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Abstract—The advancement of implantable medical devices for
the treatment of neurological disorders demands energy-efficient,
low-latency processors for responsive, safe, personalized neuro-
modulation. A 130nm CMOS neural interface processor (NURIP)
is presented to perform brain state classification and closed-loop
control using programmable-waveform electrical stimulation.
The architecture features an autoencoder neural network for
both spatial filtering and dimensionality reduction. Dedicated
feature extraction blocks are implemented for univariate (signal-
band energy, SE) and multivariate (phase locking value, PLV,
and cross-frequency coupling, CFC) neural signal processing.
The proceeding exponentially decaying-memory support vector
machine (EDM-SVM) accelerator employs these features for
hardware-efficient brain state classification with a high temporal
resolution. An integrated digitally charge-balanced waveform
generator enables flexibility in finding optimal neuromodulation
paradigms for pathological symptom suppression. The SoC is
validated using the EU human intracranial EEG (iEEG) epilepsy
dataset, achieving a seizure sensitivity of 97.7% and a false
detection rate of 0.185 per hour while consuming 169 µJ per
classification.

Index Terms—Neural Interface Processor, Exponentially De-
caying Memory, Support Vector Machine, Phase Locking Value,
Cross-Frequency Coupling, Signal Energy, Neuromodulation,
Waveform Generation, Binary Exponential Charge Recovery.

I. INTRODUCTION

THE synchronized firing of local neural populations within
the brain gives rise to oscillations known as local field

potentials, or LFPs. These oscillations are now understood to
reflect the underlying activity of the brain, and categorizing
their patterns has led to fundamental insights into physiolog-
ical and pathological neural mechanisms [1]. For example,
sleep is a recurring state of mind and body, characterized
by altered consciousness, relatively inhibited sensory activity
and inhibition of nearly all voluntary muscles. As an indi-
vidual falls asleep neural activity measured through electroen-
cephalography (EEG) initially transitions from a state of high-
frequency, low-voltage waves in the waking state to higher
voltage, slower waves representing non-rapid eye movement
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(NREM) sleep [2]. In the case of pathological conditions
such as epilepsy, a seizure can be characterized by abnormal
excessive or synchronous EEG activity. The discovery of such
anomalous EEG patterns in epilepsy and Parkinson’s disease
has led to breakthrough therapies based on disrupting the
activity associated with seizures and motor tremor respectively
using electrical stimulation. However, existing treatments have
limited efficacy with only 13% of patients achieving seizure
freedom for at least 1 year [3].

Advances in low-power CMOS process technology have
revolutionized the capabilities of implantable medical devices.
It is now feasible to integrate increasingly more complex and
feature-rich digital processing systems with analog circuits for
the acquisition of low-amplitude neural signals. Neural signal
processing algorithms which extract pathological biomarkers
were once only practical to compute on high-power computing
systems, but can now be included in a single mixed-signal
systems on chip (SoC) [4], [5]. Furthermore, developments
in the field of hardware-based machine learning have brought
forward efficient algorithm implementations which enable the
classification of patient-specific biomarkers for personalized
treatments [6] [7]. The combination of these three components:
digitization, biomarker extraction and individualized classifica-
tion enables devices which can measure and identify complex
brain dynamics.

Upon the detection of a pathological state, it has been
demonstrated that the delivery of an electrical stimulus can be
used to influence neural activity and suppress symptoms [8].
However, while existing devices employ a simple bi-phasic
pulse waveform, it has been shown that alternatives have the
potential to excite networks more selectively and with reduced
energy [9] [10]. Furthermore, the brain is a complex dynamical
system and neurostimulation devices should be capable of
adapting the stimulus in response to changing physiological
environments [11]. It is therefore desirable to programmati-
cally synthesize appropriate waveforms in an online manner.
However, such waveforms must be constrained to ensure that
tissue damage does not arise through the effects of excessive
stimulation charge buildup.

As it is now possible to integrate neural signal acquisition,
signal processing, machine learning model acceleration and
neuromodulation waveform generation on a single SoC, the
path is becoming clear for a revolution in the interface between
the brain and computational devices. Towards this goal, this
paper presents an implantable digital neural interface processor
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Fig. 1. (a) NURIP system architecture for responsive neuromodulation. The preprocessor stage performs signal conditioning and dimensionality reduction
before the extraction of three neural signal biomarkers. The proceeding exponentially decaying memory support vector machine (EDM-SVM) classifies brain
states using an offline-trained patient-specific model. Upon the detection of a pathological state, the neuromodulation waveform synthesizer generates an
appropriate preventative stimulus. (b) NURIP configuration workflow for responsive neurostimulation based on patient-specific seizure classification.

(NURIP) which performs brain state classification for reliable
seizure prediction and contingent seizure abortion. This paper
is an extended description of the work introduced in [12],
focusing on five key advances:

• The inclusion of an on-chip autoencoder neural network
for signal conditioning and dimensionality reduction.

