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A Multiprocessor Architecture for Viterb1 Decoders
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Abstract—A family of multiprocessor architectures imple-
menting the Viterbi algorithm is presented. The family of ar-
chitectures is shown to be capable of achieving an increase in
throughput that is directly proportional to the number of pro-
cessors when the number of processors is smaller than the con-
straint length v of the code. The hardware utilization and the
depth of the pipelining available inside each processor are also
shown. An architecture with (v — 1) processors is found to
be particularly advantageous, since it results in the maximum
speedup and the simplest interconnection structure.

I. INTRODUCTION

ITH the growing use of digital communications,

there has been an increased interest in advanced
coding techniques that yield higher coding gain and per-
mit transmission of larger quantities of data over the same
channel. As throughput requirements increase, decoders
must be able to operate at higher clock speeds. An alter-
native to higher clock speeds is to utilize the parallelism
inherent in the decoding algorithm by splitting the com-
putations between multiple processors, with each proces-
sor performing a part of the ensemble of computations.
Much research effort has been dedicated to developing ar-
ray processors for digital signal processing (DSP) appli-
cations, including systolic arrays, wavefront arrays, and
data-flow arrays.

Recently there has been increased interest in multipro-
cessor implementations of decoders for the class of error-
correction codes known as convolutional codes, and in
particular, in a decoding technique known as the Viterbi
algorithm [1]. An introduction to the Viterbi algorithm
can be found in [2]. The Viterbi algorithm has found
widespread acceptance in deep-space communication net-
works [3]-[5], magnetic disk memory [6], and adaptive
channel equalization [7].

A number of multiprocessor architectures have been
proposed for Viterbi decoders, including one- and two-
dimensional systolic meshes [8], [9] and the perfect shuf-
fle layout [10]. All of these architectures provide a
throughput increase that is sublinear (i.e., to increase the

Manuscript received December 3, 1990; revised October 12, 1992. The
associate editor coordinating the review of this paper and approving it for
publication was Dr. John Eldon. This work was supported by the Natural
Sciences and Engineering Research Council of Canada and by the Infor-
mation Technology Research Center of Ontario.

The authors are with the Department of Electrical and Computer Engi-
neering, University of Toronto, Toronto, Ontario, Canada M5S 1A4.

IEEE Log Number 9210108.

throughput by a constant factor more than a constant
growth in area is required [19]). An architecture that is
closely related to the perfect shuffle, known as the cre-
nellated-FFT [11], is currently being implemented at the
Jet Propulsion Laboratory. Yet another family of archi-
tectures for Viterbi decoding has been introduced recently
by [12]-[14], and these architectures are capable of pro-
viding throughput increase that is linear in the number of
processors. Unfortunately, throughput increase is also in-
versely proportional to the number of states in the trellis
[14]. This architecture is of benefit only in the case of the
short-constraint length codes, since the number of states
in the trellis grows exponentially with the constraint length
of the code.

Recent work in [9] has been able to take advantage of
the relationship between the Viterbi algorithm and the fast
Fourier Transform (FFT) [7] by proposing a novel ‘‘cas-
cade’’ Viterbi decoder that is closely related to the ‘‘cas-
cade’’ design for the pipelined FFT computation [15], but
requires an additional ‘‘recirculation’’ connection from
the output of the last processor to the inputs of the first
processor. While the cascade Viterbi decoder architecture
has a topology that is regular and requires only local in-
terprocessor communications, making it suitable for VLSI
implementation, there is one major drawback—the utili-
zation of the processors is only 50%. This paper proposes
an architecture that resolves this shortcoming and pro-
vides additional benefits, including simpler switching
structure and increased pipelining availability inside the
processor units.

II. ORGANIZATION OF THIS PAPER

We begin in Section III with a discussion of the map-
ping and scheduling of the operations in the dependence
graph of the Viterbi algorithm (trellis diagram) that are
characteristic of all members of the generalized cascade
Viterbi decoders (GCVD) family of architectures. In Sec-
tion IV we analyze the flow of computations in the ‘‘cas-
cade’’ Viterbi decoder of [9] (we will use the name can-
onic cascade Viterbi decoder (CCVD) for this
architecture).

In Section V we introduce an alternative architecture,
a folded cascade Viterbi decoder (FCVD) architecture that
uses half as many processors, but achieves a throughput
equal to that of CCVD. This is followed, in Section VI,
by a formal algebraic proof of the existence of the GCVD
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family of architectures, which leads to an interesting re-
sult about the availability of pipelining in the GCVD fam-
ily of architectures.

In Section VII we derive an expression for the utiliza-
tion of the processors in a GCVD as a function of the
number of processors k.

