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PROGRAMMABLE PACKET SWITCH/ROUTER TO HANDLE IP PACKETS, ATM CELLS,

OR A COMBINATION OF BOTH. COMPRISING 275,000 GATES, THE 0.35-MICRON

ASIC IS INCORPORATED INTO A PROTQTYPE PROGRAMMABLE PACKET SWITCH.

e s o0 ss While the Internet is successful in
supporting eraditional data-only wraffic, an
integrated services Interner is inevitable with
the emergence of new applications such as
voice, video, multimedia, and interactive
video conferencing. Such an integrated ser-
vices network should supporca wide range of
applications with diverse quality of service
requirements and traffic characteristics.” Pro-
vision for quality of service in packet networks
in general, and in the Internet in particular, is
the focus of most of the recent developments
in switching and routing system design.?

Packets of sessions belonging to different
service classes interact with each other when
they are multiplexed at the same output link
of a switch, The scheduling algorithm at the
switching nodes plays 2 critical role in con-
trolling the interaction among different traf-
fic streams and different service classes, thus
determining the service quality for each
stream. A common mechanism is important
to controk the interaction of all of the service
classes, rather than having multiple mecha-
nisms for different classes.

The single-queue switch? is an integrated
scheduling engine for use for all the output
ports of a switch. It can implement a wide
range of scheduling schemes, including those

that can be translated into a logical relation-
ship between a set of numerical or logical val-
ues.! Examples are priority-based and
rate-based scheduling as well as differentiat-
ed services. Originally designed for fixed-
length ATM cells, the single-queue switch can
support the scheduling of variable-length
packets based on a conventional, shared-
memory switch architecture.*

Here, we present the architecture and
implementation of a single-queue-based
scheduling engine to support quality of ser-
vice in high-speed switches and routers. The
engine supports hardware- or software-based
implementations of Interner Protocol (IP)
switches and routers with multicasting capa-
bility. A hardware scheduling implementa-
tion as well as hardware implementation of
multicasting in a switch or router increases
performance dramatically.’ In this system,
after the packets have been processed with
the routing protocols, they are fed into the
queuing and scheduling hardware for appro-
priate scheduling before transmission. See
Figure 1.

We designed and fabricated a scheduler
ASIC for use in a programmable packet switch
currently under construction in the Univer-
sity of Toronto’s Network Architecture Lab.
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Hardware scheduling engine

The single-queue switch can be used as the
scheduling engine in any packet switch and
routet, particularly IP routers and ATM
switches. The specific mechanism of handling
the packets also allows mixed-mode opera-
tions. For example, the same scheduler can
support ATM cells and IP, or other packets.

In this system, minicells represent IP pack-
ets. A minicell consists of several ficlds con-
taining information about the outpur port,
priority; and length of the original packet. An
index representing the service class or con-
nection number and a pointer relating the
minicell 1o the original packer in the memo-
ty of the switchfrouter also accompany the
minicell,

The ragging unit in the scheduler first tags
the minicells so the single queue can sched-
ule the packets. The tagging unit derermines
a tag based on the informa-
tion in the minicell: class or
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Figure 1. The scheduler in a switch/router.
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Figure 2. The system architecture.

connection index, priority,
and possibly the packet size.

Tagged minicells are then sent
to the single-queue switch
where they are scheduled into
other queues. At each time
slot dedicated for an ourput
port, the scheduler outputs (@}
the minicell that should be '

serviced next.

As shown in Figure 2, the
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scheduler also has two other

parts associated with it; the

multicast handler stores the
destination lists of the mulci-

cast packets, and the discard
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handler collects the packets
that are discarded in the
scheduler as a resule of aging
or buffer management. The
multicast and discard han-
dlers share logic and can be combined to form
one unit called the multicast/discard cell han-
dler, or M/D handler.

(b)

The single-gueue scheduler

As shown in Figure 3, the scheduler’s group-
ing algorithm puts the minicells of each out-
put port in a separate logical queue,
interleaving each logical outpur queue in the
same physical buffer.?

The minicells are organized in a series of
groups with the first group containing the first
minicell of each output queue. Similarly, the
second group contains the second minicell of
each output queue and so on. If a group does
not have a minicell for an output port. the
scheduler does not reserve buffering space for
the missing minicell in that group. However,
when a minicell arrives for that output porr,
the scheduler inserts it in the correcr place,

Figure 3. Grouping algorithrm for physical {a)-and logical (b) queues.
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Figure 4. ASIC block diagram.

pushing the rest of the minicells one step back.
The interleaving mechanism is based on the
underlying physical architecrure of the single-
queue scheduler. The single-queue scheduler
is in essence a generalized sequencer circuit.®

The generalized sequencer circuit is a chain
of similar buffering and comparison units,
Dara can travel berween the adjacent units in
forward and backward directions, as seen in
Figure 4. Each unit can store two minicells.
The tags of the two minicells are compared,
and the winner is sent to the forward output,
while the loser is sent to the backward output.
This comparison and forwarding takes place
at every cycle, simultanecusly in every unit.