• The integration of a diverse array of univariate and
bivariate neural signal processing feature extractors with
on-chip machine learning acceleration.

• The implementation of the EDM-SVM for effective and
hardware efficient time-series classification.

• On-chip neuromodulation waveform synthesis for precise
control of neural activity and online stimulus adaptation.

• The introduction of binary exponential charge recovery
(BECR) for digital charge-balanced neurostimulation.

These developments build on existing work from several
perspectives. The closed-loop neurostimulation SoC presented
in [4] implements the PLV biomarker and manually-set,
threshold-based seizure detection. NURIP includes an opti-
mized implementation of this biomarker (Section IV-B) with a
9x reduction in area and a 5x reduction in power. Furthermore,
the additional biomarkers used in this work along with data-
driven classification improves seizure sensitivity by > 20%.

The general purpose biomedical signal processing platform
detailed in [13] accelerates fast Fourier transform (FFT) and
signal energy extraction. However, the SoC relies on CPU-
based classifier computation, which is orders of magnitude less
energy efficient than dedicated hardware accelerators such as
the EDM-SVM used in this work [6]. The SVM accelerator
introduced in [6] relies on an MSP430 CPU for feature
computation, which is up to 754x slower than the dedicated
feature extractors presented here (Fig. 6).

The SoC presented in [7] uses SE with a combination of
SVM classifiers to tradeoff between detection sensitivity and

specificity, but uses a windowing approach with a limited
ability to capture complex temporal EEG dynamics (see Sec-
tion V). The use of SE with PLV, CFC and the EDM-SVM
approach in this work results in increased seizure sensitivity
and a 45% reduction in false detections (Table V).

The neural-prosthetic device in [14] uses FFT and ap-
proximated entropy (ApEn) features along with a linear least
squares classifier. However, this device, along with those
mentioned previously, relies on bi-phasic pulses for symptom
control. NURIP enables the use of on-chip arbitrary waveform
generation for precise stimulus control with a digital charge
balancing technique to mitigate electrode and tissue damage.

The outline of this paper is as follows. Section II intro-
duces the overall system architecture. Section III describes
the preprocessing stages required to condition and manage the
recordings from an array of neural recording channels. Section
IV details the implemented feature extraction cores including
SE, PLV and CFC. Section V outlines the classification of
brain states and introduces the exponentially decaying memory
support vector machine. Section VI describes the classifier
performance with an application demonstration using the EU
human iEEG epilepsy database [15]. Section VII outlines the
programmable charge-balanced neurostimulation waveform
generator. Section VIII describes the VLSI implementation
of NURIP and the SoC measurement results. Finally, section
IX concludes the paper and describes future directions for
implantable brain-state classifiers.

II. SYSTEM ARCHITECTURE

The initial preprocessing stage following the digitization of
neural signals features an autoencoder neural network for both
iEEG spatial filtering and dimensionality reduction. Dedicated
feature extraction blocks are implemented for univariate (SE)
and multivariate (PLV, CFC) neural signal processing. The
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Fig. 2. (a) An autoencoder is implemented with multiplier reuse for input
spatial filtering and dimensionality reduction. (b) Experimental results demon-
strating the removal of noise from a channel exhibiting alpha-band activity
using common average referencing (CAR) [16]. (c) The circular buffer (CB)
maintains a continuous window of incoming samples, where each sample is
mapped to varying physical SRAM address while the corresponding virtual
addresses used by the rest of the system remains fixed.

proceeding EDM-SVM accelerator employs these features for
patient-specific brain state classification. A general-purpose
CPU facilitates additional custom feature extraction and sys-
tem control. In response to the detection of a pathological brain
state, an appropriate charge-balanced modulation waveform is
synthesized to control the operation of an output neurostimu-
lator. The scalable architecture is agnostic to the number and
type of analog interface channels to be processed, supporting
increasingly high channel counts and new interface paradigms
such as optogenetic recording and stimulation.

As the neural signals of interest are typically sampled
at low frequencies (256Hz-1KHz for LFPs), the architecture
is optimized for reduced power consumption and area over
performance. This design consideration can be exploited by
time-sharing common system resources such as a configurable-
order FIR filter, 32-bit MAC, hyperbolic and circular CORDIC
blocks, and system SRAM as shown in Fig. 1.

III. PREPROCESSING

As the number of integrated recording channels scales to
increase the spatial coverage of signal acquisition, there is
a corresponding increase in the volume of data which must
be processed. Dimensionality reduction can be performed to
reduce the required computation while minimizing the loss
of information. The preprocessor supports spatial filtering and
principal component extraction through the use of an autoen-

coder neural network. In this case, dimensionality is reduced
from 32 recording channels to 4 weighted combinations (such
as in principal component analysis), reducing the processing
requirements by 8x. The autoencoder is implemented by re-
using shared on-chip computing resources which minimizes
the area overhead as recording channel arrays scale towards
thousands of channels [17].