Section VIII contains an analysis of the cross-point
switches and interstage registers that are required to en-
sure correct spatial and temporal alignment of the path
metrics at the inputs of each processor. Section IX dis-
cusses survivor sequence memory management for
GCVD. We also compare our proposed architecture with
uniprocessor and fully parallel Viterbi decoders. Finally,
Section X summarizes the main results of this paper.

III. THE TRELLIS DIAGRAM: MAPPING AND
SCHEDULING OF OPERATIONS

Consider a portion of the trellis diagram for the (2, 1,
4) convolutional code illustrated in Fig. 1. The nodes in
the trellis diagram correspond to the add-compare-select
(ACS) computations and the edges indicate dependencies
between the ACS computations of the successive stages
of the trellis. Given a number of individual ACS units we
can derive a large number of possible assignments of the
nodes of the trellis diagram to the physical ACS units. In
this paper we will concentrate on a particular assignment:
all computations in a given stage of the trellis are per-
formed on a single ACS unit. We must also select a
schedule of computations in each ACS unit that does not
violate causality. If more than one such schedule can be
found, we then choose one schedule that maximizes the
utilization of the hardware. The solid-lines in Fig. 1 give
an indication of the scheduling constraints imposed by the
causality requirement. For instance, to perform the first
ACS computation of the last (rightmost) stage, two ACS
computations must be performed in the previous stage,
four in the one before that; a total of N = 16 computations
in the leftmost stage must be performed. Note that Fig. 1
indicates two ACS computations being performed simul-
taneously in any stage of the trellis, in a manner reminis-
cent of the FFT butterfly computation. Since two path
metrics (say pmy; and pmy; . |) are used to compute two
path metrics ( pm; and pm; , y/,) of the next stage and no
other path metrics, it is advantageous to perform ACS op-
erations two at a time.

IV. THE CANONIC CASCADE ARCHITECTURE

The Canonic cascade architecture of the Viterbi de-
coder was originally introduced in [9]. In the CCVD ar-
chitecture log (N) processors are arranged in a ring, to-
gether with local memory and switches. An illustration of
the CCVD decoder for ¢ = 2 (binary input alphabet),
v =4, N = ¢q" = 16 s given in Fig. 2. With the exception
of the feedback path connection and the input branch gen-
eration circuitry, the architecture of the CCVD is identi-
cal to that used for bitonic sorting [16] and the FFT [15].
The canonic cascade layout is regular and compact, and
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Fig. 1. The dependence graph of the ACS operations over » — | stages of
the trellis.
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Fig. 2. An example of the canonic cascade Viterbi decoder with binary
alphabet and constraint length 4. ACS: Add-compare-select section of the
processor. BMG: Branch metric generator. The survivor sequence man-
agement is not shown.

PE5

SW,

has only local (nearest neighbor) communication so that
partitioning the decoder into multiple chips (or boards) is
straightforward. The CCVD layout can be easily ex-
tended to accommodate any problem size by inserting
more processors, memory, and switches in the ring struc-
ture.

There are four types of circuits required to implement
the state information update section of the CCVD, as il-
lustrated in Fig. 2. In the binary input alphabet case each
processor (PE;, 0 < j < » — 1) consists of two add-
compare-select (ACS) circuits in a butterfly configura-
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Fig. 3. An example of timing in the path metric update circuitry of the canonic cascade Viterbi decoder with binary alphabet
and constraint length 4. The latency of each processor is assumed equal to one clock cycle.

tion. With the exception of the last processor in the ring,
PE, _,, each processor PE, is followed by two shift reg-
isters of length 2/, and a cross-point switch, SW;. The last
processor, PE, _,, is followed by a special sw1tch SW,_,,
which can be thought of as a special dual port memory
with a controller dedicated to reordering the state infor-
mation flow from PE, _, to PE,. The efficient implemen-
tation of this reordering dual port memory is discussed in
Section VIII.

In addition, branch generation circuitry consists of two
parts: a received symbol FIFO buffer (FIFO in Fig. 2) and
a set of branch metric generators (BMG,), one for each
processor (PE)). Every trellis_stage_time the FIFO buffer
receives an n-tuple of quantized channel output symbol,
r;, the output of the FIFO is routed in a rotating fashion

to one of the branch metric generators by a synchronous
sampler at the time corresponding to the beginning of a
new cycle of state transition evaluations in the corre-
sponding processor. Upon receiving a channel output
symbol, the branch metric generator will proceed to com-
pute branch metrics for every state transition present in
the state transition diagram (trellis). Since shift register
sizes between processors are not identical, branch metric
generators will fetch symbols from the FIFO queue at in-
tervals that are not evenly distributed in time, thus the use
of a FIFO queue (i.e., an elastic buffer), and not just a
shift register is rcqu1red

Finally, survivor sequence storage and retrieval circui-
try is required to produce the decoded sequence. Two
methods are available: the register exchange method and
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the traceback method. The register exchange method is
conceptually simpler, while the traceback method con-
sumes less area and wiring bandwidth. Either one of two
survivor sequence management schemes can be used in a
canonic cascade Viterbi decoder. Survivor sequence man-
agement techniques are further discussed in [17], [19].

