
UTDSP: A VLIW DSP Processor 
in TSMC 0.35 CMOS

Sean Hsien-en Peng
Supervisor: Prof. Paul Chow

Computer Engineering Group
University of Toronto

 Copyright@1999 by Sean Peng

speng@eecg.toronto.edu



• Motivation
     •  Low-Cost, Low-Power and High-

Performance DSP Processors are needed for 
telecommunication and  embedded systems

     •  VLIW architectures are ideal targets for 
HLL compilers to exploite parallelism
 Flexible for application-specific embedded 

systems
( Current VLIWs: TI TMS320C6x, and Philips 

R.E.A.L. DSP )



• Limitations of Current VLIW 
DSPs in Cost-Sensitive systems

     •  Memory size is increased substantially due to 
the empty slots in long-instruction words
1. Unable to exploite enough parallelism in 

applications
2. Loop Unrolling Technique used in compilers

     •  Huge memory bandwidth for long-instruction 
fetching
Will be the performance bottleneck when off -

chip instruction memory is used



• The New TI VelociTI Architecture 
in TMS320C6x



• A Novel Instruction Packing and 
Decoding Method

     •  Based on a two-level horizontal microcode 
architecure

     •  Achieve better packing results while 
eliminating the need of using crossbar

     •  Reduce off-chip instruction memory 
bandwidth for cost-sensitive systems

     •  Patent has been filed for the memory packing 
design



• The UTDSP Memory System



• Reduce size of Decoder Memory



• Denser packing using two clusters



• Combine clusters and slot sharing 
to have a near-optimal result



• The Packer and Software tools



• Need complex data structures
     •  Design C++ template libraries to provide the 

container class for different objects
List <Inst> A;
List <Decoder> B;
List <Token> C;

     •  Design associated class methods and use 
operator overloading to ease the packing 
algorithm development
ListA = ListB.merge(ListC);
if ( InstA > InstB ) ....  



• Better VLIW solution than TI’s 
new VelociTI architecture

     •  Similar instruction compaction rate (65%)

     •  Eliminate the necessity of using crossbar

     •  Can use inexpensive off-chip instruction 
memory without suffering the bandwidth 
problem that TI has. 

     •  Minimize the size of on-chip memory
90% of execution time is spent in 10% of code
=> only need to store DSP kernel code on chip



• The UTDSP Architecture



• Instruction Set
     •  Highly orthogonal, RISC-like instructions

add r1,r2,r3, mult r1,r2,r3, ld (a1), r2 st r4,(a5)
JSR, Jmp, BEQ, BLE. 

     •  Specialized DSP instructions 
multiply-accumulator, modulo addressing,

     •  Zero-Overhead Looping Instruction
Achieve optimal performance in DSP kernels
Can handle 8-level nested looping,  
interruptable, good for real-time application



• Data Hazards and Data Forward
     •  Traditional RISC architectures stall pipelines 

to solve RAW data hazards



• Combine EX/MEM to reduce 
RAWs and Bypassing Logic

     •  Use register indirect addressing mode instead 
of displacement mode (ld (A2+4), R5)

     •  Resolve ALL RAWs now, no need to stall

     •  Reduce bypassing logic by 50%

     •  Pipeline latency is NOT changed (parallel)



• Zero-overhead Looping Inst. 
reduces branch penalty and size of 
instruction memory

     •  TI suggests assembly programmers using 
Loop Unrolling to optimize DSP kernel code
1. Difficult  2. Increase code size dramatically

     •  UTDSP has a zero-overhead DO instruction



     •  Design Challenge: The PC Unit: Handles 8-
level nested DO loop. Allows JSR, Branch, 
and Interrupts in inner loop



• The Forwarding Logic: 



• VLSI Implementation Strategy
     •  “P&R a subblock and instantiate it at top-

level” methodology doesn’t work in 
processor design

     •  Various size of blocks => Need grouping/
merging features in floorplan tools

     •  Memory blocks => Need hierarchical P&R

     •  Huge interconnection bandwidth between 
blocks (bypassing) => Need Global Pin 
Optimization (GPO)

     •  0.35u: Wiring delay  dominates gate delay      
=>  Need GPO and Area-based router





• Benchmark Results

UTDSP Quick Facts:   Die size: 7.2 x 7.2 mm
                                      170,000 gates
                                      20KByte On-chip SRAM

Texas 
Instruments 
TMS320C62

Philips 
R.E.A.L 
DSP (Core)

The UTDSP

Clock 200 MHz 70 MHz 70 MHz

Pin count > 400 pins 105 pins

Func. Units 8 10 7

FIR 4, 
N_coeff, 
M_output 
smaples

Mx( N+8)/2 
+ 6 cycles

~Mx(N+7)/2  
+ 8 clcles

M x (N+6) /2 
+ 6 cycles



• S.O.C Solution for Low-Cost Low-
Power Telecommunication and 
Consumer applications

     •  The UTDSP core implemented in 
synthesizable VHDL can be easily integrated 
with other system blocks as an IP core

     •  Provide a GUI-based architecture simulator 
to help desingers to evaluate/modify the 
UTDSP core

     •  Provide an interactive assembly debugger 
comparable to any commercial counterparts
Single-step trace, set break-point, memory 

location probing. 



• Conclusion: What has been done
     •  RTL level VHDL for UTDSP (10,000 lines)

     •  UTDSP Long-instruction packer and 
assembler ( 5,000 line C++ with template)

     •  Hierarchical P&R flow using PDP + Silicon 
Ensemble + Cadence 1999a

     •  GUI-based assembly debugger and simulator 
(6,000 lines in Java )

     •  Potential commercialization will benefit the 
Canadian industry 



The Assembly Debugger





Before Logic Merging: (Cadence PDP3.4C)



After Logic Merging: (Cadence PDP3.4C )



Global Pin Optimization (Cadence PDP 3.4C )



Hierarchical P&R using PDP3.4C, Silicon Ensemble 5.2



Finalized Grouping and Floorplan



Top-level Routing (Silicon Ensemble 5.2 )



• Java-HDL System ( Experimental, 
Not shown in TEXPO99 )

     •  Use Java language to describe digital design

     •  Embedd timing info into wires, and ports so 
that wire delay can be estimated in early 
design stage.

     •  Schematic is automatically generated and is 
used for visualized simulation 
=> Important for DSP ASIC or pipelined 

design. You can observe any internal wires 
without using waveform simulator

     •  Synthesizable VHDL is automatically created



     •  Java-HDL code example:
           public class Register ...
           {
                Inport p1;
                Inport p2;
                   ...
                Wire w5 = new Wire(4);   // a 4-bit wide bus
                Wire w6 = new Wire(1);   // one -bit
                   ..
                if ( rst.value == 1 )
                    w8.drive(0);
               else if ( event1(clk)  )
                    w8.drive(D);
                       .



Java-HDL Simulation System