The autoencoder is an unsupervised learning algorithm that
applies backpropagation to train an encoding layer which
minimizes the error between an input xj and the reconstructed
output x̂j as follows:

Hi =
P32

j=1 Wijxj + bi (1)

x̂j =
P4

i=1 W
T

ij
Hi + bj

Where Hi is the encoding hidden-layer node and Wj and bi
are the model parameters. Training is performed offline and
the feedforward path can be computed on the implant using the
model stored in on-device SRAM. The linear transfer function
used is equivalent to principal component analysis (PCA) [18].
This is used to separate multichannel EEG into temporally and
spatially independent components that can often be associated
with particular neural generators. One drawback of PCA is
that it attempts to combine as much of the data variance as
possible into each component, even though it may include
several temporally independent sources. The biomarkers used
in this work (such as PLV, introduced in Section IV) rely on
temporal preservation. For this reason, the preprocessor also
supports the storage of up to 12 raw channel sample streams.

The autoencoder structure can also be used to implement
common average referencing (CAR) for an EEG noise re-
duction of up to 30% [16]. Fig. 2 demonstrates removal of
noise from a channel exhibiting simulated alpha-band activity.
In this case, all weights are equivalent and a multiply and
accumulate node provides the average of all samples. This
average can then be subtracted to reject stimulus artifacts and
reduce noise before the feature extraction stage.

The preprocessor is also responsible for data management
of incoming sample streams from an array of analog front end
ADCs. For time-series analysis, a moving window of the most
recently recorded samples must be stored for signal processing
purposes. A 256-sample circular buffer (CB) maintains a
continuous window of incoming samples (Fig. 2), where each
sample is mapped to varying physical SRAM address while
the corresponding virtual address remains fixed. This ensures
that the latest recording sample is always in a known SRAM
location. Preprocessor outputs are stored in 16 CBs, and a
further 16 can be enabled for intermediate data management
during later signal processing stages. They are mapped to 8-16
kB of address space within 64 kB of global SRAM.

IV. FEATURE EXTRACTION

There exists a tradeoff in device signal processing between
embedded computation and wireless transmission for remote
processing. Devices must operate on a low power budget to
maximize their battery life [19], and reduce the number of re-
placement surgeries which result in a risks of infection and an
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Fig. 3. (a) Signal band energy feature extraction is performed using config-
urable order Type-I FIR filter. The absolute value a bandpass filter output is
taken as a measure of signal energy. (b) The seizure onset energy difference in
physiological signal bands for patient FR 1093 in the EU epilepsy database
[15]. (c) The error in a 5 Hz signal energy approximation using absolute filter
outputs is compensated for in the EDM-SVM classifier (Section V).

additional clinical burden. Furthermore, device designers must
consider a tradeoff between thermal limits of heat dissipation
and wireless communication [20]. A comparative study found
the power consumption of local signal processing an order of
magnitude lower than typical wireless data transmission [5].

Following the preprocessor, a subsequent array of three
configurable neural signal feature extractors, shown in Fig.
1, enables custom patient-specific processing to maximize
classifier performance; Signal Band Energy, Phase Locking
Values, and Cross-Frequency Coupling. The ensemble of these
three biomarkers yields a high-dimensional feature space for
the classifier to distinguish between brain states.

A. Signal Band Energy

The energy in physiological signal bands can be used to
characterize brain states based on recorded neural signals. An
example is shown in Fig. 3 where elevated energy is seen
during seizure (ictal) events across physiological signal bands
including � (0-4 Hz), ✓ (4-8 Hz), ↵ (8-13 Hz), � (13-30
Hz) and � (30-60 Hz) when compared to normal (interictal)
activity. A configurable order Type-I FIR filtering block reuses
system resources to isolate these signal bands. The filter uses
shared symmetric coefficients during multiplications to halve
the number of operations [22]. The absolute output value of
each bandpass filter is taken as a measure of signal energy
(Fig. 3). This approximation acts as full-wave rectification
and the resulting feature includes noise harmonics at multiples
of the extracted band. This is compensated for during the
classification stage in Section V.

B. Phase Locking Value

Neural connectivity refers to a pattern of anatomical links
between distinct neural populations within the brain. Connec-
tivity patterns are formed by structural links such as synapses
or fiber pathways. Neural activity is constrained by connec-
tivity, and quantitative measures are therefore crucial to un-
derstanding how the brain processes information [23]. Recent
work has led to the discovery of a ”preictal state” characterized
by a desynchronization of the neuronal populations related
to the epileptogenic focus before a seizure onset [8]. Phase
locking occurs at specific physiological frequencies which
are bandpass filtered for each channel. Synchronization is
detected between a channel pair when the difference between
the instantaneous phases in the extracted bands, defined as f0
and f1, remains constant.

