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Abstract

This  paper describes the architecture and
implementation of a constraint-length 14 Viterbi Decoder that
-achieves a decoding rate of 41 Kbits/s. The system uses 36
Xilinx XC4010 FPGAs with seven processor cards and a
custom backplane to implement a multi-ring general cascade
Viterbi decoder architecture. The paper will also show how to
achieve decoding rates of 1 Mbit/s using current FPGA
technology. Comparisons are made to JPL’s Big Viterbi
Decoder, which uses custom ASICs.

1. Introduction

In this age of digital communication, there is a need to
transfer information reliably, particularly in satellite and deep
space communication systems, which must deal with low
signal to noise ratio (SNR) environments. The Viterbi
algorithm [Vitr67][Forn73][Lin83] has emerged as a leading
contender in these applications. The Viterbi decoder provides
a maximum likelihood decoding algorithm for a class of error-
correcting codes known as convolutional codes. To date, the
largest Viterbi decoder is the Big Viterbi Decoder (BVD)
[Stat88][Onys91][Coll92] built by the Jet Propulsion
Laboratory (JPL) for their Galileo space probe. The BVD is
extremely expensive both in cost and development time,
motivating us to search for a better alternative. In this paper,
we describe the Reconfigurable Cascade Multi-Ring
(RACER) Viterbi decoder, which uses a very unique cascade
architecture to reduce the complexity and thus cost. The
architecture has the advantage of linearly increasing
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complexity as opposed to a quadratic increase for the BVD
design.

2. Goals

Since the BVD is the largest Viterbi decoder available,
its capabilities provide a suitable target for the RACER. The
BVD is a rate 1/2 to 1/6, constraint length 14 (16384 states)
Viterbi decoder. Not to be outdone, the goals of this project
were to build a demonstration Viterbi decoder comparable in
functionality to the BVD and to achieve the highest
throughput possible with the available technology. Moreover,
RACER should be reprogrammable as a simulation engine for
any other Viterbi decoder up to and including the size of the
BVD, and useful for implementing other algorithms that have
a similar ring-like architecture.

Some considerations that are made in the
implementation of this project are cost and time. Not only is
the design, simulation, and fabrication of many different
ASIC chips time consuming, but they are also very expensive.
Moreover, first implementations are not guaranteed to
function correctly; thus requiring additional time and money
to correct any flaws. SRAM-based FPGAs resolve most of
these difficulties. They are relatively inexpensive and
reprogrammable for the rapid prototyping of designs.
Reprogrammability also allows users to correct flaws easily,
which avoids the cost of refabrication as in the case of a
custom ASIC. However, the shortcomings of FPGAs are
slower speeds and lower densities compared to ASICs,
Nevertheless, once designs have been verified in FPGAs, pin-
compatible custom ASIC chips can be produced. With these
advantages, SRAM-based FPGAs are used to aid in the
prototyping of the RACER. Many types of FPGAs are
available; however, the RACER uses Xilinx XC4010-
5PQ208 FPGAs [X1xc93] generously donated by Xilinx Inc.
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Fig. 1: A (3,1,2) Convolutional Encoder Example

3. Viterbi Background

This section provides some background on the Viterbi
algorithm beginning with a description of how data is
encoded.

3.1. Convolutional Coding

Data being presented to the Viterbi Decoder are first
encoded by convolutional encoders. Convolutional encoders
are described by the number of input streams (k), the number
of output streams (n), and the number of previous inputs
retained in shift registers (known as the constraint length, v).
Figure 1 shows a convolutional encoder for an (n, k, v) = (3,
1, 2) convolutional code. It accepts one (k = 1) input, or a
binary input in this case, and provides three (n = 3) outputs.
The three outputs are dependent on the present input, as well
as two (v = 2) previous inputs. The rate of the code, R, which
is the ratio of the number of input bits shifted in and the
number of output symbols, is k/n or 1/3. In this example, the
encoder is a linear feedforward shift register, and depending
on the type of generator polynomials (g) required, all or some
of the outputs of the shift registers are connected to the
modulo-2 adders.