A minor modification of the CCVD is possible, where
shift register sizes between processors are placed in order
of decreasing length; this is analogous to switching be-
tween decimation-in-time and decimation-in-frequency
algorithms for the fast Fourier transform. The scheme de-
pends only on a definition of the most significant bit in
the convolutional encoder’s shift register. Throughout this
paper, an assumption will be made that the data in the
convolutional encoder is shifted from the most significant
bit toward the least significant bit, but the alternative def-
inition would work just as well

Fig. 3 provides a detailed illustration of the operation
in the ACS data-path corresponding to the CCVD archi-
tecture of Fig. 2. All the state path metrics associated with
the same stage of the trellis are updated in one processor.
The numbers inside boxes that represent processors are
not actual path metrics, rather they represent the state
number. For instance, numbers 0 and 1 on the left and 0
and 8 on the right indicate that the path metrics of states
0 and 8 of a given trellis_stage _time are computed from
the path metrics of the states 0 and 1 of the previous trel-
lis_stage_time. Each successive processor begins com-
putations before the previous processor has completed its
computations, so that stages associated with the next stage
of the trellis can be processed even before all states as-
sociated with the previous stage have been computed.
Note that computations associated with different stages of
the trellis are staged unevenly: whereas PE, starts com-
puting two clock cycles after PE,, PE, has to be delayed
by three more clock cycles, and PE, by five more. This
explains the necessity of using FIFO buffering in the sam-
pled data input section. The switching control algorithm
for SW, through SW, _, is straightforward: each switch,
SW;, alternates between straight-through and criss-cross
configurations with a period of 2/, while switch SW, _, is
significantly more complex, and can best be described as
a dual-port memory with a controller. Writing and reading
is done according to a predetermined algorithm to perform
re-ordering of the state information. This allows input to
PE, to arrive in proper order [9]. The special SW,_, will
be analyzed in greater detail in Section VIIIL.

When operating in the manner described, the cascade
decoder decodes » bits every 2” clock cycles. It is appar-
ent from Fig. 3 that each of the » processors in the system
will be idle for one half of the time, leading to a speedup
of » /2 compared to a uniprocessor Viterbi decoder. It may
be possible to increase the utilization of the CCVD by
using it to decode two interleaved streams of data. One
can also ascertain that each storage location within the
CCVD is only utilized one half of the time, and, since the
total amount of memory storage required is equal to the
number of states, 2", times the number of bits required to
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store one path metric, w,,, the total size of the path metric
memory inside the CCVD is 2 X 2" X w,,."

An extension of the CCVD to arbitrary, nonbinary
(g-ary) input symbol alphabets is straightforward and
closely related to the radix-g extension of the fast Fourier
transform [15]. Utilization of the processors and path
metric storage locations in the cases of a g-ary alphabet
will be 1/q.

V. THE FOLDED CASCADE ARCHITECTURE

In the previous section we have pointed out that the
CCVD implementation can be efficiently laid out by ex-
ploiting local wiring and replication of the processors,
switches, and shift registers. However, utilization of the
storage elements and the path metric computation circui-
try is low (1/2 for the binary alphabet CCVD and 1/q
for the g-ary alphabets). Let us consider the following
question: is it possible to modify the CCVD so that each
processor is utilized 100% of the time? One potential so-
lution is to employ half as many processors, each one fully
utilized.

This is the basis for the folded cascade Viterbi decoder
(FCVD). Rigorous proof that causality is nowhere vio-
lated, and that in every stage every state will be computed
before it is used in the next stage will be supplied in the
next section. Fig. 4 demonstrates how computations for
the 16-state Viterbi decoder can be performed on two pro-
cessors instead of four, as illustrated in Fig. 3. The new
design utilizes all processors and memory locations 100%
of the time, while keeping all the advantages of the CCVD
(regular structure, modularity, local communications).

Having discovered the CCVD and FCVD architectures
(with » and » /2 processors respectively), it is natural to
ask whether other similar architectures exist with a num-
ber of processors that is not equal to » or v /2. In the next
section we will demonstrate that such architectures do in-
deed exist and derive their general properties, including
the hardware utilization and speedup available.

VI. FORMAL DERIVATION OF THE GENERALIZED
CASCADE ARCHITECTURE FOR VITERBI DECODERS

A. Interstage Delays in Cascade Viterbi Decoders

Before performing the formal derivation of the GCVD,
it is helpful to examine the interstage delays in a cascade
Viterbi decoder. We have already referred to the not-in-
place nature of the computations. We will now elaborate
further on this property to derive the general expression
for the interstage delays. This expression will be ex-
ploited later in this section.