The processing flow required for PLV extraction is shown in
Fig. 4 First, a Hilbert FIR filter is applied to bandpass filtered
recording sites f0 and f1 to obtain an analytic signal. The
phase difference between both signals is calculated as:

��(t) = �f0i(t) � �f1i(t) (2)

This angle is used to create an instantaneous complex vector
which is constructed using a dual-core COordinate Rotation
DIgital Computer (CORDIC) for sine and cosine generation
[24]. The magnitude of the average of N vectors is used as
a measure of phase locking. If the average ��i is 0, both f0
and f1 are phase-locked. FIR-based moving average filters are
inefficient in terms of both area and power consumption. Due
to the narrow bandwidth of the signal, this moving average can
be efficiently replaced by the following IIR approximation:

ZRe[t] = ↵cos(��) + (1� ↵)ZRe[t� 1] (3)
ZIm[t] = ↵sin(��) + (1� ↵)ZIm[t� 1]
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Two key optimizations have been made to provide power
and performance improvements over existing implementations
[25]. The IIR approximation presented here results in a
60% decrease in group delay latency. Furthermore, only two
CORDIC computations must be performed at a given stage
in the processing pipeline. The overall number can thus be
reduced from five to two with resource sharing (Fig. 4). These
optimizations result in a 5x reduction in power.

C. Cross-Frequency Coupling

A physiological mechanism known as cross-frequency cou-
pling has been identified as playing a key role in biological
information processing in the brain [26]. Phase-amplitude
coupling is a particular method which has been theorized
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Fig. 4. (a) Phase locking value architecture compared to [25]. FIR based moving average filters are replaced with an IIR approximation. As only two CORDIC
cores are used at a given time, time-multiplexing further reduces area. (b) Power, performance and area improvements with the implemented optimizations. (c)
PLV biomarker extraction example from the EU epilepsy database showing a desynchronization at the onset of a seizure (1) followed by hypersynchronization
(2) in the 7 Hz frequency band between 2 channels in the seizure onset zone extracted using a bit-accurate fixed-point MATLAB model.

to integrate functional brain regions and transfer information
from global brain networks operating at behavioral timescales,
to local high-frequency cortical processing [27]. In EEG,
this mechanism manifests itself in local field potentials that
resemble amplitude modulation in communication systems,
where a neural signal can be described as:

x(t) = [1 +M.cos(2⇡fLF (t) + �)] · [A.sin(2⇡fHF (t))] (5)

Where fLF is the low frequency modulating component,
fHF is the high frequency component whose amplitude is
modulated, M is the modulation index and A is the base
amplitude of the high frequency activity.

Elevated CFC between pathological high frequency oscil-
lations and low frequency activity is found in the seizure-
onset zone of epilepsy patients when compared to normal
brain regions [28]. Abnormal PAC has also been found in the
primary motor cortex of patients with Parkinson’s Disease and
a reduction has been shown in neural stimulation treatments
which have alleviated symptoms [29]. These findings suggest
that CFC could serve as a useful feedback measure in closed-
loop neuromodulation devices.

The VLSI implementation of the approach presented in
[30] allows for the use of two key metrics to enable a
tradeoff between low-power, low-latency and high-precision.
Two measures of CFC, the mean vector length modulation
index (MVL-MI) and the cross-frequency phase locking value
(CF-PLV) will be outlined in the following subsections.

Fig. 5. (a) The cross-frequency coupling envelope extractor isolates neuronal
sub-population activity (red) which is modulated by global low-frequency
oscillations (blue). (b) The noise tolerance of the feature extractor is char-
acterized using a synthetic CFC signal in which theta-gamma coupling is
corrupted using increasing 1/f noise.

1) Modulation Signal Extraction: Before calculating a CFC
metric, it is first necessary to extract the low-frequency
phase-modulating signal band, fLF (t), and high-frequency
amplitude-modulated signal band, fHF (t) (Fig. 5). The raw
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EEG signal, x(t), is bandpass filtered using the previously
introduced configurable-order FIR filter to extract both fLF (t)
and fHF (t). After the modulated high-gamma component
has been isolated, the amplitude envelope time series can be
computed. An analytic signal is created using an FIR Hilbert
filter and the dual-core CORDIC accelerator is then used
to take the magnitude of the complex vector. This process
extracts the envelope time series, fA(t), from fHF (t).

2) Mean Vector Length Modulation Index (MVL-MI) :

The mean vector length modulation index (MVL-MI) finds a
relationship between the instantaneous phases of fLF (t) and
fA(t). This is achieved by building a complex-valued time
series with a phase of �LF (t) and amplitude which is scaled
by fA(t) [31]. This can be expressed as:

m(t) = |fA(t)ei�LF (t)| (6)

Where the phase-amplitude coupling measure, m(t), is ex-
tracted from the time series defined in the complex plane. Each
amplitude sample is represented by the length of the complex
vector, whereas the phase of the modulating signal during that
same sample is represented by the vector angle. When phase-
amplitude coupling is not present, a uniform circular density
of vector points is symmetric around zero. However, if the
fLF (t) phase is modulating the high-frequency amplitude, the
fHF (t) envelope is higher at certain phases. A measure of
CFC can thus be quantified by taking the magnitude of the
average complex vector [30].

