V2.14

GENERALIZED CASCADE VITERBI DECODER —
A LOCALLY CONNECTED MULTIPROCESSOR
WITH LINEAR SPEED-UP

Gennady Feygin

Patrick Glenn Gulak

Paul Chow

Dept. of Electrical Engineering, University of Toronto, Canada

ABSTRACT

A family of multiprocessor architectures implement-
ing the Viterbi Algorithm is presented. The family of
architectures is shown to be capable of achieving an in-
crease in throughput which is directly proportional to
the number of processors when the number of processors
is smaller than the constraint length of the code v. The
hardware utilization of nearly 100% aud availability of
deep pipelining inside each processor are demonstrated.
An implementation proposal for a constraint length v =
14 Viterbi Decoder based on the proposed family of ar-
chitectures is presented. The proposed thirteen-processor
decoder is intended to be compatible with specifications
for the “Galileo” space probe currently being developed
by the Jet Propulsion Laboratory.

1 INTRODUCTION

With the growing use of digital communications, there has
been an increased interest in advanced coding techniques that
yield higher coding gain and permit transmission of larger quan-
tities of data over the same channel. As throughput require-
ments increase, decoders must be able to operate at higher clock
speeds. An alternative to higher clock speeds is to utilize the
parallelism inherent in the decoding algorithm by splitting the
computations between multiple processors, with each processor
performing a part of the ensemble of computations.

A number of multiprocessor architectures have been pro-
posed for Viterbi Decoders, including one- and two-dimensional
systolic meshes [1] and the perfect shuffie layout [2]. All of
these architectures provide throughput increase that is sublin-
ear (i.e. to increase the throughput by a constant factor more
than a constant growth in area is required [1]). An architec-
ture that is closely related to the perfect shuffle, known as the
crenellated-FFT [3], is currently being implemented at the Jet
Propulsion Laboratory. Yet another family of architectures for
Viterbi Decoding has been introduced recently by [4], and these
architectures are capable of providing the throughput increase
that is linear in the number of processors. This family of archi-
tectures is based on collapsing multiple stages of a trellis into a
single stage of a “super-trellis”. Unfortunately, while through-
put increase is linear in the number of processing elements, it is
also inversely proportional to the number of states in the trellis
[4]. Since the number of states in the trellis grow exponentially

OThe authors gratefully acknowledge financial support provided by the
Natural Sd and Engineering R h Council of Canada and by the
Information Technology Research Center of Ontario.

with the constraint length of the code, this architecture is of
benefit only in the case of the short-constraint length codes.

Tn 1973 Forney [5] pointed out that the trellis diagram of the
Viterbi Algorithm differs from the computational flow diagram
of the Fast Fourier Transform (FFT) in length only. Recently
[1] have been able to take advantage of this relationship between
the Viterbi Algorithm and FFT by proposing a novel “cascade”
Viterbi Decoder that is closely related to the “cascade” design
for the pipelined FFT computation [6], but requires an addi-
tional “recirculation” connection from the outputs of the last
processor to the inputs of the first processor. While the cascade
Viterbi Decoder architecture has a topology that is regular and
requires only local interprocessor communications, making it
suitable for VLSI implementation, there are also certain short-
comings inherent in this architecture. The utilization of the
processors and the state path memory storage elements is only
50%. In addition, a complicated dual-port switch is required
to perform the re-ordering of the state path metrics.

2 THE TRELLIS DIAGRAM: MAPPING AND
SCHEDULING OF OPERATIONS

Consider a portion of the 16-state (N = 16) trellis diagram
for the (2, 1,4) convolutional code illustrated in Figure 1. The
nodes in the trellis diagram correspond to the Add-Compare-
Select computations and the edges indicate dependencies be-
tween the ACS computations of the sucessive stages of the trel-
lis. Given a number of individual ACS units we can derive a
large number of possible assignments of the nodes of the trel-
lis diagram to the physical ACS units. In this paper we will
concentrate on a particular assignment — all computationsin a
given stage of the trellis are performed on a single ACS unit. We
must also select a schedule of computations in each ACS unit
which does not violate causality. If more than one such schedule
can be found, we may then choose one schedule that maximizes
the utilization of the hardware. The solid lines in Figure 1
give an indication of the scheduling constraints imposed by the
causality requirement. For instance, in order to perform the
first ACS computation of the last (rightmost) stage, two ACS
computations must be performed in the previous stage, four
in the one before that; a total of N = 16 computations in the
leftmost stage must be performed. Note that Figure 1 indicates
two ACS computations being performed simultaneously in any
stage of the trellis — in a manner reminiscent of the FFT but-
terfly computation . Since exactly two path metrics (say pma;
and pmg;41) are used to compute two path metrics (pm; and
pmiyny2) of the next stage, it is advantageous to perform ACS
operations two at a time.