Operation of the encoder begins with the application of
an input uy. This input, along with the previous v inputs, are
then convolved with the generator polynomials g, gy, and g,.
This produces the output codewords ¢, ¢y, and ¢,, which are
sampled by the commutator and sent out in a specific order,
such as cqcicy. The registers are then updated and the cycle is
repeated with new inputs.

For example, assume that all shift registers are initially
zero (uy; = uy = 0) and an input ug = 1 is applied (Figure 1).
The values ¢y =1, ¢; = 1, and ¢; = 1 would be calculated and
then sampled by the commutator, providing an output of 111.
When the shift registers are updated, the previous contents of
u, are discarded and a new input ug = 1 is applied. With
uguu, now changed to 100, the resulting output would be
001. Thus, if the initial conditions of the shift registers are all
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ug/cocyc2
Fig. 2: Sample State Diagram for Convolutional Encoder

zero and the sequence ug = (1 1 1 0 0) is applied at the input,
the output, (111 001 101 010 100), would be generated.

The above steps can also be illustrated in a state diagram
shown in Figure 2, where the nodes represent the present
states of the shift registers, and the edges represent transitions
to the next state and the corresponding output sequence. In the
previous example, the present state would have been 00 and
the next state 10 for the initial input ug = 1. These state
transitions can be expanded in time to what is known as a
trellis diagram (Figure 3), where the evolution of states in
time is shown. The trellis diagram shown assumes that the
initial state of the encoder is 00; however, depending on the
initial state of the system, the actual starting place may be at
any state. The vertical axis shows all the possible states in
registers uyu, while the horizontal axis represents successive
stages of applied inputs to the encoder. Each node represents
the present states in registers uyu,, while the branches indicate
a transition to the next state with an applied input ug. An upper
branch implies an input of ‘0’ while a lower branchis a ‘1",
Each path in the trellis diagram represents a unique set of
inputs, such as the path highlighted in bold, corresponding to
the input sequence ug=(11100).

Q 1 2 3 4 5

Resmegee 1

11

XXX: Expected Codewords
Fig. 3: Trellis Diagram for a (3,1,2) convolutional code
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Fig. 4: Viterbi Example

3.2. Viterbi Decoding

The process of decoding the information sent by the
convolutional encoder is similar to how a travel agent might
help a customer find the cheapest flight between cities A and
B in the strange world of Binar. This world is unique because
it is flat, with all its cities aligned on a grid. To assist in the
search for the most economical flight, a map similar to Figure
4 is displayed on the agent’s terminal. On this map, all
arriving and departing flights are shown as lines on the left
and right of the cities, respectively. Also, the price of each
flight between two cities is shown on the connecting lines
between them. With this information, the travel agent
proceeds with the algorithm shown in Figure 5.

For example, the minimum total price of the flight to the
city located at Stage 4, State 00 would be calculated as
follows:

Total price from city at Stage 3, State 00 = price from top
flight=4+2=6

Total price from city at Stage 3, State 01 = price from
bottom flight =5+3 =8

Therefore, the minimum total price is found to be 6
which is then stored at the city located at Stage 4, State 00. An
X is marked on the bottom flight indicating that the path
should not be taken and an arrow on the top path is marked to
point in the correct direction.

Instead of determining the cost as in the previous
example, the main objective for the Viterbi decoder is to
determine the path with the least amount of error. To
accomplish this goal, the Viterbi decoder has three main
components, the Branch Metric Generator (BMG), the Add-
Compare-Select Unit (ACS), and the Survivor Management
Unit. These components work together for each state at each

stage of the trellis to compute the cost of the flight for that
stage using the BMG, to calculate the total minimum cost in
the ACS, and to store the best path in the Survivor
Management Unit.

3.3. The Branch Metric Generator (BMG)

As in the case of the travel agent, where they had to
know the price between two cities, the BMG calculates all the
errors between two stages, which are called branch metrics.
To calculate this error, the BMG first emulates the
convolutional encoder to obtain the expected codewords by
convolving the generator polynomials with the present state
and the branch to the next state. The error is then calculated
by taking the Hamming [Lin83][Feyg90] distance between
the expected and received codewords. This Hamming
distance is the number of bitwise differences between the two
codewords. So for Figure 3, the Hamming distance for the
upper branch at State 00 Stage O is the distance between the
expected codeword 000 (in bold) and the received codeword
110 (as indicated above the horizontal axis), which equals
two. Figure 4 shows the branch metrics for Figure 3 assuming
the received codewords are as shown in Figure 3.