A new minicell enters the sequencer from
the head of the queue, and travels inside the
queue step by step to find its correct place in
the queue. A new minicell can enter the queue
at each step regardless of the situation of the
previous minicells traveling in the queue, Sim-
ilarly, ar each step, a minicell leaves the queue,
minimizing the latency of the queue to the
latency in che first unit only. In this procedure
each tdime slot dedicated 1o an output line will
have one backward shift and one forward shift
for the basic operation of the single-queue
scheduler. A blocking mechanism can stop the
forward shift if necessary. In the case of block-
ing, the winner of the comparison is kept in
the same unit instead of being sent to the for-
ward output at each unit. Blocking is used for
empty logical queues in the group.

The single-queue scheduler uses the output
port number of each minicelk for comparison
and the grouping algorithm that derermines
the logic of comparison to achieve interleav-
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ing of logical outpur queues. At the same time,
it uses the tag of each minicell and secondary
comparison logic—which should be designed
based on the required scheduling algorithm—
to appropriately order the minicells in each
logical output queue.’

Multicasting

To implement mulricasting in the single-
queue switch, we used an excra logical queue
for multicast minicells. At the beginning of
cach round, the scheduler fetches a multicast
minicell for the I/O controller. During the
remaining time slots of the round, a copy of
the multicast minicell is sent to the output if
it is in the destination list of the multicast
minicell and if the head-of-line unicast mini-
cell for that output port has lower priority.
Ortherwise, the scheduler sends out the uni-
cast cell. In either case the loser, which is either
the unicast minicell or the copy of the multi-
cast minicell, recycles back to the queue. We
introduced an excra backward shift for the
recycling path.

Variahle-length packets

For variable-length packerts such as IP pack-
ets, fixed-length minicells are used, but the
service times of the minicells are not fixed.
During a packet’s transmission to an output
port, it is important not to service a logical
output queue, In the single-queue switch, one
group is serviced at each round of serving the
output lines; however, the head-of-line mini-
cell of a logical output quene must return to
the queue if the ourpur port is not ready. An
/O control unit art the head of the single-



queue swirch loops such minicells back into
the queue. Based on the mechanism of group-
ing and sequencing, the looped-back cell finds
irs correct place in the new head-of-line group,
pushing its relative logical queue one logical

group back.

Architecture

We designed the programmable scheduler
ASICfora 16X 16 switching system. (See Fig-
ure 4 again.) There are 110 unit cells (Qcells)
cascaded to buffer and queue the minicells. The
chip can store 220 minicells with each Qcell
containing two sets of storage elements. The
output controller unit implements the logic for
handling the multicast cells. The maximum
queue lengch can be casily expanded by adding
morse Qcells within the limits of the chip’s
process technology, or by cascading ASICs to
form an ASIC chain. Therefore, part of our
design goal was to make both the Qcell and the
scheduler ASIC modular and cascadable.

I our design, the time slot dedicared to an
output line is divided into three cycles (or phas-
es): two backward shifts (or left shift) and one
forward shift (or right shift). The cells enter the
Qcells in the backward path through the left-
shift multiplexer (LS_MUX), as shown in Fig-
ure 4. The LS_MUX selects either the new
incoming minicell or the feedback cell, depend-
ing on a particular phase. The feedback cell is
the loser of the multicast cell and the unicast
cell, as determined by the output controller
unit. This unit is only used for the head ASIC
of the ASIC chain. The right-shift multiplex-
er (RS_MUX) is used for the head Qcell win-
ner in all but the lead ASIC of the chain to
bypass the output controller unit. The
BACK_MUX shifts cells from the downstream
ASIC, except for the last ASIC of the chain
where an invalid cell {all zeroes) is shifted in.
These three multiplexers provide the flexibili-
ty of cascading the same ASIC anywhere in che
ASIC chain with no impact on switch opera-
tion. Operation speed is completely indepen-
dent of the buffer size within an ASIC.

Qeell wnit

This unit is one of the two basic building
biocks of the scheduler ASIC. Figure 5 shows
its structure, which is quite simple and high-
ly modular and cascadable. The Qcell is com-
posed of two pairs of multiplexers, one pair
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Figure 5. Qcell unit.

of Agers, one pair of D flip-flops for storage
elements, and a Qcell comparartor. The phas-
es of the system control the Top_MUX and
the Borrom_MUX. During the backward
shift phases, the Top_MUX selects the top
incoming cell and directs it to the Qcell, while
the Bottom_MUX selects the winner of the
Qcell from the previous phase. During the
right-shift phase, the Bottom_MUX selects
the bottom incoming cell, while the
Top_MUX selects the loser of the Qcell from
the previous phase.

The D flip-flops are storage elements that
store the winner or loser of the logical com-
parison. The pair of Agers decrement the age
of the minicell when enabled. The Qcell com-
parator is the heart of the Qcell and contains
all the logic o manage the logical queues. The
comparator examines the two cells selected by
the Top_MUX and the Bortom MUX, and
instructs the Winner MUX  and the
Loser MUX to control the directions the two
cells should travel, To achieve higher speeds,
the inputs to the Agers rather than the our-
puts of the Agers are fed into the Qcell com-
parator so that the comparator and the Agers
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can operate in parallel. Each Qcell contains
approximately 2,400 gates.