- 1097 -

CH2977-7/91/0000-1097 $1.00 © 1991 IEEE

3 THE CANONIC CASCADE
ARCHITECTURE

The Canonic Cascade architecture of the Viterbi Decoder
was originally introduced in [I]. In the CCVD: architecture
log(N') processors are arranged in a ring, together with local
memory and switches. With the exception of the feedback path
connection and the input branch generation circuitry, the ar-
chitecture of the CCVD is identical to that used for bitonic
sorting. The Canonic Cascade layout is regular and compact,
has only local (nearest neighbour) communication so that par-
titioning the decoder into multiple chiips (or boards) is straight-
forward. The CCVD layout can be easily extended to accom-
modate any problem size by inserting more processors, memory
and switches in the ring structure.

There are four types of circuits required to implement the
state information update section of the CCVD. In the binary in-
put afphabet case each processor (PEj, 0 < j < v — 1) consists
of two. Add:-Compare-Select (ACS) circuits in a butterfly con-
figuration. With the exception of the last processor in the ring,
PE,_y, each processor PE; is followed by two Shift Registers
of length 2/, and a cross-point switch, SW;. The last proces-
sor, PE,.;, is followed by a special switch. SW,_y, which can
be thought of as a special dual port memory with a controller
dedicated to re-ordering the state information fiow from PE,_;
to PEy. The efficient implementation of this re-ordering dual
port memory is discussed in Section 5.

In addition, branch generation circuitry consists of two parts:
a Received Symbol FIFO and a set of Branch Generators(BMG}),
one for each Processor (PE;). Every Trellis.Stage.Time the
FIFO: queue receives a quantized channel output symbol r; (an
n-tuple). The output of the FIFQ is routed in a rotating fashion
toone of the Branch Metric Generators by a synchronous sam-
pler at the time corresponding to the beginning of the new cycle.
of the state transition evaluations in the corresponding Proces-
sor. Upon receiving a channel output symbol, the Branch Met-
ric Generator will proceed to compute branch metrics for every
state transition present in the state transition diagram (trellis).
Since Shift' Register sizes between Processors are not identical,
Branch Metric. Generators will fetch symbols from the FIFO:
queue at intervals that are not evenly distributed in time, thus
the use of a FIFO queue (i.e. an elastic buffer), and not just a
Shift Register is required.

Finally, Survivor Sequence storage and retrieval circuitry
is required to: produce the decoded sequence. Two methods
are available: the Register Exchange Method and the Trace-
back: Method. The Register Exchange method is conceptually
simpler, while the Traceback method consumes less area and
wiring bandwidth. Either one of two Survivor Sequence Man-
agement schemes can be used in a Canonic Cascade Viterbi
Decoder. Survivor Sequence Management techniques are fur-
ther discussed in [7].

Figure 2(a) provides a detailed illustration of the operation
in: the ACS datapath corresponding to the CCVD architecture
of a CCVI decoder for a binary input alphabet (¢ = 2), con-
straint length v = 4, and number of states N' = ¢* = 16. All the
state path metrics associated with the same stage of the trellis
are updated in one Processor. The numbers inside boxes that
represent: Processors are not actual path metrics, rather they
represent the state number. For instance, numbers 0-and 1 on

-the left and 0 and 8 on the right indicate that the path metrics

of states 0 and 8 of a given Trellis Stage Time are computed
from the path metrics of the states 0 and 1 of the previous Trel-
lis.Stage.Time. Bach successive Processor begins computations
before the previous Processor has completed its computations,
so- that stages associated with the next stage of the trellis can
be processed even before all states associated with the previous:
stage have been computed. Note that computations associ-
ated with different stages of the trellis are staggered unevenly:
whereas PE; starts computing two clock cycles after PEy, PE;
has to be delayed by three more clock cycles, and PE; by five
more. Thisexplains the necessity of using FIFO buffering in the
sampled data. input section. The switching control algorithm
for §Wy through W, ; is straightforward: each Switch, SW;,
alternates between straight-through and criss-cross configura-
tions with: a period of 2/, while Switch $W,_; is significantly
more complex, and can best be described as a shift register with
insert capabilities. Shifting and insertion are done according to
a. predetermined algorithm to perform reardering of the state.
information. This allows inputs te PEg to arrive in proper or-
der [1]. The special switch SW,_; will be analyzed in greater
detail in Section 5.