3) Cross-Frequency Phase Locking Value (CF-PLV) : The
cross-frequency phase locking value (CF-PLV) enables the
detection of synchrony between the phase of the low frequency
modulating signal �fP (t), and the phase of the envelope
extracted from the high frequency modulated signal �fA(t).
The PLV accelerator outlined in Section IV-B can be re-
used, were the phase difference between both modulating and
modulated signals is calculated as:

��(t) = �fA(t) � �fP (t) (7)

As in between-channel PLV, the magnitude of an average
vector is used as a measure of CFC between the phases of
the modulating low-frequency signal and the envelope of the
modulated high-frequency signal. If the average ��i is 0, both
fLF (t) and fHF (t) are phase-locked and CFC is present.

The ability of the hardware implementation presented in this
work to detect CFC in the presence of noise is illustrated in
Fig. 5. This is characterized with bit-accurate fixed-point stim-
ulations using a synthetic CFC signal in which theta-gamma
coupling is corrupted using increasing 1/f noise. It is noted
that increasing values of N in the IIR filter approximation
(Equation 3) increases the effective range of the output at the
expense of decreased temporal resolution for transient changes
in CFC.

D. Feature Extraction Summary

The feature extraction accelerators reduce the pre-
classification workload which would otherwise need to be
performed by the on-chip MSP430 CPU. A summary of this

Fig. 6. Feature extraction on NURIP v.s. MSP430. Simulations using worst-
case NURIP latency, MSP430 using the math.h library and with a dedicated
hardware multiplier. The majority of the MSP430 overhead can be attributed
to trigonometric functions which are accelerated in NURIP with dedicated
CORDIC blocks.

TABLE I
NUMBER OF EXTRACTIONS (fclk = 10MHZ, fsamp = 256HZ)

Throughput (# extractions) Latency (cycles)
FE Best Case Worst Case Best Case Worst Case
SE 151 151 258 258
PLV 241 57 162 674
CFC 161 51 242 754

improvement in processing efficiency can be seen in Fig. 6.
The output of these accelerators are normalized and sent to
the proceeding machine learning subsystem for classification.

The overall number of extractions which can be performed
online is outlined in Table I. The largest contribution to the
cycle count of these features is the required FIR filtering.
Furthermore, the use of decimation filtering before feature
extraction increases throughput by reducing the processing
required. Such configurations can be determined on a per-
patient basis to allow design tradeoffs based on recording
channel noise and power-dissipation constraints.

V. LOW-POWER BRAIN STATE CLASSIFICATION

For a given brain state, the biomarkers outlined in Section
IV are expressed with high variability from patient to patient
and change with the underlying physiology over time [32].
Data-driven approaches can be used to create models based
on recorded iEEG data rather than using manual thresholds of
feature values defined by a clinician. These models can then be
used to personalize an implanted closed-loop medical device
to accurately detect a patient’s seizures.

While machine learning techniques based on deep-learning
have attracted significant attention in recent times due to
compelling performance in many classification tasks [33],
their efficacy comes at a cost. In the context of seizure
prediction, a recent study compares an LSTM/CNN deep
learning approach with an SVM approach similar to the one
presented in this work [34]. The authors demonstrate that
deep learning and SVMs show comparable performance, but
the computational complexity of the former is several orders
of magnitudes higher (Table II). This efficiency renders the
SVM employed in NURIP particularly suited to low-power
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TABLE II
DEEP LEARNING V.S. SVM FOR LOW-POWER APPLICATIONS

Classifier Sensitivity FDR MACs Nonlinear Ops.
RCNN [34]† 95.74% 0.12 440776064 52289
SVM [35]⇤ 96.09% 0.14 123906 384
Difference -0.35% -0.02 x3557 x136

†CNN: {3x3 conv. layer: 4, 2x2 pool. layer: 2}, LSTM: {128 hidden-unit: 60}, FCL: {60 hidden-unit: 1}
⇤Radial Basis Function Kernel, 321 support vectors, 384 features

seizure detection devices [6], [7]. A further key distinction
between this work and deep-learning methods is that hand
tuned features are employed with the SVM based on insights
from domain knowledge. Deep learning approaches depart
from such domain understanding, in favor of data-driven
learning of features using complex models.

A. Exponentially Decaying Memory

Seizure onset biomarkers are subtle and can occur minutes
before a clinical onset. Processing data on this timescale is a
key challenge for implantable devices due to limited on-device
memory. To capture the temporal evolution of biomarkers
such as signal energy, conventional methods use a windowing
approach where contiguous time epochs are concatenated to
form a feature vector to be classified. The differences between
these windows can be used to learn the characteristics of events
such as the onset of a seizure [6], [32].