Output conteoller

The output conrroller adds multicasting
capability to the scheduler engine. Figure 6
shows the block diagram of the ourtput
controller.

As shown in Figure 3, the order of the cells
of logical queues in each group is based on
their output port numbers (1 — N, where Nis
the number of output ports), and output port
0 (or time slot 0) is used for the multicast
queue. At time slot 0, a multicast cell is shift-
ed in from the Qcells and is stored in the
Mcell register of the output controller, as
shown in Figure 6.

The destination list containing the bit-
mapped list of the destinations of the multi-
cast cell is loaded from the M/D handler to
the destination list register. During the other
time slots, a unicast cell is shifted in from the
head Qcell and is stored in the Ucell register.
In the Qcells, ar each time slot, the output
controller scans the head-of-line group. If the
head-of-line slot for the current oucpur line
(including the multicast line at slot 0) is
empty, the outpur conuroller blocks the
Qcells, and the queue is not read out for that
time slot. During the dedicated time slot of
each outpuc line, if the ourput line is among
the destinations of the multicast cell (indicar-

ed by the signal Mcell_want2go), the head-
of-line unicast cell for the ourput line is com-
pared to the multicast cell.

The compararor inside the output con-
troller compares the multicast cell with the
unicast cell based on their priority and age
fields. The winner is then sent to its related
cutput line in a synchronous TDM (time-
division multiplexing) fashion. The loser is
recycled back to the Qcells just as the new
incoming cell, but during the second back-
ward shift cycle. If the loser is 2 multicast cell,
a copy of the multicast cell with its output
address field set to the corresponding time slot
is recycled back to the Qcells. The minicell is
set as a copy cell. Then, when it comes back
to the output controller again and wins, it will
instruct the M/D handler to clear that bit in
the destination list of the original multicast
cell. If the winner is a multicast cell, the out-
put controller itself clears that bit in the des-
tination list of the multicast cell. The
destination lists of the multicast cells must be
cleared so that new packets can reuse their cor-
responding memory locations. The output
controller has approximately 5,600 gates.

Implementation and results

Although a full-custom approach would
have produced a better design in terms of
speed and area, we adopted an ASIC design

flow to achieve a shorter design cycle and



Table 1. Prototype chip characteristics.

Characteristic Description

Technology TSMC three-layer-matal, 0.35-micron CMOS
PoWer supply 33V

Core size 8.16 mm x 7.66 mm

“Die size 9.65 mm x 9.36 mm
275,000 standard ceil gates

Gate count
{transistor count) {or 1.1 million transistors)

/O pads 208

more fexibiliry for furure design changes. We
wrote RTL VHDL code for the scheduler
ASIC as well as the tagging unic and the M/D
cell handler. We also designed a C program in
parallel and compared its output against the
VHDL simulation output to provide an extra
level of confidence in the correctness of the
desigr. We used a Synopsys” synthesis rool
and 2 Cadence® place-and-route design tool.
We used Cadence Pearl,® the physical design
static timing analyzer, to check the final tim-
ing of the physical design.

The scheduler ASIC was fabricated in
TSMC’s (Taiwan Semiconductor Manufac-
wuring Co., Ltd.) 0.35-micron process. Table
1 summarizes its key characteristics, and Fig-
ure 7 is 2 microphotograph of the chip. We
built a simple PCB that includes one sched-
uler ASIC and one Xilinx FPGA to test the
fabricated chip. We programmed the Xilinx
FPGA with the M/D handler circuits to pro-
vide some system-level testing. To provide test
vectors, we used an HP VXI tester."® Extensive
tests indicate that the ASIC is fully function-
al at 20 MHz, the highest speed at which the
University of Toronte HP VXI tester can run.
We designed the ASIC to target only 30 MHz,
as required by our prototype switch. The core
of the final design runs at 80 MHz, as report-
ed by the Synopsys static timing analyzer and
Cadence Peatl.

Qur plan is to initally incorporate a num-
ber of the scheduler ASICs in a programma-
ble packet switch currently being developed a
the University of Toronro. In our original
design, we noted that each time slot of the out-
pur line consists of three phases: two backward
shifts (one for the incoming cells and the other
one for the recycle back path due to mulricas-
ting) and one forward shift to output mini-
cells. As mentioned earlier, we need an extra

loop-back path to accommo-
date the variable-length pack-

ets. By adding a simple circuit AL AL

Figure 7 Chip microphotograph.

outside the ASIC ro loop back
the minicell, we can use the
same ASIC without modifi-
cation for scheduling variable-length packets.

he simplicity and capability of our

patent-pending scheduler design makes
it a cost-effective solution for providing qual-
ity of service in a wide range of switches and
routers. With slightly more aggressive design
and technologies, we believe a single-chip,
120-MHz scheduler ASIC conraining over
1,000 buffer spaces could deliver 30 million
packets per second. Hea
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