When operating in the manner described, the Cascade De-
coder decodes v bits every 2¥ clock cycles. It is apparent from:
Pigure 2(a) that each of the v Processors in the system will be
idle for one-half of the time, leading to a speed-up of »/2 com-
pared to a uniprocessor Viterbi Decoder. It may be possible to
increase the utilization of the CCVD by using it to decode two
interleaved streams. of data. One can also ascertain that each
storage location within the CCVD: is only utilized one half of
the time, and, since the total amount of memory storage re-
quired: is equal to the number of states, 2, times the number
of bits required to store one path metric, wpm, the total size of
the path metric memory inside the CCVD is 2 X 2* X wym bits.

An extension of the CCVD-to arbitrary, non-binary (¢-ary)
input symbol alphabets is straightforward and is closely related
to the radix-q extension of the Fast Fourier Transform [6}. Uti-
lization of the processors and path metric storage locations in
the cases of a g-ary alphabet: will be I/q.

4 THE FOLDED CASCADE ARCHITECTURE

In the previous section we have pointed out that the CCVD
implementation: can be efficiently laid out by exploiting local
wiring and replication of the. processars, switches and shift reg-
isters. However, utilization of the storage elements and the
path metric computation circuitry is low (1/2 for the binary
alphabet CCVD: and L/g for g-ary alphabets). Let us consider
the following question: is it. possible to modify the CCVD: so
that each processor is utilized 100% of the time? One potential
solution is to employ half as many processors, each one fully
utilized.

This is the basis for the Folded Cuascade Viterbi Decoder
(FCVD). Rigorous proof that causality is nowhere violated, and
that in every stage every state will be computed before it is used
in the next stage is given in [7}. The proof consists of four parts:

o Inter-stage Delay Computation — a general expression is

derived for the minimum number of clock cycles between
the time the first path metric is available from the j-th
stage and the time the first computation: in the j + L-st
stage is able to begin.

- 1098 -

o Local Time Computation — a general expression is de-
rived for the number of clock cycles between the time the
first path metric is available from the j-th stage and the
time the path metric for a given statea,_1a,_2...a2a100
is available from the j-th stage.

o Acceptance Time Computation — a general expression is
derived for the number of clock cycles between the time
the first path metric is required at the inputs of the zeroth
stage and the time the path metric of a particular state
@,.1Gy-2 . . .G201Gg is required at the inputs of the zeroth

stage.

Causality Check — the Inter-Stage Delay and Local Time
are added together to form Generation Time. We add
2v=1 (i.e. number of clock cycles required to complete
all path metric computations of the previous stage) to
the Acceptance Time to derive Consumption Time. We

then verify that the Generation Time is no larger than .

the Consumption Time in order for causality to be main-
tained.

Figure 2(b) demonstrates how computations for the 16-state
Viterbi Decoder can be performed on two processors instead
of four, as illustrated in Figure 2(a). The new design utilizes
all processors and memory locations 100% of the time, while
keeping all the advantages of the CCVD (regular structure,
modularity, local communications).

Having discovered CCVD and FCVD architectures (with »
and v/2 processors respectively), it is natural to ask whether
other similar architectures exist with the number of processors
that is not equal to v or v/2. It turns out that it is indeed pos-
sible to extend the FCVD and the CCVD architectures into a
family of architectures, known as Generalized Cascade Viterbi
Decoders (GCVD) [7], with from one to v ~ 1 processors that
can be used to decode a single data stream with nearly 100%
utilization and simultaneous deep pipelining of the ACS oper-
ation. When multiple interleaved data streams are decoded,
the number of the processors that can be be used with 100%
utilization is v — 1 times the number of the interleaved data
streams.

When decoding a single stream of data, the utilization of
each processor will be [7]

1
U(k,d) = min 2v-1 . (1)
2v=1pkxd-2v=F'-14| ;A [x(2v-1-1)

Here, d is the pipelining depth of the ACS module, and & is
the number of processors. Note that in addition to the primary
linear speed-up region which runs from k = 1 to k = v -1
there are also secondary, tertiary and so forth linear speed-up
regions. As is apparent from Equation 1 these linear regions
will have a slope that is inversely proportional to 1 + l;fTJ ,
indicating poor utilization in decoding one stream of data. On
the other hand, n interleaved streams of data(n > 1 + l;ﬁj)
can be decoded with utilization that is very close to 100%.

As constraint length v increases, the speed-up curve will
preserve its general shape; deviation of the speed-up curve from
the straight lines indicating primary, secondary and so forth
linear speed-up regions will actually decrease.