3.4. The Add-Compare-Select (ACS) Unit

The purpose of the ACS is to find the accumulated
minimum error (total price of flight) at a specific state and
stage. Information from the BMG (price of flight between
intermediate cities) is sent to the ACS where the accumulated

Assume longitude is the horizontal axis and latitude the vertical axis
for longitude = longitude of city A to longitude of city B
for latitude =00 to 11
if city
if 2 incoming flights
total cost top flight = total cost previous top connecting city
+ cost flying from that city
total cost bottom flight = total cost previous bottom connecting city
+ cost flying from that city
if total cost top flight = total cost bottom flight
total cost flight = total cost bottom flight
else
total cost flight = minimum(total cost top flight, total cost bottom flight)
end if
else
total cost of flight = total cost previous connecting city
+ cost flying from that city
end if
store this total cost of flight at this city
put an arrow marking the flight path with lowest cost
put an X marking the flight path with the higher cost
end if
end for
end for
following arrows from city B back to city A gives flight path with the lowest cost

Fig. 5: Algorithm to find the cheapest flight between cities A
and B
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minimum errors from the previous stage, called the path
metrics, are added to the branch metrics, their sums
compared, and a minimum path metric selected for the current
stage.

Finally, as in the travel agent example, decisions made
by the ACS (arrows pointing along the lower cost path) are
sent to the Survivor Path Memory Management Unit to be
stored and later retrieved to find the survivor path, which is
the complete path with the least amount of error. In the
example shown above, a traceback method is used to retrieve
the decoded values. Other methods, such as the register
exchange method, may be used as well. These methods are
described in the following sections.

3.5. Survivor Management

In the travel agent example, there was a fixed starting
place and destination; however, what determines the ending
of the Viterbi decoder? If there is an infinite stream of inputs
arriving in the encoder, the survivor length would become
infinite; thus, there must be a point where there is areasonable
assurance that the decoded output is valid. This minimum
depth, called the Truncation Depth 7, is the point where, with
a very high probability, all the minimum survivor paths have
merged sufficiently to arrive at the same most likely decoded
output. Figure 4 shows that no matter whether we start from
B, C, D, or E, all paths merge at Stage 3, State 11 (T = 2).
Studies have shown that depending on the type of decoding
and the desired Signal-to-Noise Ratio (SNR), truncation
depths may vary from as low as 3v to 10v or higher if there is
a very low SNR [Onys89].

There are generally two methods of storing the survivor
sequences: the Register Exchange (RE) method and the
Traceback (TB) method. The RE method requires that each
state have enough storage to store an entire survivor sequence
and the ability to exchange this data between states. This is a
common method for shorter constraint lengths. For longer
lengths, the TB method is preferred, because it only needs to
store one-bit pointers, at the cost of requiring a more
centralized memory.

4. Previous Work

This section describes the work most relevant to this
project. There are two constraint length 14 implementations,
the BVD and the DECPeRLe-1 implementation, and a new
architecture called the General Cascade Viterbi Decoder.

4.1. The Big Viterbi Decoder (BVD)

The first prototype of the Big Viterbi Decoder
implemented by Jet Propulsion Laboratory for the Deep
Space Network [Stat88] filled two large cabinets and operated
at 1 Kbit/s. After verifying the architecture in the first
prototype, a second more compact version of the BVD was
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Fig. 6: Sample Connection of ACS for v=6

built. The second BVD [Onys91][Coli92], comprises 16
identical printed circuit boards with 16 custom VLSI gate-
array chips per board, and one board containing the logic for
the traceback. Routing in the BVD is extremely difficult as
demonstrated by. the need to connect the boards with a
backplane needing 28 layers! BVD uses 8 Mbit of SRAM for
traceback and can attain a decoded data rate of 1 Mbits/s.
Connections of the boards and chips are similar to a
hierarchical partitioning of a deBruijn graph [Figure 6] for 213
butterflies, called a crenellated-FFT [Coll88][Coll90]. By
using this form of hierarchical partitioning, longer constraint
lengths may be obtained by additional circuit boards. For
instance, the present decoder is programmable to process
codes with constraint lengths of up to 14 and code rates of 1/2
to 1/6. Increasing the constraint length to 15 would double the
number of circuit boards from 16 to 32.