The use of windowing for time series classification has
three main limitations: 1) The required device memory scales
linearly with the history to be used for classification (Fig. 8).
2) As the test vectors are generated once per time epoch, the
minimum detection latency is the time required to generate a
window (typically multiple seconds) [6], [7]. 3) As temporal
biomarkers are patient specific, so too should be the window
length. The ability to learn appropriate timescales is therefore
desirable to maximize the classifiers performance.

NURIP uses an exponentially decaying memory approach
to represent complex temporal relationships for efficient clas-
sification and to addresses the outlined challenges associated
with windowing. Rather than accumulating and concatenating
fixed windows, a continuous sampling recursive window can
be defined by:

EDM [t] = EDM [t� 1]� �(EDM [t� 1]� x[t]) (8)

Here, a new input x[t] is incorporated based on a set learn-
ing rate, and the existing memory of a feature is degraded
according to the decay rate, �. Where:

� =
1

2↵
, 1 < ↵ < 16 (9)

When the decay coefficient, �, is constrained using the
reciprocal of a power-of-two, the EDM update can efficiently
be performed using shift and add operations. Each EDM has
an approximate effective time window of 2↵/Fs (Fig. 8).

The EDM’s efficiency allows multiple units to be used in
parallel to capture multiple timescales simultaneously (Fig. 7).

TABLE III
TEMPORAL STATE TABLE: QUANTIZED 2-EDM EXAMPLE

Temporal State Table
State EDM 1 EDM 2

1 LOW LOW
2 AVG LOW
3 LOW AVG
4 HIGH LOW
5 AVG AVG
6 LOW HIGH
7 HIGH AVG
8 AVG HIGH
9 HIGH HIGH

This approach enables a classifier to process a feature’s history
across multiple timescales to learn temporal relationships.
Taking quantized values as an example, Table III illustrates
the use of two parallel EDMs to encode feature values in
relative states, where an individual EDM state, EDM 2
{LOW,AV G,HIGH}. In practice, the state space is much
larger as each element has a resolution determined by the
effective number of bits in the EDM.

B. EDM Support Vector Machine

The Support vector machine (SVM) is most commonly used
as a supervised learning model for classification tasks of two
or more classes. A data point is viewed as an N-dimensional
vector and the fundamental idea is to find an N-dimensional
hyperplane that can separate two groups of input data points
which should also be mapped to the same high-dimensional
space as the hyperplane [36].

The original algorithm requires a similar number of ex-
amples in each class to prevent classifier bias, but in the
case of seizure detection, ictal activity is rare and prone to
labeling errors. The SVM utilized in this work uses a semi-
supervised one-class approach which has been proposed for
datasets with such constraints [37]. It can be viewed as a
regular two-class SVM where the training data is taken as
one class, and the origin is taken as the only member of the
second class. Training is performed using only interictal data
which is mapped to the kernel space and separated from the
origin by a hyperplane with maximum margin. The kernel, K,
is implemented here using the Radial Basis Function (RBF):

K(sv, x) = e��ksv�xk2

(10)

Where sv are the support vectors used to construct the
hyperplane, x is the extracted feature vector and � is the
inverse of the standard deviation of the RBF, or Gaussian
function. Intuitively, the gamma parameter defines how far the
influence of a single support vector reaches. The exponential
function is computed using a shared hyperbolic CORDIC
core. The implemented SVM accelerator allows the selection
of linear, polynomial and RBF kernels to trade off between
performance, energy and memory usage [6].

The combination of the EDM mechanism with SVM clas-
sification enables effective low-power time series classifica-
tion. As the EDM is updated every sample, inference to
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Fig. 7. (a) The EDM’s efficiency allows multiple biomarker timescales to be processed in parallel to provide a multi-timescale feature for the SVM core. (b)
An array of EDMs with varying � values encode relative temporal states in a feature for classification.

Fig. 8. (a) The EDM feature bit precision requirement is characterized using
Gaussian white noise by comparing the RMSE between an ideal MATLAB
model and post-layout simulated EDMs synthesized with varying bit precision.
(b) The gate count per bit of the EDM is lower and scales linearly compared
to MAC-based window features. (c) Memory requirements scale linearly with
time resolution using window features and are fixed when using EDM. (d)
EDM decay response (assumes a sample rate of 256 Hz and 16-bit resolution).

be performed continuously rather than only when a window
has been processed. Critically, the mechanism allows for the
retention of biomarkers over time periods which are infeasible
for windowing-based methods, where device memory require-
ments scale linearly with the number of samples. Furthermore,
the efficiency of this mechanism allows for the combination
of N long-term and short-term memory decay rate EDMs

to enable the learning of complex temporal relationships as
shown in Fig. 7.