'Here we ignore the fact that some memory locations inside the special
switch SW, _, are empty for more than half of the time. There exists an
alternative implementation of the special switch that, while simpler con-
ceptually (dual-port memory with a special sequencer), requires a much
more complex illustration. It is sufficient to note that an equivalent design
exists, and that in dual-port memory design all memory locations will be
used 1/2 of the time.
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Fig. 4. An example of timing in the path metric update circuitry of the
folded cascade Viterbi decoder with binary alphabet and constraint length
4. The latency of each processor is assumed equal to one clock cycle.

Let us adopt the following notation for the binary rep-
resentation of the state number: {a,_,a,_» * - - a»a,dp}.

Definition 1: Let us define local time (It) as the number
of clock cycles from the beginning of the first computa-
tion for a given stage of the trellis. Since all stages of the
trellis are uniquely mapped to the processors, with each
stage assigned to a processor equal to the stage number
modulo the number of processors (v/2 in the case of the
FCVD, v for the CCVD), we can also refer to It as the
local time of the processor during the particular stage of
computations.

Consider an example of a Viterbi decoder with g = 2,
v = 4. The trellis diagram for this decoder, with the but-
terfly number indicated, is shown in Fig. 5. Suppose that
all path metrics begin in natural increasing order of state

Stage
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Fig. 5. A trellis diagram of the state transitions for the Viterbi decoder
with ¢ = 2, » = 4. State numbers and butterfly numbers are as indicated.
k' = k mod (» — 1), where k is the stage number; the trellis is periodic
with a period » — 1.

numbers, as shown in Fig. 5. The first evaluation utilizes
path metrics for states {0000} and {0001} to produce path
metrics for states {0000} and {1000}. Note that while we
are manipulating the path metrics, their ordering depends
on the state number and is independent of the actual value
of the path metric. Ordering of the path metrics after zero,
one, two, and three stages of the decoding is illustrated
in Fig. 5. Suppose we wish to begin performing compu-
tations of stage one as soon as possible after the computed
path metrics begin to arrive from the zeroth stage. It is
apparent that the processor for stage one cannot begin
computations, immediately after the first two metrics for
states {0000} and {1000} have arrived, since the path
metrics for the states {0001} and {1001} have not yet
been computed; it is necessary to wait for one more clock
cycle until these path metrics become available. This wait
time increases to two clock cycles for the second stage
and four clock cycles for the third stage (plus the latency
of the ACS).

In the zeroth stage the path metrics of the states are
used in the natural order. The path metrics leave the zer-
oth stage in the order derived from their original order by
circularly shifting the state number by one bit to the right.
This is a direct consequence of the way the convolutional
encoder operates. Recall that the contents of the shift reg-
ister in the convolutional encoder are shifted to the right
every clock cycle, with the LSB (a 1 or a 0) shifted out
and a new MSB shifted in. Since all stages of the Viterbi
decoder are identical, we can derive the ordering of the
path metrics generated for any number of stages by per-
forming the appropriate number of circular rotations on
the state number. Consider the general case of the Viterbi
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decoder with a binary alphabet (g = 2) and N = 2" states.
We can give the following definition of the schedule for
the cascade Viterbi decoder:

Definition 2: A schedule for any Viterbi decoder is de-
fined by the time when the inputs (state path metrics) for
a particular butterfly computation are required.

For a generalized cascade Viterbi decoder we choose a
particular schedule such that the local time at which the
inputs of a particular butterfly are required is a circular
rotation to the left of the bits representing the butterfly
number. The number of bit positions by which the bit rep-
resentation of a butterfly number must be rotated is equal
toj' = jmod (v — 1).

In particular, computation of the ACS butterfly
{a,_1a,_5 - -+ aya,} in the jth stage will begin at local
time

t=1{a, ; _ya,_;_, -

Haya, " ay—j'}-

Definition 3: For a pipelined processor, butterfly com-
putations start every clock cycle. If the pipeline is d stages
deep (latency = d) then the output from the ACS butterfly
{a,_1a,_; - - aya,} in the jth stage will be produced
at

t=Aa, ;a2 @waa,_, " -a,_;} +d

Or, equivalently, using the one-to-one correlation be-
tween the butterfly number and the state numbers of the
inputs and the outputs of that butterfly, we can state that
in any stage j of the cascade Viterbi decoder the time at
which path metrics of the states {a, _,a,_, - - * a,a,0}
and {a,_,a,_, ' - - a,a, 1} are required is at local time

It = {avfj’—lav—j’72 i maya, o coa, gy

and the local time at which the path metrics of the states

{0a,_1a,_, - - @a} and {la,_ja,_, - - - aya,} are
available from stage j is
It = {au—j'—lay—,'—z Tt aaa, gy vt au—,'} +d

where d is the latency (number of pipeline stages) of the
processor, j' = jmod (v — 1).