The BVD incorporates a fully parallel approach for
decoding information. Due to the massive amount of routing
required between processors, all calculations are performed
bit-serially.

4.2. DECPeRLe-1 System
The DECPeRLe-1 [Bert93] is a general-purpose

reconfigurable system. It is based on a matrix of 16 Xilinx
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XC3090 FPGAs connected to four banks of 32-bit by 256K
high speed SRAMS (Figure 7). Interfacing to the system is
accomplished through a DECStation 5000 Ultrix workstation,
and programming is done using C++ as a hardware
description language. When configured as a code rate 1/4,
constraint length 14 Viterbi decoder, the DECPeRLe-1,
operating at 25 MHz, can process information at a decoding
rate of 2 Kbits/s [Kean94].

The system performs the decoding by processing each
trellis stage sequentially, calculating four states at a time until
all 21 states have been determined. Since there are only four
ACS processors calculating all 214 states, all path metric
information must be loaded from RAM and the outputs
written back to RAM. A traceback depth of 255 is
implemented for the DECPeRLe-1 system.

4.3. General Cascade Viterbi Decoder

Two problems associated with the above architectures
are area and speed. For the BVD, speed was obtained by
having one ACS processing element for each of the 213
butterflies. The problem with this type of architecture is two-
fold. First of all, to route all the path metrics simultaneously
to all the processing elements requires an impractical amount
of board area; thus, to reduce the amount of routing required,
the BVD must process everything bit serially. Executing the
ACS operations bit serially also prevents the BVD from
implementing calculations in a pipelined fashion. The second
problem with the BVD is the hardware resources needed for
even longer constraint lengths. Increasing the constraint
length from 14 to 15 would double the amount of processors
needed to decode the data and would quadruple the total area.
For the DECPeRLe-1 system, decoding speed is sacrificed for
smaller area; since, there are a reduced number of processing
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Fig. 8: A Sample GCVD Architecture forv=4

elements, more time must be spent sequentially calculating
the path metric information for all 214 states. Moreover, time
must be spent retrieving and updating path metric
information.

An alternative to the above architectures is to use a
cascade organization [Gulak88], which is the architecture
chosen for the RACER. In this architecture, a ring of
processors work in parallel with each processor computing an
entire trellis stage. This enables full path metric information
to be passed locally from one processor to its neighbouring
processor, removing the necessity of bit-serial arithmetic as in
the BVD and thus allowing pipelining. Furthermore, unlike
the DECPeRLE-1 implementation and BVD, where an entire
trellis stage must be processed before continuing with the
next, the cascade architecture permits the computation of
muitiple stages simultaneously, thereby increasing
throughput. In addition, the updating and retrieval of path
metric information is no longer required since data is passed
locally between stages.

A great deal of research has gone into determining the
optimum number of processors required to implement the
cascade architecture efficiently [Feyg90]{FeygS93]. Through
this research, it was determined that an arrangement of v - 1
processors organized in a ring would provide the best
throughput. This architecture is called the General Cascade
Viterbi Decoder (GCVD).

The GCVD uses aring of v—1 processors to calculate v—
1 stages of ACS computations (Figure 8). Path metric
information is passed locally from processor k to processor k
+ 1, with some associated switching. To get a better
understanding of the computational flow of such an
architecture, Figure 9 shows the timing for such a GCVD with
a constraint length of four. The numbers shown in the
processing elements (PE). and FIFOs represent the states
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Fig. 9: Timing for a GCVD with a constraint length = 4

being processed; therefore, at time = 0, states 0 and 1 are
consumed at the inputs of PEO and states 0 and 8 of the next
stage are determined. The cross shown in the cross-point
switch (SW) represents the states being interchanged in the
top and bottom, while an equal represents states being passed
through. The latency for all processing elements is one. For
larger constraint lengths, latency of the PEs may be increased
and pipelining employed [Feyg90].