VI. CLASSIFIER PERFORMANCE

The processor has been verified and validated using neural
recording data available in the EU Epilepsy database [15]. This
database contains intracranial recordings from 30 patients with
an average continuous recording time of 150 hours per patient.
A review of the results from early seizure detection approaches
using this dataset can be found in [38].

Due to the inherent class imbalance problem associated with
seizure data (with few ictal examples compared to interictal
data), sensitivity and false detection rate (FDR) measures
are generally used in the seizure detection literature [35].
Sensitivity measures the proportion of real seizures that were
correctly identified by a classifier while the false detection rate
indicates the number of false alarms raised by a detector per
hour of recording. NURIP’s ability to detect clinically relevant
brain states was evaluated using 500 hours of data from four
patients in the EU Epilepsy database (Table IV).

Data was first downsampled to 256 Hz and 16 electrodes
were chosen on a per patient basis based on their proximity to
the seizure onset zone. The feature extraction uses five signal
energy spectral bands, phase locking values between channels
in the theta band and cross-frequency coupling between the
theta and gamma frequency bands. EDM decay coefficients,
of 8, 10, 12, and 14 are used (approximately 1, 4, 16, and
64 second effective time windows, respectively). A one-class
SVM was trained using a radial basis function kernel. To
estimate the classifier performance, a leave-one-record-out
cross-validation scheme is employed as in [35].

Fig. 10 compares the performance of NURIP in terms of
both sensitivity and FDR to the state of the art methods in
[38] which are validated using the EU epilepsy database. A
total of 43 of 44 clinical seizures analyzed were detected by
the processor with a mean (SD) false positive rate of 0.185
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Fig. 9. Experimentally computed feature space and EDM-SVM classifier output in 1 hour of offline human iEEG recordings from the EU epilepsy database
[15]. The extracted feature space used for classification consists of 125 dimensions derived through offline feature selection and is constrained to < 200
support vectors by the on-chip SRAM.

Fig. 10. Performance comparison of NURIP with the state of the art software
(SW) methods in [38] in terms of both sensitivity and FDR.

(0.05) per hour. The resulting sensitivity is greater than 84%
of the existing work and the false detection rate is lower
than 64% of those referenced. It should be noted that the
classifiers included for comparison are based on software
implementations with higher processing requirements.

VII. PROGRAMMABLE CHARGE-BALANCED
NEUROSTIMULATION WAVEFORM SYNTHESIZER

Upon the detection of a pathological brain state, an electrical
stimulus can be applied to suppress symptoms. Three main
challenges arise when implementing stimulation strategies for
neuromodulation devices; which stimulation parameters are
necessary to induce the desired neural activity, and hence
produce the desired effects? How can we minimize the power
required to achieve a given effect? And how can we ensure
our stimulation parameters are safe for chronic use?

TABLE IV
NURIP EU EPILEPSY DATABASE PERFORMANCE
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EU1096 F 32 147 7 7 100 0.16
EU442 M 21 118 8 8 100 0.11
EU548 M 17 129 17 16 94.10 0.22

EU1125 F 11 108 12 12 100 0.25
Sum 2M/2F - 502 44 43 - -
Mean
(STD) - 20 125.5 - - 97.7

(0.02)
0.185
(0.05)

It has been demonstrated the use of stimulus waveforms
with a net direct current component increases the probability
of tissue and electrode damage [39]. Most neural stimulators
today deliver charge-balanced bi-phasic rectangular current
pulses, where the first (cathodic) phase excites the nerve fiber
and the second (anodic) phase provides charge balancing. The
rectangular waveform is widely used for its simplicity and
ease of generation with a simple current source. However, it
has been shown that arbitrary waveforms can induce complex
neural activity. Indeed, this is the mechanism behind modern
cochlear implants, where non-bi-phasic electrical stimulation
has been used to control auditory neurons to convey mean-
ingful information to the brain [40]. Approaches have been
developed to learn the optimal stimulation parameters to
trade off between selectivity, reduced power consumption and
waveform safety [11]. The ability to programmatically control
these parameters on a device could allow online waveform
adaptation based on such closed-loop control techniques.

NURIP integrates a digitally charge-balanced neurostimula-
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Fig. 11. (a) Experimentally measured arbitrary waveform generation and
charge balancing. (b) The SVM MAC accumulator is reused to maintain the
net charge sent to an analog front end neural stimulator. When the stimulus is
terminated or when safety limits have been exceeded, the inverse of the sum
is iteratively applied moving from MSB to LSB.

tion waveform synthesizer which is demonstrated in Fig. 11 for
arbitrary waveform and function generation (AWFG). Function
generation up to 15kHz is efficiently implemented with the re-
use of the dual-core CORDIC and MAC blocks to support the
generation of sums or products of sinusoids. 3MHz arbitrary
waveform replay is supported by streaming samples from on-
chip SRAM.