The schedule that defines the cascade Viterbi decoder
is just one of many equivalent (in terms of performance
and resultant implementation) possible schedules.

We have briefly mentioned the fact that computations
in stage j + 1 cannot start immediately after the first pair
of state metrics have become available from stage j. Def-
initions 1 through 3 allow us to derive the minimum nec-
essary delay between stages j and j + 1 as a function of
the stage number ;.

Definition 4: The interstage delay (5;) is the minimum
number of clock cycles between the time the first pair of
path metrics is available from the jth stage and the time
the first computation in the j 4+ 1st stage is able to begin.

Theorem 1: For the GCVD with k processors, the in-
terstage delay, 6, 0 < j < k — 1, is equal to 2/mod(r=1)
and guarantees that the computations in the j + 1st stage
can proceed in a pipelined fashion, with a new set of in-
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puts available every clock cycle until all computations of
the j + st stage are completed.

For proof of this theorem refer to [17].

From our discussion of the causality condition in Sec-
tion IIT and Theorem 1 it follows that the GCVD schedule
is the optimum (or perhaps one of the many equivalent
optimum schedules), since computations in every stage
begin as soon as permitted by the causality condition and
computation of every stage of the trellis proceed without
interruptions until all ACS operations of a given stage of
the trellis have been performed.

B. Timing of the Generalized Cascade Architecture

In this section we proceed to investigate the ordering
of operations in the complete ACS datapath, and conse-
quently move from consideration of local times (It) to a
global perspective. To differentiate from local time of the
previous subsection, we use the designation global time
(gt) to refer to the overall time index of the system. For
instance the global time (gt) is entirely equivalent to the
time index in Figs. 3 and 4. We can now proceed to eval-
uate the global time (gt) at which a given state path metric
will be available from stage j, and to show the delay re-
quired between PE, | and PE, so that the path metrics
can be recirculated. The global time will consist of three
parts: the combined interstage delay of all the stages from
0toj — 1; the combined latencies of the stages O through
j — 1, and the local time at which the path metric of a
given state is evaluated in the jth stage.

The sum of the interstage delays is T2 ¢ 2.

The sum of the latencies for stages O through j — 1 is

j=1

2 d=jxd.
i=0
Finally, the local time of the jth stage at which a given

state path metric will become available is

t=1{a,_;_\a,_; 5 " @;aa, " a,_;} +d

Thus the global time at which path metrics of the states

{0a,_ia,_, *** aya,} and {la,_,a,_, * * * aya;} will
be available from stage j — 1 is
j—1
gty = 22" + (j+ d
i=0
+{a,_; 1a,_j 2 maa, av—j’}'
1)

These path metrics will now be forwarded to PE, for
the purpose of computing the path metrics of stage j. PE,
is busy with the path metrics of stage O up to gt = 2"~ "
It can then begin to accept the inputs for stage v in the
same order as that used for stage O (i.e., in the natural
increasing order of state numbers). Let gt, be the time at
which PE, can accept path metrics of state {ya,_,a,_,

- ayay}

gt, = 27"+ {ya,_1a,_, - a}. (2)
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To maintain causality we require that the information
be produced before it is consumed, therefore gt, = gt,
for any state. The worst case state can be found by using
the following rule: If a bit a, occupies a higher bit position
in the gt; expression than in the gt, expression, then set
it to a 1, otherwise set it to a 0. Finally set ¢ to a 0, since
this choice of { makes meeting the criterion gt, = gt,
more difficult (i.e., minimize the expression on the left
hand side of the inequality, if the inequality is true when
¥ = 0 then it is also guaranteed to be true when ¢ = 1,
but the opposite is not always true).

We will compute the criteria for inequality gt, = gt
to be true by first considering the case of 1 < k < »,
followed by the more general case of k any integer greater
than or equal to one.

Let us substitute j = k — 1, (1 < k < ») into (1), which
gives the following value of the global time at which the
path metrics of the state {ya,_;a,_, - - - a,a,} (where
Y can be a 0 or a 1) will become available from processor
k—1:

=214 kxd-1

+ {a,_xa,_x-1 " waya, .10,

avfk+l}' (3)

The global time at which the path metric of the state
{¥a,_,a,_, - - - aya,} will be required at the inputs of
processor 0 will be the same as in (2) or

gt =27+ {Ya,_1a,; - - - &} “)
The worst case state will again be where ¢ = 0, set a
bit g; to a 1 if it occupies a higher bit position in the gt,
expression than in the gt, expression, otherwise set bit a;
to 2 0. From comparison of (3) with (4) it is apparent that
bits a, _4, @, _x_1, * ' * , 4y, a; must be set to a 1 and the
rest of the bits to zero.
Substituting these values into inequality gt, > gt gives
v—k—1

2! +{m 1 - 113‘

11

22"“+kxd+[MM}—l.