5. RACER

Implementing the RACER in FPGAS has its drawbacks.
The FPGAs currently available are unable to attain clocking
speeds comparable to custom ASICs. This reduced clocking
rate lowers the throughput for a comparable design.
Consequently, other ways must be found to compensate for
this decrease in throughput. In the Viterbi decoder,
calculations of the state path metric should be performed as
fast as possible. Ways to increase the throughput would
include pipelining and/or increasing the number of
processors. For the single-ring GCVD explained previously,
path metrics for two states are calculated simultaneously per
processing stage, thus requiring a minimum of 2"~ clock
cycles to complete all 2V states. However, if a dual-ring
GCVD is implemented, four states can be calculated at once,
since there will be two processing elements per stage. This

65

Iny

quaul
»-RAM
RAM BLOCK
PS BLOCK
t SRAM  [SRAM
32K: 32Kx8
nuuc Or Switch
- 4dJ | XC4010 i
XC4010 hnd FIFO{ RAM
t latlimiControl | ot
XC4010
CNT BLOCK f T

I A &
Master
2Kx1 —>l Kx9
PaRos | Btang EQ

Fig. 10: Block Diagram of the RACER

b

reduces the total time to 2¥~1/2 = 2¥-2. As more rings are
implemented, the completion times for the stages decrease
and system clock speeds can be decreased for the same overall
throughput. Nevertheless, as in the fully parallel architecture,
the addition of more processor rings increases the need for
more wiring resources used for communication between the
processors.

The limited hardware available on the XC4010 FPGA
allowed only 4 ACS units to be implemented, constraining the
RACER to a dual-ring architecture.

5.1. Hardware Description

From a block diagram of the “Flattened” version of the
RACER shown in Figure 10, it can be seen that the RACER
has a very regular structure. This regularity allows the
RACER to be easily partitioned into many smaller sections.
Specifically, the RACER is a full custom multiprocessor
system broken up into seven daughter boards containing all
the processors, switches and RAM controllers, with a
backplane to provide communication between the daughter
boards. The backplane also provides synchronization and
interfacing to the SUN workstation.

Figure 11 shows a block diagram of the backplane. It
consists of a Xilinx XC4010 FPGA used as a controller for the
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whole system, two 2Kx18 FIFOs for input buffering, one
1Kx9 FIFO for output buffering, fourteen 144-pin connectors
for the daughter boards, one chip for distribution of the clock
to all the daughter boards, one 10-pin connector for the
programming of the FPGAs, and two 40-pin connectors
acting as I/O between the RACER and the interface board.
Note that the slots for the daughter boards are interleaved.
This is to allow the shortest average distance between two
consecutive daughter boards when they are connected in a
ring. The backplane is made up of six layers, four for signals,
one for power and one for ground.

Communication between the SUN workstation and the
RACER is through an SBUS interface board built for the
Transmogrifier-1 (TM-1) [Gall94]. Connector 1 is used to
send the input samples and the external clock from the SUN
workstation to the RACER while all the control signals are
sent through Connector 2. The configuration is shown in
Figure 12.

The physical layout of all the daughter boards are
identical except for the number of components mounted.
Again, six layers are used to implement the board: four for
signal, one for power and one for ground. As shown in the

Connector 1

Programming Clock
Distribution Chip

Clock Distribution
Chip )

Master
Controller

Connector 2

Fig. 11: Block Diagram of Backplane
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block diagram (Figure 13), each daughter board contains five
XC4010 FPGAs, one clock distribution chip for fan-out to all
components on the daughter board, two 32Kx8 SRAMEs,
space for eight 2Kx18 FIFOs and two 144-pin connectors.
Recall that as the constraint length grows, the size of the
FIFOs required for reordering -of the path metric grows as
well. With most of the resources available in the FPGAs
implementing the cross-point switches, the small FIFOs can
be included into the FPGAs. However, if the FIFO size
exceeds four 128x14 FIFOs, external components must be
used.