To mitigate the issue of charge imbalanced stimulation,
Ref. [41] proposes the pulsating voltage transcranial electrical
stimulator (PVTES) to adapt the number of stimulation pulses
with respect to skin-electrode impedance variation. However,
this approach is limited to bi-phasic pulse stimulation. A
digital charge-balancing technique is implemented in this work
to support the use of arbitrary waveforms. The system MAC
logic is re-used to store the net charge sent to an analog
front end neural stimulator and hence monitor the stimulus
to ensure safe limits are not exceeded. An exponential charge
recovery phase has been demonstrated to safely reduce such
imbalances when compared to sudden terminations [39]. This
approach is efficiently implemented in NURIP using binary
exponential charge recovery (BECR) where the inverse of the
charge monitoring register is iteratively applied from MSB
to LSB. While BECR ensures that the digital values sent to
analog DACs do not exceed safe limits, the charge monitoring
register should be adjusted with feedback from the analog
domain to compensate for stimulator nonidealities and varying
electrode impedances.

VIII. VLSI IMPLEMENTATION AND MEASUREMENT

The processor is implemented in a 0.13-µm RF CMOS
process from IBM as shown in the micrograph in Fig. 12.
The design utilizes an area of 2.55x1.3mm with a logic
size of 509k NAND2 equivalent gates using an ARM RVT
standard cell library. A power consumption of 674.4 µW

Fig. 12. NURIP chip micrograph with major blocks labeled.

Fig. 13. Energy usage breakdown for a typical classification based on
experimentally measured power consumption.

with a nominal voltage of 1.2V was measured using a EDM-
SVM classification rate of 4Hz with a radial basis function
kernel, and continuous feature extraction with an operational
frequency of 10 MHz. As outlined in the power breakdown in
Fig. 13, convolutions for feature extraction and classification
represent the majority of the devices activity.

Functional verification was performed using an external
debug interface to on-chip logic for data streaming and control.
Samples from the EU database are streamed to the prepro-
cessor via a test FPGA for analysis and generated digital
waveform values are accessed via memory mapped registers
for visualization as shown in Fig. 11.

The SoC is compared with the state of the art in Table V.
NURIP implements the broadest range of feature extractors at
a cost of power consumption, but its classification performance
is among the highest demonstrated using the EU Epilepsy
Database as shown in Fig. 10 (which includes non-implantable
approaches).

IX. CONCLUSION

In this work, NURIP integrates accurate brain state classi-
fication for patient-specific seizure detection with neuromod-
ulation waveform generation for precise simulation and con-
tingent seizure abortion with a processing power consumption
of 674.4 µW. The on-chip autoencoder structure for signal
conditioning and dimensionality reduction is an approach that
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TABLE V
COMPARISON TABLE

JSSC’13 [5] JSSC’11 [13] JSSC’14 [14] JSSC’15 [7] JSSC’17 [4] THIS WORK

TECHNOLOGY (µm) 0.13 0.13 0.18 0.18 0.13 0.13
SUPPLY VOLTAGE 0.55-1.2 0.5-1.0 1.8 1.0 1.2 1.2
ANALOG FRONT END NO NO YES YES YES YES
SRAM (kB) 64 128 - 64 - 96
FEATURE EXTRACTION CPU SE, FFT FFT, Entropy SE PLV PLV, CFC, SE, CPU
CLASSIFIER SVM CPU LLS D2A-LSVM Threshold EDM-SVM
ENERGY/CLASS. (µJ) 273 - 77.91 2.73 - 168.6
SAMPLE MEMORY (s) 6 0.125 0.375 3 0.24 multi-minute (EDM)
WIN. LATENCY (s) 2 - 0.8 1 - 0
SENSITIVITY (%) 100⇤ - 92† 95.7⇤ 75† 97.7⇧

FDR 0.05⇤ - - 0.27⇤ 1.0† 0.185⇧

WAVEFORM SYNTHESIS - - Bi-phasic Bi-phasic - AWFG
CHARGE BALANCING - - - PVTES - BECR

Evaluated using: ⇤MIT-CHB Database, †Local data, ⇧EU Epilepsy Database

could greatly reduce device computational requirements as we
scale towards higher channel counts.

The SE, PLV and CFC array of feature extractors combined
with on-chip machine learning allows the classification other
brain states to be explored, such as those found in Parkinson’s
disease. The EDM approach to time series classification has
been demonstrated to efficiently encode temporal relationships
in biomarkers for classification and overcome the high memory
requirement associated with windowing. This approach could
be expanded to other applications where long-term dependen-
cies should be considered.

On-chip neuromodulation waveform synthesis using the
approaches presented here enables future adaptive stimulation
paradigms to be explored for more precise control of neural
activity. The BECR charge balancing solution in combination
with analog monitoring will ensure that such paradigms do not
increase the risk of electrode and tissue damage in patients.

Integrating neural signal acquisition, signal processing, ma-
chine learning and neuromodulation waveform generation on
single device solutions has the potential to revolutionize the
quality treatment for those with neurological disorders.
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