(5)

The left-hand side of this inequality will become
v—k—1

1y {MOO ® G“’a}
=2kt - (6)

The right-hand side of this inequality will become

k—1
2““+kxd+[rll\v\rw\}—l

=214+ kxd-1. )

We can now restate Inequality 5 using the results of (6)
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and (7) and solve for d

211-/(—1

d <
k

®)

We may conclude now that for a constraint length »
cascade Viterbi decoder an implementation with & pro-
cessors (1 < k < » — 1) exists providing |2 %' /k]
> 1, and this implementation utilizes every one of the
processors 100% of the time. In addition, the ACS cir-
cuitry inside every processor can be pipelined with up to
| 2"7%~1/k| pipeline stages available in the data path.
This is extremely important, since pipelining allows us to
increase the clock rate (and throughput) of the Viterbi de-
coder. This increase in throughput due to pipelining is
multiplied by the throughput increase that is made possi-
ble by utilizing k processors running in parallel, with each
processor utilized 100% of the time.

If the number of processors (k) selected leads to Ine-
quality 8 bring violated, then an extra delay, A, must be
added between the beginning of the last computation as-
sociated with stage i in PE;,q; and the beginning of the
first computation associated with stage i + k in PE;nq-
The amount of extra delay is A = k x d — 2" %!

Definition 5: The utilization U(k, d), when decodmg
a single data stream, is equal to the number of clock cycles
required to update all the path metrics associated with a
given trellis_stage_time, T,, divided by T, + A.

The operation of a GCVD will consist of alternating
periods of performing path metric updates for 7, = =21
clock cycles and an idle period (perhaps of length zero)

lasting A = k x d — 2° 77! The utilization of each
processor will be
1
U(k, d) = min ! ©
2 Ntk xd=-207FT

It is important to note here that this expression for the
utilization of the GCVD is only true for | < k <= » — 1.
Thus it is necessary to analyze the utilization of the GCVD
with k = » separately.

We can also derive the value of U(k, d) for any k =
v. Define k' = k mod (v — 1). The general expression
for gt, becomes

k-2
gtl = .;0 21., + kXxd+ {a,,_kra‘,,k'_l
10

taa 14, 14y, 2 " " ay_ g1}

Equation (4) for gt, remains unchanged.

Once again, causality requires that gt, > gt,. The worst
case state will again be one where Y = 0, bit a; setto a 1
if it occupies a higher bit position in the gt, expression
than in the gt, expression, otherwise bit a; is set to a 0.
From a comparison of (10) and (4) it is apparent that bits
A,_p, @, _gr—y " " » 0y, a; must be set to a 1 and the rest
of the bits to zero.

Substituting these values into the inequality gt, > gt,
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gives
k' v—k'—1
»-1 4+ {0000 M}
k-2
= EO 2" +kxd

v—k' k-1

T W] an

The left-hand side of this inequality will become
y—k'—1

o
271 4 [’00 —- 00 M}

=2l g kol g, (12)

The right-hand side of this inequality will become
-2 v—k' k-1
24 kxd s (T 60 o)
0

P
=2"'"4+hkxd-1
k
l—J x 2271 = 1.

v — 1

(13)

We can now restate Inequality 11 using the results of
(12) and (13) and solve for d

Uk, d) = min
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big A must be made to decode any number of independent
streams of data in an interleaved fashion. To decode n
interleaved streams it is necessary to set A = (n — 1) X
T,, with A = (n — 1) X T, being a condition for being
able to decode n data streams with 100% utilization. Of
course some values of » may be impossible to achieve,
since the condition

A>{k
R |

must be satisfied at all times to ensure causality is not
violated.

Note that the first term in the expression for A domi-
nates, thus increasing the value of £ by 1 changes the value
of A by a small amount only, unless increasing k by 1 will
cause an increase in | k/(v — 1) |, which increases the
value of A by a large amount. The most obvious example
of this occurs when £ is increased from » — 1 to ». Con-
sider Fig. 3, where a large delay is required if path met-
rics are forwarded to PE; from PE;; yet if we were to
remove PE;, and the path metrics were forwarded to PE,
from PE, the net result would be a much smaller number
of clock cycles during which a given processor is idle
(shorter delay), resulting in a better processor utilization.

