
Real-Time Seizure Monitoring and Spectral
Analysis Microsystem

J. N. Y. Aziz, R. Karakiewicz, R. Genov
Department of Electrical

and Computer Engineering
University of Toronto

Toronto, ON M5S 3G4, Canada
Email: roman@eecg.utoronto.ca

B. L. Bardakjian
Institute of Biomaterials

and Biomedical Engineering
Department of Electrical

and Computer Engineering
University of Toronto

Toronto, ON M5S 3G4, Canada
Email: berj@cbl.utoronto.ca

M. Derchansky, P. L. Carlen
Krembil Neuroscience Center,

Toronto Western Hospital,
Departments of Physiology and Medicine,

University of Toronto
Toronto, ON M5T 2S8, Canada

Email: carlen@uhnres.utoronto.ca

Abstract— We present a neural recording and spectral analysis
integrated microsystem. It is the instrumentational and com-
putational core of an envisioned miniature implantable brain
implant for automated epileptic seizure therapy. The microsystem
combines two functional blocks: the neural recording interface
and the spectral analysis processor. The neural interface contains
256 signal acquisition channels recording neural field potentials
from an array of 16x16 electrodes simultaneously, in a distributed
fashion. The spectral analysis processor computes a wavelet-
based time-frequency map (spectrogram) of the neural recording.
We demonstrate the functionality of the integrated microsystem
in real-time epileptic seizure monitoring and spectral analysis,
as necessary for subsequent automated seizure prediction and
prevention.

I. INTRODUCTION

Approximately 50 million people throughout the world suf-
fer from epilepsy. Almost 25 percent of them have seizures that
are not controlled by any available therapy. For the remaining
epileptics there are several existing therapies, but most are
of limited benefit. None of the present day therapies con-
sider the nonlinear dynamics of dysfunctional brain activity.
Computer-based spectral analysis of the dynamics of the brain
activity coupled with artificial neural networks and prediction-
triggered brain stimulation has been successfully demonstrated
in automated prediction and prevention of seizures [1]. On-line
implementation of this technology on a miniature implantable
platform requires integration of low-power multi-site neural
activity recording and real-time spectral analysis functionali-
ties in a single microsystem.

Recording of neural activity has been traditionally per-
formed using bench-top biomedical instrumentation equip-
ment. These instruments are generally stationary, bulky, lim-
ited to one or a few acquisition channels, and prone to
excessive noise due to wiring. Integrated neural interfaces,
fabricated on a single miniature physical substrate, lack these
drawbacks. They offer a small, low power, low noise, and cost
effective chronically implantable alternative to commercial
bench-top instruments. Integrated neural interfaces perform
signal acquisition, amplification, filtering, and, in some in-
stances, quantization and stimulation [2], [3], [4], [5], [6],
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Fig. 1. Architecture of an envisioned brain implant for seizure prediction.

[7]. They may also provide wireless data interface on the
same chip [8]. To date, brain activity analysis techniques have
been mainly implemented off-chip, on a stationary computer.
Integrated neural interfaces allow for in-implant intelligent
signal processing, extending their functionality beyond signal
acquisition and conditioning. An electronic microsystem with
both recording and local signal processing capability is an
ideal platform for brain-implantable automated medical diag-
nostics and therapy.

We present a multi-channel neural recording and spec-
tral analysis integrated microsystem. The microsystem is the
instrumentational and computational core of an envisioned
miniature brain implant for seizure prediction shown in Fig-
ure 1. It combines two functional blocks: the neural recording
interface and the wavelet spectral analysis processor. The neu-
ral recording interface contains 256 signal acquisition channels
recording neural field potentials from an array of 16x16 elec-
trodes simultaneously, in a distributed fashion. It also performs
spatio-temporal signal pre-processing of neural activity across
all channels directly on the sensory plane as discussed in detail
in [9]. The spatio-temporal pre-processing allows to identify a
dynamic spatial pattern in the action potential field, and may
assist in selecting an optimum recording location where the
spectral analysis should be performed (e.g., the focus of a
seizure, if one is present) [9]. The spectral analysis processor
computes a wavelet-based time-frequency map (spectrogram)
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Fig. 2. Architecture of the integrated neural interface and spatio-temporal
signal processor.

of the neural recording on any selected channel, as necessary
for subsequent seizure prediction and prevention. The rest of
this paper is organized as follows. Section II presents the
architecture and VLSI implementation of the integrated neural
recording interface. Section III presents a mixed-signal wavelet
processor which performs the computationally intensive task
of spectral analysis. Experimental results of real-time seizure
recording and spectral analysis are presented in section IV.

II. INTEGRATED NEURAL INTERFACE

A. Architecture

Most of the frequency content of extracellular action poten-
tials in the brain is concentrated between 0.1Hz and 10kHz.
Signal amplitudes range from 50 µV to 500 µV , with 100 µV
being a typical average value. For low-noise distributed neural
potential field recording, a multi-channel integrated neural in-
terface has been designed and prototyped. The neural interface
acquires voltages on 256 independent channels simultaneously.
The signal acquisition circuits are organized in a 16x16 array
as shown in Figure 2.

Each channel in the array shown in Figure 2 contains
a high-pass filter (HPF), a low-pass filter (LPF) and two
amplification stages. Each channel also contains a sample-and-
hold cell with double analog memory. A bank of correlated
double sampling (CDS) cells sample the two analog memories,
one row at a time, to remove offsets, resulting from device
mismatches and to allow for spatio-temporal neural signal
processing [9]. Array readout is implemented in a serial
fashion as controlled by row and column address decoders.
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Fig. 3. The low-noise transconductance amplifier.

TABLE I

TRANSCONDUCTANCE AMPLIFIER DESIGN PARAMETERS.