For the same value of v, increasing d will cause a decrease
in utilization, however, increasing the pipelining depth d will
permit an increase in a clock frequency and therefore also in
the throughput. The optimum value of d for a given v will
depend on a number factors, including width (in bits) of the
path metric and the arithmetic structure inside ACS.

5 INTERSTAGE SHIFT REGISTERS AND
CROSS-POINT SWITCHES

Recall from our discussion in Section 3 that a k-processor
GCVD contains k — 1 cross-point switches and that two shift
registers are associated with every cross-point switch; the length
of each shift register following the j-th processor is 2/, 0 < j <
k — 2. The design of these modules is straightforward. One
circuit deserves special attention: a special switch, SW;._, that
is used to re-order the path metrics before re-circulating them
back to the inputs of the zeroth stage. We have stated in Sec-
tion 3 that conceptually we can consider this re-ordering to be
performed in a dual-port memory with a special sequencer that
ensures proper retrieval of path metrics.

Designing a dual-port memory with an appropriate sequencer
is possible, but not trivial, instead we can perform the neces-
sary re-ordering of the path metrics using a concatenation of the
cross-point switches with associated shift registers (7] In gen-
eral, a muti-stage network of cross-point switches is required.
However, when k is equal to v — 1 (or a multiple thereof), a
much simpler network, consisting of just a single cross-point
switch with two registers, is sufficient. In addition to the sim-
plicity of a re-circulation network design, the GCVD with v —1
processors provides the maximum possible throughput increase.

6 IMPLEMENTATION OF THE GCVD

A v = 14 GCVD with 13 processors, compatible with the JPL’s
proposed decoder for the Galileo space probe is under develop-
ment. The decoder is intended to perform error correction on
a deep space communication channel with a SNR of approxi-
mately 1dB. The code proposed by the Jet Propulsion Labora-
tory is a concatenated code, with an inner convolutional code
and an outer Reed-Solomon code. The (4, 1,14) Viterbi decoder
must be capable of decoding at a rate of 130 kb/s, with 8-bit
soft quantization. A proposed 13-processor implementation will
operate at clock frequency of 84.12 MHz. The pipelining depth
of each ACS unit is assumed to be 17, with a pipeline register
following each full adder in Add and Compare circuits as well
as one pipeline register following the Select operation.

7 SUMMARY

In this paper we have demonstrated the existence of a family of
Generalized Cascade Viterbi Decoder architectures, that can
be implemented as a ring structure with unidirectional local
communications for a binary alphabet. The proposed family of
architectures is well suited for VLSI implementation.

A GCVD with k = v — 1 Processors is especially attractive
because it achieves the highest speed-up possible in decoding
a single stream of data, with nearly 100% utilization and deep
pipelining of the ACS datapath.

- 1099 -

REFERENCES

{1} P.G. Gulak and T. Kailath. Locally Connected VLSI Architec-
tures for the Viterbi Algorithm. IEEE Journal on Selected Areas
in. Communications, 6:527-538, April 1988.

[2] P. G. Gulak and E. Shwedyk. VLSF Structures for Viterbi Re-
ceivers: Part I ~ General Theory and Applications. IEEE Journal
on Selected Areas in Communications; 4:142-154, January 1986.

[3] ©.Collins; F. Pollara, S. Dolinar, and J. Statman. Wiring Viterbi
Decoders: ("Sphttmg de Brujn Graphs). TDA Progress Report 42-
96, Jet: Propulsion Laboratory, Pasadena, California, October-
December 1988.

[4] G.Fettweis and H. Meyr. Parallel Viterbi Algorithm Implementa-
tion: Breaking the ACS-Bottleneck. IEEE Transactions on Com-
munications, 37:785-789, August 1989..

(5] G. D. Forney Jr. The Viterbi Algorithm. Proc. IEEE, 61:268-
278, March 1973.

[6). L. Rabiner and B. Gold. Theory and Applications of Digital Sig-
nal Processing. Prentice Hall of Canada, Toronto, Ontario, 1975.

[7] G. Feygin. A Multiprocessor Architecture for Viterbi Decoders

with Linear Speed-up. Master’s thesis, University of Toronto,
Toronto, Canada, 1990.

Time: PEQ: SWO PEl SW1 PE2 sW2 PE3

SW3(Special) Time ppy swo m

'S k44

Figure 1. The dependance graph of the ACS operations over
¥ — 1 stages of the trellis

SW1(Special)

e}

EEEL

V- R L. N T R VR

55 25 8 2B

Figure 2. ACS schedule for a CCVD (a) and FCVD: (b) Decoders, with ¢ = 2, v = 4.

- 1100 -