We can now use the expression for A to derive a general
equation for utilization possible when decoding a single
stream of data for all values of k:

J x 2 ' -2 yrkxd

21/7]

2TVl 1 =2 bk xd -1

[k
v — 1

J x 27" =D

2Rt s bk xd+ LLJ
v — 1
x @27 =1
gr—k—t _ [ k 1J x (zv—l -1
s —
d = p (14)

It is apparent that no positive value of d will satisfy
Inequality 14 when k = v, therefore extra delay

k ,
A= L IJ X2 '—pD -2y xd
;-

must be added between the completion of the zeroth stage
evaluation in the zeroth processor and the beginning of
the evaluation of stage k in the zeroth processor. Once
again, it is possible to increase the delay, simultaneously
increase the number of pipeline stages available, and pro-
cess multiple streams of data in parallel, thus bringing
utilization back to 100%. It is possible to determine how

2V pkxd -2k 4 {—k

) (15)
X 2" =D

Equation (15) is true for all values of & > 0, and for k
< » — 1 it matches (9), as expected.

An extension of the results of this section for a Viterbi
decoder with a nonbinary input alphabet is presented in
[17].

VII. SPEEDUP AND PROCESsOR UTILIZATION IN GCVD

In Fig. 6 the maximum speedup (product of the number
of processors k and the utilization U(k, d) available is
plotted against the number of processors k for two partic-
ular cases » = 14 with pipelining depth d = 17 and » =
7 with pipelining depth d = 4. It is apparent that when
v = 14 even for the large value of d = 17, the speedup
is nearly linear with the number of processors k up to and
including k = » — 1 (k = 13 in this particular case) where
the speedup has its maximum value of 12.7. Note that in
addition to the primary linear speedup region which runs
from k = 1to k = vy — 1, there are also secondary, ter-
tiary, and so forth linear speedup regions. As is apparent
from (15), these linear regions will have a slope that is
inversely proportional to 1 + |k/(» — 1), indicating
poor utilization in decoding one stream of data. On the
other hand, n interleaved streams of data (n = 1 + | k/(»
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Fig. 6. Plot of speedup that can be obtained using GCVD with number of processors varying from 1 to 39 for constraint lengths
v = 7 (pipelining depthd = 4)and v = 14 (d = 17).

— 1) | ) can be decoded with utilization that is very close
to 100%.

As the constraint length » increases, the speedup curve
will preserve its general shape; deviation of the speedup
curve from the straight lines indicating primary, secon-
dary, and so forth linear speedup regions will actually de-
crease.

VIII. INTERSTAGE SHIFT REGISTERS AND
CRrROSS-POINT SWITCHES

Recall from our discussion in Section VI that a k-pro-
cessor GCVD contains k — 1 cross-point switches and
that two shift registers are associated with every cross-
point switch; the length of each shift register following
the jth processor is 2/, 0 < j < k — 2. The design of
these modules is straightforward. One circuit deserves
special attention: a special switch, SW, _ that is used to
reorder the path metrics before recirculating them back to
the inputs of the zeroth stage. We have stated in Section
IV that conceptually we can consider this reordering to be
performed in a dual-port memory with a special sequencer
that ensures proper retrieval of path metrics.

Designing a dual-port memory with an appropriate se-
quencer is possible, but not trivial, yet, we already use a

number of circuits that perform reordering of path metrics
based on our knowledge of scheduling in a given stage of
a GCVD. These circuits are the other cross-point switches
with their attendant shift registers. Admittedly their job is
somewhat simpler, since they do not perform reordering
like that required at the inputs to the zeroth stage. Yet it
seems plausible that one or more cross-point switches may
be able to accomplish the reordering required of the dual-
port memory. In this section we will demonstrate that a
combination of one or more cross-point switches with shift
registers can always implement the necessary reordeting
of the path metrics. For any combination of the constraint
length » and the number of processors k we will compute
the number of cross-point switches required and the size
of the shift registers associated with each cross-point
switch. Finally, we will demonstrate that, through elim-
ination of the equal sections of the shift registers on the
upper and lower paths between the switches, it is possible
to eliminate the delay on the critical path. Alternatively,
we can keep at least one shift register between any two
switches; the reduction in the processor utilization in this
case is equal to the reduction that would be caused by
increasing the pipelining depth of each processor by a few
(typically one) stages. A GCVD with k = » — 1 proces-
sors requires only a single cross-point switch to imple-
ment the reordering of the path metrics.
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Full analysis of the construction of the recirculation
network is quite lengthy and can be found in [17]. We
will instead give a summary of the method of construc-
tion.

Three distinct cases may be encountered in designing a
concatenation of switches:

1) Number of processors k = » — 1. A single cross-
point switch with registers of length 2* =2 is required.

2) Number of processors, k, and » — 1 are relatively
prime. In this case, exactly » — 1 switches are required.
The length of the shift registers associated with each
switch can be computed from the following formula: each
register associated with i th switch is of length 2¢ =2 ~/%4",

3) Number of processors, k, and » — 1 are not rela-
tively prime, with ged(k, v — 1) = m. In this case » — 1
+ m — 1 switches are required. The method for comput-
ing lengths of shift registers associated with each switch
is discussed in [17].