To keep the system cost low, the layout of all daughter
boards should ideally be identical; nevertheless, with different
FIFO requirements and the fact that some FIFOs could be
efficiently implemented in the FPGAs, a design problem
arises. One solution would be to have eight external 2Kx18
FIFOS on every board and forgo the chance to implement
some FIFOs in the FPGAs. This solution does solve the layout
problem but incurs a cost of 40 additional FIFOs that could
have been included in the FPGAs. A better alternative, which
was chosen for the project, is to create the component
footprints of the FIFOs with their inputs and corresponding
outputs shorted together. Without any modifications to the
board, path metric information would pass freely between
FPGAs ; however, in those instances where external FIFOs are
required, the shorts on the footprints would be manually
removed and FIFOs placed in those positions.

Ideally, the final version of the RACER should be
implemented as a single-board design since it would provide
a substantial cost savings. The savings would mostly be in not
requiring the high pin count connectors and a more efficient
board layout. Moreover, the board could be made faster and
more reliable, since connectors would no longer be required
to connect the long traces between daughter boards. However,
testability is a major issue for any new design. For a prototype
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system of this magnitude, debugging could be made simpler
by taking a divide and conquer approach. If a large board
could be partitioned efficiently into many smaller sub-boards,
then each sub-board could be tested individually. Therefore,
we have decided to implement the RACER as a multiple
board architecture.

5.2. Performance Data

The RACER has been exercised extensively with the
help of a SPARCstation-5 emulating the convolutional
encoder and noise generator. A block diagram of this setup is
shown in Figure 14. Through these tests, we have determined
that the peak throughput is approximately 41 Kbit/s with a 16
MHz system clock. However, the theoretical data rate should
have been 49.6 Kbits/s, which is about 20% higher. The
reason for the discrepancy is the fact that the SUN interface
cannot sustain the 49.6 Kbit/s data rate. As a result, the
RACER must occasionally stall to allow time for the input
buffer to fill up. If the input buffer is empty or 1/16 full, the
RACER will stop, allowing the buffer to fill up to 1/4 full.
Once quarter full, the RACER is permitted to continue until
the buffer is almost empty and the cycle is repeated.
Therefore, during the time when the buffer is not empty, the
RACER will be running at full speed.

Table 1 shows a comparison of the various
implementations of the Viterbi decoder. Estimating the actual
cost of a system is extremely difficult. The cost comparisons
shown in Table 1 are a little misleading since the cost of the
Uni-Processor, DECPeRLe, RACER and RACER 11 only take
into account the price of purchasing either the system or the
materials needed to build the system. On the other hand, the
BVD takes into account materials cost, labour, research and
development over a span of many years. Nevertheless, rough
comparisons can be made. It can be seen that the RACER is
the second cheapest and second only to the BVD in
throughput. The price per decoded bit/s for the RACER and
BVD are 30000/49600 = $0.60/bit/s and 2000000"/1000000 =
$2.00/bit/s respectively. Compared to the BVD, the RACER
is 3.3 times cheaper for every bit/s but at 1/20 the decoding
rate. This does not indicate an advantage towards using the

*Do not really know actual cost but we understand
that it is in this range.
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cascade approach, however, the next section describes a 1
Mbit/s decoder (RACER II) using FPGAs that would still be
cheaper than the BVD.

Cost(s | Dpcode | yChips L:y"e‘;s Clock
Cdn) (bitls) for ACS for PCB {MHz)
Uni-Proces- < $10000 <50 1 micro- N/A 70
sor SPARC
(SPARCsta- I
tion-5)
BVD Proto- Multi- 10000 N/A 2 Large 20
type million Racks of
dollar PCBs
project®
BVD Proto- 1000000 256 cus- 28 25
type I tom
VLSI
chips
DECPeRLe- | ~ $40000 2000 16 N/A 25
1 XC3090
FPGAs
RACER ~ $30000 > 41000 26 6 16
(Theo- XC4010
retic FPGAs
49600)
RACER I ~200000 1000000 104 6 48
(esti- XC4025
mated) FPGAs

Table 1: Comparisons of Viterbi decoders based on the BVD
specifications

a. From informal conversations with people in the project.

