't forget software.
The design of a RISC system must
involve the design of the hardware and
the software at the same time. For
example, deciding if an instruction
should be implemented in the CPU
hardware must be based on whether the
overall system performance is improved.
An add instruction is important because
it is frequently used and difficult to do
without having the hardware. On the
otherhand, aninstruction such asdivide
is not used frequently, and requires
significant hardware to implement. This
makes it a good candidate for being left
out of the hardware, and the equivalent

function being done in software.

The analysis of the hardware/
software tradeoffs must also consider
the compiler technology available, and
how this technology can effectively use
the hardware. For example in pipelining,
we described how the slot in a delayed
branch can be used more effectively by
reordering instructions. If the compiler
technology for determining how to fill
this slot did not exist, a different method
for implementing branches in the
hardware might have been developed.

We mentioned how it was desirable
to keep operands in registers as much as
possible. To make this possible, RISC
architectures usually have a larger
number of general purpose registers,
usually 32 ormore, compared with CISC
architectures, which often have less.
Manipulating operands in registers
means the instructions should also help.
RISC architectures use a three-address
architecture, as shown in the add
instructions used in Figure 3. In this
architecture, the two source operands,
and the register for the result can all be
different registers. This makes it easier
for the compiler to use the registers
efficiently.

RISC architectures rely heavily on
the compilers to achieve their best
performance. These compilers are
generally known as optimizing
compilers. Most of the optimizations
used can be found in any textbook on
compiler design. The key difference ina
RISC system is that the hardware has
been designed so that these optimizations
can be used effectively.

Implementation

The key point here is that the only
features implemented in hardware are
those contributing significant
performance benefits. This is very
important because adding hardware will
often impact the cycle time of the
processor. For example, assume an
instruction implemented in hardware
reduces the number of instructions
executed by 1%, but causes the cycle
time to increase by 4%. The net effect of
this is that the execution time will
increase by a factor of0.99x1.04=1.03
or 3%!

Also, using only simple instructions
in the hardware leaves room for other
features. On a VLSI chip, which is the
main implementation technology, this
room can be used to add features such as
an on-chip instruction cache, or float-

30

IEEE POTENTIALS

ing-point hardware.

Performance

We will now demonstrate with
numbers why RISC processors are able
to outperform CISC processors of the
same generation. Consider the three
factors in the equation for Execution
Time.

Path length. A RISC architecture
will need to execute more instructions
than a CISC architecture to get the same
job done. Studies have shown this is
about a factor of 1.2 more instructions.

Cycles/instruction. The goal of a
RISC architecture is to execute one
instruction every cycle. Due to effects
like not filling all of the branch-delay
slots, and cache misses, the average is
slightly greater than one Cycle/
instruction, and closer to 1.3. In a CISC
processor, this number can be quite large,
and varies across all of the architectures.
For this example, assume it to be four
Cycles/instruction.

Clock period. This is a very tricky
number to estimate because it is also
technology dependent. What we are
looking foris how much the architecture
affects the clock period. By looking at
processors currently available on the
market, we can estimate that a RISC
machine couldrunabout 1.5 times faster
than a CISC machine in the same
technology.

Using these numbers to compute the
ratio of execution times, we can see that
the execution time on a RISC processor
is about

1 x_4
12 1.3

times better than on a CISC processor.
This suggests that a RISC processor has
a performance advantage of about a
factor of four over a CISC processor
purely from using a better architecture.
This number will vary depending on the
exact processor models used.

x 1.5 = 3.8

Potential disadvantages

There are some potential disad-
vantages of RISC architectures
compared to CISC architectures. Some
are true problems; some will also appear
in CISC machines as they strive to
increase performance.

More instructions. This is
manifested in two ways. First, there is
the static size of a program, which is the
amount of memory and disk space
needed tohold the program. The increase
for RISC processors can be in the range
of 40-50%, putting a greater demand on
the instruction memory and secondary
storage. Secondly, thereistheincreased
dynamic size, which is the actual number
of instructions executed. However, this
can be compensated by other factors.

