A VLSI Implementation of a Cascade Viterbi Decoder with Traceback

Paul Chow
Ahmad Sayes

Gennady Feygin
Oswin Hall

P. Glenn Gulak
Satwant Singh

Grant Goodes
Steve Wilton

John Chappel
Michael B. Smith

Department of Electrical and Computer Engineering
University of Toronto

Abstract — A novel VLSI implementation of the
Viterbi algorithm based on a cascade architecture is pre-
sented. Survivor sequence memory management is imple-
mented using a new single read pointer traceback tech-
nique. The overall design for a 16-state, rate 1/2 decoder
requires about 26000 transistors and a core area of 8.5
mm? in a 1.2 um two-level metal CMOS technology.

1 Introduction

As the use of digital communications grows, advanced
coding techniques and increased throughput are needed.
Higher clock rates are required or the parallelism inherent
in the decoding algorithm must be exploited in multipro-
cessor implementations.

Recently there has been increased interest in multipro-
cessor implementations of decoders for the class of error-
correction codes known as convolutional codes. In partic-
ular, decoders that implement the Viterbi algorithm [1]
are of interest.

A number of high-performance multiprocessor architec-
tures have been proposed for Viterbi decoders, including
one- and two-dimensional systolic meshes and the perfect
shuffle layout {2, 3]. All of these architectures provide
a throughput increase that is sub-linear (i.e., to increase
the throughput by a constant factor more than a con-
stant growth in area is required [3]). An architecture
that is closely related to the perfect shuffle, known as
the crenellated-FFT [4], is currently being implemented
at the Jet Propulsion Laboratory in the receiver for the
Galileo space probe.

The Viterbi decoder described in this paper demon-
strates the viability of a “cascade ” family of Viterbi de-
coder architectures [5] that employ small-to-medium scale
parallelism to achieve a linear increase in throughput with
only a linear increase in silicon area required, when com-
pared with a uniprocessor implementation. For a 2”-state
decoder, the cascade architecture implemented here uses
v — 1 processors, as compared with a fully parallel archi-
tecture that uses 2“ processors. The cascade architecture
is targeted towards applications where a fully parallel de-
coder is not practical (large constraint lengths; v > 8).

0-7803-1254-6/93%03.00 © 1993 IEEE

1945

For these applications the cascade Viterbi decoder is con-
siderably more area-efficient than other multiprocessor
Viterbi decoder architectures [5, 3] that typically exhibit
quadratic increase in silicon area with linear increase in
throughput.

Viterbi decoders have two major components: an add-
compare-select (ACS) data-path, and a survivor sequence
memory management unit. In the ACS data-path, path
metrics are updated by adding branch metrics associated
with each possible state transition. The smaller path met-
ric is the new path metric for the state and the resulting
decision is stored in the survivor sequence memory man-
agement unit where the most likely path is determined.

The Viterbi decoder described here uses a ring-
connected ACS data-path structure with high regular-
ity. Deep pipelining inside each add-compare-select (ACS)
unit combined with local unidirectional wiring in the ACS
data-path results in a better throughput per unit area [5]
compared to other known implementations!. For the sur-
vivor sequence memory management, a novel traceback
technique with multiple memory modules and a single
read pointer [6, 10} is utilized. Figure 1 depicts the general
structure of the decoder.

2 ACS Data-path

When describing a convolutional code with a trellis di-
agram the nodes correspond to the Add-Compare-Select
(ACS) computations and the edges indicate dependencies
between the ACS computations of the successive stages of
the trellis. Given a number of individual ACS units we
can derive a large number of possible assignments of the
nodes of the trellis diagram to the physical ACS units.
In this paper we concentrate on an assignment where all
computations in a given stage of the trellis are performed
on a single ACS unit. This particular assignment charac-
terizes the cascade family of Viterbi decoder architectures.
There is also a schedule of state updates that can be de-

1The VLSI decoder being presented was intended as a small-scale
demonstration of the superior features of the cascade architecture
(modularity, local communications); however pipelining of the ACS
units is not possible for v = 3 [5].

scribed as follows: The butterfly i is a set of two ACS
operations that “consume” the path metrics of the states
2i and 2¢ + 1 from the previous stage and “produce” the
path metrics of the states 7, 22—! + i. The order of but-
terfly computations is 0,1,2,3,4,5,6,7 in the first ACS,
0,4,1,5,2,6,3,7 in the second ACS, and 0,2,4,6,1,3,5,7
in the third ACS unit. The butterfly computations must
be staggered in time, with the butterfly operations in the
second ACS starting two clock cycles later than in the
first, and the butterfly operations in the third ACS start-
ing three clock cycles later than in the second. Each pro-
cessor remains idle for two clock cycles following each set
of eight butterfly operations.

The cascade Viterbi decoder with v processors con-
nected into a ring is described in [3]. More recent work has
studied general properties of all possible cascade Viterbi
decoders with an arbitrary number of processors [5]. It
can be shown that the architecture that employs exactly
v — 1 processors has the highest possible throughput from
among all possible choices of the number of processors.
Furthermore, the cascade architecture with » — 1 pro-
cessors requires the least complex cross-point switches to
achieve correct scheduling of the computations.