An indication of the wiring complexity of the BVD is
shown by the number of layers required for its printed circuit
board (PCB) backplane, which is 28 compared to only six for
the RACER.

Experiments involving the Bit Error Rates for various
Signal to Noise Ratios have also been performed. The
software used to generate the Giaussian noise was provided by
JPL for their simulations of the Viterbi decoder. Figure 15
shows the results of the experiment, which is almost identical
to the BVD [Stat88]. The results for the BVD are not shown
for clarity since they essentially overlap the curves shown.

7. The 1 Mbit/s RACER II

Now that the multi-ring GCVD architecture, with
functionality comparable to the BVD, has been proven
successful in hardware, the next step is to achieve decoding
rates equivalent to the BVD.

To obtain a throughput of 1 Mbit/s, the RACER II must
be at least 20 times faster than the RACER. For a fixed
constraint length, the Data Rate may be improved by
increasing the clock frequency of the system, and by adding
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more rings. With recent advances in VLSI technology, it is
not unreasonable for chips to be operating at hundreds of
megahertz. Therefore, without any modifications to the
RACER, full custom chips operating at approximately 322
MHz can be designed to replace all the FPGAs; however, the
board itself must operate at that speed and the chips must be
deeply pipelined. A drawback is that memory access times
must be faster than 332/2 = 161 MHz if no further serial to
parallel conversions of the decision bits are made. In the other
extreme, a 213 ring Viterbi decoder can be constructed with a
system frequency of 16 MHz and a pipeline depth of less than
16. Obviously, this is impractical since it would require
106496 processing elements which is 13 times more than the
fully parallel BVD architecture. In addition, there would be
inefficient use of processor resources since twelve out of
every thirteen processing stages will be idle. The final
alternative, which is the architecture chosen for the RACER
11, is to develop a hybrid of the two extremes.

An important consideration in building the new Viterbi
decoder is the amount of hardware required. For a board level
design, a reasonable system speed would be about 50 MHz.
Using this specification and assuming that the number of
pipeline stages is equivalent to the RACER, a 16 ring
cascaded Viterbi decoder is sufficient for a 1 Mbit/s decoding
rate. With this architecture, the minimum system speed is 46.4
MHz. With the introduction of more dense FPGA technology
such as the XC4025E FPGA, this goal is certainly achievable.

Assuming the same general architecture as the RACER,
a rough estimate of the total cost of the RACER II can be
determined. If the cost of the new two-sided boards, labour
and other components are comparable to the original total cost
of the RACER, then the only cost to add is the price of the
XC4025E, which is estimated to be about $1500 each at
today’s prices. With 52 FPGAs for the processors, 52 FPGAs
for the switches, seven FPGAs for the memory controllers and
one FPGA to control the whole system, a total of 112 FPGAs
are required. In total, the cost of the RACER II is
approximately $200,000, which is 10 times cheaper than the
BVD at the same decoding rate and without the need for
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custom ASICs. This system is also much less complex and
could be implemented by a single Master’s student in about a
year.

8. Conclusions

A 41 Kbit/s Reconfigurable Cascaded Multi-Ring
Viterbi Decoder has been designed, constructed and
functionally tested. The RACER is not a fixed length Viterbi
Decoder but it is reconfigurable for any other smaller Viterbi
Decoder. The system can also be used for other applications
that have this ring-like architecture.

A 1 Mbit/s version of the RACER has been proposed
that has significantly less routing than the BVD. Moreover,
with the aid of the fastest, and most current FPGAs, an
equivalent system can be produced with a shorter
development time and lower cost than the BVD which uses
four year old ASIC technology.

Although FPGAs will not directly compete in speed and
area with custom ASICs implemented with the latest
technologies, this project has shown that by using
architectures that are suited to the FPGA technology, it is
possible to build cost-effective systems competitive with
systems using ASIC technologies. With the current trends in
access to fabrication, it will also become difficult to access the
best technologies unless there is sufficient volume, in which
case FPGAs would be competitive alternatives for low-
volume applications compared to ASICs implemented in
slightly older technologies.
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