Consider three concatenated switches with shift regis-
ters illustrated in Fig. 7. It appears that this combination
of switches will delay the path metric of any state. Yet in
our analysis of GCVD timing in Section VI we have as-
sumed that the path metric on a critical path—the one with
the worst (possibly negative) difference between the local
time of its generation in the jth stage and the local time
of its consumption in the zeroth stage (after recirculation)
is sent to the inputs of zeroth stage with no delay. For-
tunately there is a simple modification to our multistage
switch network that allows for a zero delay passing of the
state path metric on a critical path. Consider a pair of shift
registers located between the first and second cross-point
switches in Fig. 7. In general, the lengths of the two reg-
isters will not be equal. Suppose, without loss of gener-
ality, that the length of the upper shift register is 2/, the
length of the lower shift register is 2", and m < [. We
may shorten each shift register by 2™, leaving a shift reg-
ister of length (2' — 2™) in the upper path and a shift reg-
ister of length (2" — 2™) = 0 (or simply a wire) in the
lower path. Since removal of equal delays does not affect
relative timing of the state path metrics taking the upper
and the lower paths, the overall effect of reordering re-
mains in place. At the same time, a delay-free path be-
comes available for the state path metric on a critical path,
as shown in Fig. 7. In a real circuit, the nonideal switches
may cause a problem when the path metric on a critical
path is routed by multiple cross-point switches without
being latched in between. This problem can be avoided
by removing fewer delay registers between any two
switches. This will have exactly the same effect on the
overall timing as would an increase in a pipelining depth
of the processors. One delay register between every pair
of switches on the route taken by the path metric on a
critical path will be sufficient to restore signal levels fol-
lowing each switch, yet because the total delay will be
equal to the number of switches O(v), the result will be
equivalent to that of increasing the pipelining depth of
each processor by at most » (in the case of the uniproces-
sor GCVD). No increase in the apparent pipelining depth
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Fig. 7. Removal of common delays from the switching network achieves
correct absolute as well as relative timing of the state path metrics.

of a GCVD with » — 1 stages will occur, because only a
single switch is required to perform the reordering of the
state path metrics in a GCVD with » — 1 stages. Sim-
plicity of recirculation network design is an added bonus
to the previously discussed advantages of a (v — 1)-stage
GCVD.

IX. DiscussioN

In our discussion of GCVD architecture we have ig-
nored the survivor sequence memory management design.
The best possible design of the sequence memory man-
agement for the GCVD is a one-pointer [18], [19] with
distributed memory: total decision memory is split into
v — 1 memory banks (one for each ACS unit); each mem-
ory bank is associated with an ACS unit. The distributed
memory structure allows decision writing to proceed over
the local wires, while slower traceback/decode read op-
eration travels around the ring of ACS units (but in the
direction opposite that of the path metric). An added ben-
efit of the distributed memory is the fact that smaller
memory modules can be operated at higher speed.

Finally, it is instructive to compare the GCVD archi-
tecture with other architectures that have been used for
Viterbi decoding. One of the authors has shown [17] that
GCVD architecture is capable of achieving a throughput
increase (vis-a-vis a uniprocessor) that grows linearly with
both the number of processors and the VLSI area re-
quired. This compares favorably with other architectures
[9] (square mesh, shuffie-exchange) for which throughput
grows as a square root of the VLSI area required.

X. SUMMARY

In this paper we have demonstrated the existence of a
family of generalized cascade Viterbi decoder architec-
tures that can be implemented as a ring structure with un-
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idirectional local communications for a binary alphabet.
An extension to a case of any g-ary input alphabet is also
possible [17]. The proposed family of architectures is well
suited for VLSI implementation.

We have demonstrated that the GCVD architecture is
capable of efficiently utilizing from one to » — 1 proces-
sors in decoding a single stream of data. We have shown
that for the generalized cascade Viterbi decoders will a
small number of stages, it is possible to achieve full uti-
lization of all processors and simultaneously pipeline the
path metric update circuitry of the processors. This makes
the GCVD architecture attractive for implementing the
Viterbi algorithm where a large constraint length, », and
a high throughput rate are required. For larger values of
the number of processors it is impossible to achieve full
utilization in decoding a single stream of data, but full
utilization may still be achieved in decoding multiple in-
terleaved streams of data. A GCVD with k = » — 1 pro-
cessors is especially attractive because it achieves the
highest speedup possible in decoding a single stream of
data, with nearly 100% utilization. Furthermore, a recir-
culation network for a GCVD with k = » — 1 stages is
guaranteed to be simpler than a recirculation network for
a GCVD with any number of stages that is not an integer
multiple of » — 1. Similarly, all GCVDs with k equal to
an integer multiple of » — 1 will provide the largest
speedup in decoding multiple interleaved streams of data.
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