High memory bandwidth. Memory
bandwidth is the measure of how fast
data can be transferred between the
memory and the CPU. This is a major
bottleneck in most architectures, and
having to execute more instructions
means that the average banDwidth must
be higher for a RISC processor.
However, the complexity of a memory
system is determined by the peak
bandwidth needed. To achieve its highest
performance, the program on a CISC
processor will use mostly simple load,
store, ALU, and branch instructions, just
asinaRISC machine. These instructions
put the highest demand on the memory
system and thus determine the peak
bandwidth needed. The peak bandwidth
needed by a CISC processor will be
comparable to that of a RISC machine.

Complex software. RISC machines
may require more complex software
because implementation details such as
pipeline hazards must be handled.
However, the use of simpler instructions
actually makes code generation easier
since there are less choices to make. It is
also easier for an optimizer to find and
remove redundant operations. Many
optimizations used in RISC compilers
can also be used in compilers for CISC
architectures. The difference is that the
RISC architecture has been engineered
so these optimizations are used more
effectively.

Future trends

Current projections suggest that
RISC architectures will continue to
double their performance every year or
so for several years. The performance of
current CISC architectures will also
improve as they use lessons learned
with RISC machines. For example, the
Motorola 68040 and the Intel 486 both
attempt to execute the common
instructions in a single cycle. However,
improvements in these architectures will
be constrained by the desire to maintain
machine code compatibility between
generations.

The next step in RISC architectures
will be to break the one instruction per
cycle barrier. This will be done by
executing more than one instruction per
cycle. Analysis of code from compilers
and existing compiler technology has
shown that this is feasible. Some recent
commercial architectures already have
this feature (Intel 1960 and 1860, and the
IBM RS/6000). These are called
superscalar architectures.

Summary

To describe areduced instruction set
computer as one that uses asmall number
of simple instructions really misses the
significance of this design methodology.

The importantlesson is thatitis possible
tomeasure and evaluate the performance
of a computer system, and use these
numbers in making design decisions.
The design of a computer system is a
quantitative science, not an art.

Read more about it

¢ Alfred V. Aho, Ravi Sethi, and
Jeffrey D. Ullman. Compilers:
Principles, Techniques and Tools.
Addison-Wesley Publishing Company,
1986.

» John Hennessy, Norman Jouppi,
Forest Baskett, Thomas Gross, and John
Gill. Hardware/Software Tradeoffs for
Increased Performance. In Symposium
on Architectural Support for
Programming Languages and Operating
Systems, pages 2-11, Palo Alto, March
1982. SIGARCH/SIGPLAN

* John Hennessy, Norman Jouppi,
John Gill, Forest Baskett, Alex Strong,
Thomas Gross, Chris Rowen, and Judson
Leonard. The MIPS Machine. In
Compcon Spring, pages 2-7.1EEE, 1982.

¢ John L. Hennessy and David A.
Patterson. Computer Architecture: A
Quantitative Approach. Morgan
Kaufman Publishers, Inc. 1990.

¢ David A. Patterson. Reduced In-
struction Set Computers. Communi-
cations of the ACM, 28(1):8-21, January
1985.

¢ David A. Patterson and Carlo H.
Sequin. A VLSI RISC.IEEE Computer,
15(9):8-212, September 1982.

* G. Radin. The 801 minicomputer.
In Symposium on Architectural Support
for Programming Languages and
Operating Systems, pages 39-47, Palo
Alto, March 1982. SIGARCH/
SIGOPLAN.

¢ Cheryl A. Wiecek. A Case Study
of VAX-11 Instruction Set Usage for
Compiler Execution. In Symposium on
Architectural Support for Programming
Languages and Operating Systems,
pages 177-184, Palo Alto, March 1982.
SIGARCH/SIGPLAN.

About the author

Paul Chow received the B.A.Sc.
degree with honours in Engineering
Science, and the M.A.Sc. and Ph.D.
degrees in electrical engineering from
the University of Toronto, Toronto, Ont.
in 1977, 1979 and 1984, respectively.
He is a member of the IEEE and ACM.

In 1984 he joined the Computer
Systems Laboratory at Standford Uni-
versity, CA, as a Postdoctoral Fellow
and later as a Research Associate. He
was a major contributor to the MIPS-X
RISC microprocessor project. Since
January 1988, he has been an Assistant
Professor in the Department of Electri-
cal Engineering at the University of
Toronto. I

OCTOBER 1991

31