The main features of the cascade Viterbi decoder archi-
tecture with v — 1 processors are:

o Highly regular and modular structure.

e Processors are connected in a ring with local unidi-
rectional communication.

High processor utilization, which improves rapidly for
designs with larger constraint lengths.

e Pipelining inside each processor is available, with the
pipelining depth improving rapidly for designs with
larger constraint lengths. Availability of pipelining
inside each processor allows low complexity ripple-
carry adders to be used, improving regularity and
further reducing the area required.

As path metrics advance around the ring of processors,
path metric values accumulate and will eventually cause
an overflow. We use the scheme for controlling overflow
described in [7], which is widely used in industry and well
suited for our design.

The ACS operation is made faster by allowing the Com-
pare operation to proceed in parallel with the Add opera-
tion as soon as the LSB of the Add operation is available.
The Compare operation remains one bit behind the Add
operation, so that at the moment when the Add operation
is completed, the Compare operation has only a one-bit
(MSB) compare to perform. The hardware required to
implement the Compare consists of the carry chain of an
adder, with a sum cell required only for the MSB.

Though branch metrics are computed as the Euclidian
distance between the possible transmitted codeword and

the received codeword, a simplification suggested in [8]
allows us to avoid the necessity of the multiply operation.

3 Survivor Management

In a Viterbi decoder, there are two known memory orga-
nization techniques for the storage of survivor sequences
from which the decoded information sequence is retrieved,
namely register exchange and traceback [9]. Our imple-
mentation uses traceback.

The traceback method stores path information in the
form of an array of recursive pointers. It is advanta-
geous to think of traceback memory as organized in a two-
dimensional structure, with rows and columns. The num-
ber of columns is equal to the number of states N = 2.
Each row stores the results of N comparisons correspond-
ing to one symbol interval or one stage in a trellis diagram.
Since the stream of symbols is, in general, semi-infinite,
storage locations are periodically re-used. Enough rows
must be provided to guarantee minimum a traceback
depth of T" > 10v. There are three types of operations
performed in parallel inside a traceback decoder: writing
new decision data into memory; and two read operations
— traceback read and decode read. During either read
operation previously stored decisions are used as pointers
to re-construct the state trajectory in the trellis. Decision
bits that have been read during the traceback operation
are not output, but rather used to guarantee high proba-
bility of “path merging”. The final state of the traceback
trajectory becomes the the starting point of the subse-

_quent decode read operation. Decision bits read during

the decode read operation are sent to the LIFO register
for order reversal and finally output as the decoded bits.

For every set of column write operations (N bits wide),
an average of one decode read must be performed. The
overhead of the T-column traceback read can be spread
over more than one column decode read operations. This
includes both decode read operations and traceback read
operations. In our design we have implemented a one-
pointer variant [10].

4 Implementation

To determine the viability of the cascade architecture, a
16-state, rate 1/2 decoder was implemented using a 1.2
p#m two-level metal CMOS technology. Figure 2 is a die
photo of the chip. Fabricated chips have been received and
shown to be functional up to a clock frequency of 32 MHz
at room temperature. The maximum frequency attained
was limited by the tester. Conservative design, using fully
static circuits and a focus on testability, was used for this
chip since it was implemented during a one-term course

1946

project. A more aggressive design will be capable of much
higher clock rates.

The floor-plan of the chip closely approximates the ar-
chitecture shown in Figure 1 except that the branch met-
ric generators (BMG) are aligned in the data-path with
the ACS units. The top half is the traceback unit (TB)
and LIFO, and the bottom half is the ACS data-path.
The ACS data-path handles data quantized to four bits
and uses eight-bit path metrics. There are three proces-
sors and each processor implements two ACS operations
as shown in Figure 3. For a clock rate of 32 MHz, this
results in a data rate of about 10 Mbits/s.

The organization of the traceback unit is shown in Fig-
ure 4. In this implementation three 28 x 16 RAM modules
are used to store ACS decisions. They are first clocked
into shift registers and then written into the RAMs when
one trellis stage has been completed, 2” = 16 bits at a
time. During each traceback, 14 trellis stages are read
from each of the three modules. This provides a trace-
back depth of 42 ~ 10w for a 16-state trellis. Though dual-
port memory modules were used in this design, single-port
memory modules would scale better for large constraint
length decoders [10].