Transistor W/L (µm) ID(nA) gm(µA/V ) gm/ID(V −1)
M1,M2 400/15 125 3.14 25.17
M3,M4 10/400 125 0.83 6.64
M5,M6 10/400 125 0.83 6.64
M7,M8 10/200 125 0.65 5.2

M9 45/45 250 3.79 15.16
McascN 18/8 125 3.1 24.8
McascP 25/8 125 2.65 21.2

Each channel is connected to on-chip differential recording
electrodes through non-passivated top-most metal.

B. VLSI Implementation

A single-stage wide-swing cascoded transconductance am-
plifier with p-channel MOS input differential pair shown in
Figure 3 is employed, both for the preamplifier and the ampli-
fier in each signal acquisition channel. The transconductance
amplifier is optimized for low rms noise of 13 µV under the
170 µm pitch cell integration area constraint and 6mW overall
power dissipation constraints. The low noise amplifier design
procedure employed is detailed in [5]. Design parameters are
given in Table I.

Closed-loop signal amplification and high pass filtering are
implemented by a frequency selective feedback [5] as shown
in Figure 4. The first stage has a fixed gain of 100 and the
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Fig. 4. The closed-loop amplifier and high-pass filter.
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Fig. 6. Sample-and-hold cell with double analog memory for simultaneous
sampling.

second stage has a programmable gain of 2, 10, 25 and 50.
High pass filtering with a cut-off frequency below 0.1Hz in the
first amplification stage prevents DC signals, generated at the
electrode-tissue interface, from saturating the amplifiers. The
anti-aliasing low-pass filter is implemented by starving the bias
current of the second amplifier, with cut-off frequency tunable
in the range of 1kHz-10kHz. A column-parallel correlated
double sampling (CDS) circuit shown in Figure 5 removes
offsets due to mismatches across cells.

Neural activity is sampled simultaneously in all channels by
the sample-and-hold cell shown in Figure 6. This eliminates
the rolling delay during serial read-out. The local memory
cell also reduces substrate coupling by time-multiplexing low-
noise signal acquisition and high-noise peripheral switch ca-
pacitor signal processing and read-out. The two time-advanced
versions of the clock signals in Figure 6 keep the charge
injection on the sampling capacitance Cs independent of
the stored signal. Charge sharing between the two sampling
capacitors is cancelled by resetting the initial voltage to a fixed
value.

The 256-channel integrated neural interface and signal pro-
cessor was fabricated on a 3mm × 4.5mm die in a 0.35 µm
double-poly CMOS technology. The die micrograph is shown
in Figure 7. The golden electrodes were post-fabricated on
the surface of the die to contact directly with non-passivated
aluminum pads. Each electrode is 100 microns high.

Fig. 7. Micrograph of the 256-channel integrated neural interface. The 3 ×
4.5 mm2 die was fabricated in a 0.35 µm CMOS technology. Electrode pitch
is 170 µm.

III. WAVELET SPECTRAL ANALYSIS PROCESSOR

The artificial neural network based seizure prediction algo-
rithm in [1] requires extensive computing resources in order
to operate in real time with a high detection rate. This com-
putational throughput is beyond the capabilities of a desktop
computer with a Pentium processor, particularly when more
than one recording channel is used. The main computational
burden, by far, is performing wavelet decomposition of the
neural recording signal, which is necessary to train and run
the artificial neural network as shown in Figure 1.

The wavelet spectral analysis processor shown in Figure 8 is
a densely integrated, massively parallel energy efficient mixed-
signal VLSI processor [10], [11]. It delivers over one billion
operations per second for every milliwatt of power. Imple-
mented in a 0.5-micron integration technology, the processor
yields over one billion operations per second on each square
millimeter of silicon area. Such computational efficiency and
integration density are several orders of magnitude higher
than those available from existing digital processors. This
represents an energy-efficient and cost-effective solution for
implementations of very computationally intensive learning
algorithms, such as epileptic seizure prediction algorithms in
real time, particularly on an implantable platform.

Morlet wavelet templates are stored in the on-chip DRAM-
based analog array in a row-parallel fashion. A quantized
neural recording is shifted into the input shift register. For
every shift inner products of a 256-sample window of the
input is correlated in analog domain with all wavelet templates



Fig. 8. Micrograph of the wavelet spectral analysis processor. The die
measures 3mm x 3mm. A spectrogram of a neural recording is computed
in real time using a Morlet wavelet dictionary stored in the on-chip DRAM
memory. This is the most computationally intensive step in the seizure
prediction algorithm.

stored in the on-chip memory. Correlation is performed in
parallel on the entire array. The analog results are quantized
by a bank of 128 analog-to-digital converters. The processor
dissipates 5.9 mW of power at 6.6 GMACS computational
throughput.

IV. EXPERIMENTAL RESULTS

The functionality of the neural recording interface and
wavelet spectral analysis processor has been validated in real-
time seizure monitoring and spectral analysis experiments.
Figure 9 (a) shows a seizure recorded in vitro from a mouse
intact hippocampus on one channel of the neural recording
interface. Figure 9 (b) depicts the time-frequency map com-
puted by the wavelet spectral analysis processor. The time-
frequency map is subsequently fed to an artificial neural
network as needed to implement a real-time seizure-predicting
brain implant shown in Figure 1.

V. CONCLUSIONS

We have presented a neural recording and spectral analysis
integrated microsystem, an instrumentational and computa-
tional core of an envisioned miniature implantable brain im-
plant for automated epileptic seizure therapy. The microsystem
combines two functional blocks: the neural recording interface
and the spectral analysis processor. The two blocks have been
prototyped and experimentally validated in real-time epileptic
seizure monitoring and spectral analysis, as necessary for
subsequent automated seizure prediction.
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