Next to the RAMs are the read and write pointers (im-
plemented as one-bit wide circular shift registers) that are
used to select word lines in the RAMs (each word line cor-
responds to one stage of the trellis, or 16 bits). Read and
write pointers move through the memory in opposite di-
rections, with wraparound modulo-28. In addition to the
read pointer and the write pointer there is a 4-bit state
pointer and a last-in first-out (LIFO) register. The state
pointer is updated as follows: when a 16-bit word-line is
read, four bits of state pointer are used to control the 16-
to-1 multiplexor. One of two possible predecessor states
is now selected by a one-bit shift to the left (with MSB
discarded) and adding the bit from the output of the 16-
to-1 multiplexor to the LSB position. This operation is
repeated at the other memory banks until » — 1 shifts
and bit updates have been performed and a resulting »-
bit state latched. The latched v bits are made available
at the input to the LIFO; they are either ignored (during
the traceback) or loaded into the LIFO and re-ordered
(during the decode) to generate the decoded output. It
may appear that the traceback and decode operations are
the speed bottleneck, since three memory reads occur for
every memory write. This however is not a problem for
traceback decoders with longer constraint lengths, since
the number of state update reads grows proportional to
v—1, while the number of state decision writes grows pro-
portional to 2”. As the word-length grows exponentially,
a point is rapidly reached where the designer is forced to
limit word-length growth and perform state decision writ-
ing in multiple cycles; consequently, writing the decisions,
not reading ultimately limits the speed.

For testing, all of the ACS data-path registers are linked
into a scan chain and provision has also been made to per-
mit reading and writing of the traceback memory. There
are a total of 54 pads with 22 pads devoted to testing
making the chip pad limited.

5 Summary

The design described in this paper is highly modular, with
only regular, local wiring required. As discussed in Sec-
tion 2, available pipelining and processor utilization both
improve rapidly for larger constraint lengths. At the same
time, all high-speed on-chip data transport (processor-
to-processor, processor-to-decision memory, and branch
metric generator-to-processor) is local and uniform, with
simple routing requirements. Qur design can be expected
to scale nicely to larger constraint lengths.

The implementation of a cascade Viterbi decoder ar-
chitecture, which achieves a linear increase in through-
put with a linear increase in silicon area compared to a
uniprocessor, has demonstrated that this architecture is
well-suited to VLSI implementation. This architecture is
particularly well suited for applications where full-scale
parallelism (2" processors) is either not required due to a
low data rate, as in Jow speed modems operating on high
SNR channels, or is impractical or prohibitively expensive
due to the fact that the number of processors (2*) is very
large, as in low SNR channels where the constraint length
is large. A novel traceback architecture using a single-read
pointer was implemented as a part of this chip.

References

(1] G. D. Forney Ir. The Viterbi Algorithm. Proc. IEEE,
61:268-278, March 1973.

[2] C. Y. Chang and K. Yao. Viterbi Decoding by Systolic
Array. In Proceedings of the Twenty-third Annual Aller-
ton Conference on Communications, Control and Com-
puting, pages 430-439, Monticello, Illinois, October 1985.
Allerton House.

(3] P. G. Gulak and T. Kailath. Locally Connected VLSI
Architectures for the Viterbi Algorithm. [EEE Journal
on Selected Areas in Communications, 6:527-538, April
1988.

[4] O. Collins, F. Pollara, S. Dolinar, and J. Statman.
Wiring Viterbi Decoders (Splitting de Brujn Graphs).
TDA Progress Report 42-96, Jet Propulsion Laboratory,
Pasadena, California, October-December 1988.

[5] G. Feygin. A Multiprocessor Architecture for Viterbi De-
coders with Linear Speed-up. M. A. Sc. thesis, University
of Toronto, Toronto, Canada, 1990.

[6] G. Feygin, P. G. Gulak, and F. Pollara. Survivor Sequence
Memory Management in Viterbi Decoders. In Third IBM
Workshop on ECC, San Jose, California, September 1989.

1947

E‘“]“""’

Figure 1: Architecture of the cascade Viterbi decoder.

™IT IBRETIV -

Decisions
Traceback
Unit

I

S

Ao,
Branch Metrics

X
M

ﬁ"y P,
x

7=

Figure 3: Architecture of the ACS unit.

Figure 2: Die photo of the 3-processor Viterbi decoder.

(7

(8]

19

[10]

A. P. Hekstra. An Alternative to Metric Rescaling in
Viterbi Decoders. IEEE Transactions on Communica-
tions, 37:1220-1222, November 1989.

K. S. Githousen et al. Coding systems study for high data
rate telemetry links. Technical report, NASA, January
1971. Prepared by Linkabit Corp. under contract NAS2-
6024.

C. M. Rader. Memory Management in a Viterbi Algo-
rithm. JEEE Transactions on Communications, 29:1399-
1401, September 1981.

G. Feygin and P.G. Gulak. Architectural Tradeoffs for
Survivor Sequence Memory Management in Viterbi De-
coders. Accepted for publication in IEEE Transactions on
Communications, 1991.

Acknowledgments

The authors gratefully acknowledge financial support pro-
vided by the NSERC of Canada and by the ITRC of Ontario.
Fabrication was provided by the Canadian Microelectronics
Corporation. Thanks go to Lysander Lim for testing the chip.

1948

Decisions from
AGS0 ACS1 ACS?
2 2 2
SHFT | p SHFT SHIFT
R| | BEGKTER
16 £16 16
28x16 28x16 28x16
RAM RAM RAM

decoded bits

W™ LIFO

Figure 4: Architecture of the traceback unit.

