Advanced Current Mirrors and Opamps

David Johns and Ken Martin
University of Toronto
(johns@eecg.toronto.edu)
(martin@eecg.toronto.edu)
Wide-Swing Current Mirrors

- Used to increase signal swing in cascode mirror
- Bias drains of Q2 and Q3 close to triode region
- I_{bias} set to nominal or max value of I_{in}
Wide-Swing Current Mirrors

• Q3 and Q4 act like a single transistor

\[V_{\text{eff}} = V_{\text{eff}2} = V_{\text{eff}3} = \sqrt{\frac{2I_{D2}}{\mu_n C_{ox}(W/L)}} \]
(1)

• Q5 has same drain current but \((n + 1)^2\) times smaller

\[V_{\text{eff}5} = (n + 1)V_{\text{eff}} \]
(2)

• Similarly

\[V_{\text{eff}1} = V_{\text{eff}4} = nV_{\text{eff}} \]
(3)

\[V_{G5} = V_{G4} = V_{G1} = (n + 1)V_{\text{eff}} + V_{tn} \]
(4)

\[V_{DS2} = V_{DS3} = V_{G5} - V_{GS1} = V_{G5} - (nV_{\text{eff}} + V_{tn}) = V_{\text{eff}} \]
(5)

• Puts Q2 and Q3 right at edge of triode
Wide-Swing Current Mirrors

- Min allowable output voltage
 \[V_{out} > V_{eff1} + V_{eff2} = (n + 1)V_{eff} \]
 (6)

- If \(n = 1 \)
 \[V_{out} > 2V_{eff} \]
 (7)

- With typical value of \(V_{eff} \) of 0.2 V, wide-swing mirror can operate down to 0.4 V

- Analyzed with \(I_{bias} = I_{in} \). If \(I_{in} \) varies, setting \(I_{bias} \) to max \(I_{in} \) will ensure transistors remain in active region

- Setting \(I_{bias} \) to nominal \(I_{in} \) will result in low output impedance during slewing (can often be tolerated)
Design Hints

• Usually designer would take \((W/L)_5\) smaller to bias Q_2 and Q_3 slightly larger than minimum

• To save power, bias Q_5 with lower currents while keeping same current densities (and \(V_{eff}\))

• Choose lengths of Q_2 and Q_3 close to minimum allowable gate length (since \(V_{ds}\) are quite small) — maximizes freq response

• Choose Q_1 and Q_4 to have longer gate lengths since Q_1 often has larger voltages (perhaps twice minimum allowable gate length) — Reduces short-channel effects
Enhanced Output-Impedance Current Mirror

- Use feedback to keep Vds across Q2 stable
 \[R_{\text{out}} \cong g_{m1} r_{ds1} r_{ds1} (1 + A) \] (8)

- Limited by parasitic conductance between drain and substate of Q1
Simplified Enhanced Output-Impedance Mirror

- Rather than build extra opamps, use above
- Feedback amplifier realized by common-source amplifier of Q_3 and current source I_{B1}
Simplified Enhanced Output-Impedance Mirror

• Assuming output impedance of I_{B_1} is equal to r_{ds3}, loop gain will be $(g_{m3}r_{ds3})/2$, resulting in

$$r_{out} \approx \frac{g_{m1}g_{m3}r_{ds1}r_{ds2}r_{ds3}}{2} \quad (9)$$

• Circuit consisting of Q_4, Q_5, Q_6, I_{in}, and I_{B_2} operates like a diode-connected transistor — results in accurate matching of I_{out} to I_{in}

• Note that shown circuit is NOT wide-swing — requires output to be $2V_{\text{eff}} + V_{tn}$ above lower supply
Wide-Swing with Enhanced Output Impedance

- Add wide-swing to improve output voltage swing

- $I_{in} \equiv 7I_{bias}$
- $4I_{bias}$
- I_{bias}
- $I_{out} = I_{in}$

- Q_3 and Q_7 biased at 4 times current density — $2V_{eff}$
- Requires roughly twice power dissipation
- Might need local compensation capacitors
Folded-Cascode Opamp

- I_{bias1}
- V_{in}
- V_{B1}
- V_{B2}
- $Q11$
- $Q12$
- $Q1$
- $Q13$
- $Q2$
- $Q3$
- $Q4$
- $Q5$
- $Q6$
- $Q7$
- $Q8$
- $Q9$
- $Q10$
- V_{out}
- CL
Folded-Cascode Opamp

- Compensation achieved using load capacitor
- As load increases, opamp slower but more stable
- Useful for driving capacitive loads only
- Large output impedance (not useful for driving resistive loads)
- Single-gain stage but dc gain can still be quite large (say 1,000 to 3,000)
- Shown design makes use of wide-swing mirrors
- Simplified bias circuit shown
- Inclusion of Q12 and Q13 for improved slew-rate
Folded-Cascode Opamp

\[A_V = \frac{V_{out}(s)}{V_{in}(s)} = g_{m1}Z_L(s) \] \hspace{1cm} (10)

\[A_V = \frac{g_{m1}r_{out}}{1 + sr_{out}C_L} \] \hspace{1cm} (11)

- \(r_{out} \) is output impedance of opamp (roughly \(g_m r_{ds}^2 / 2 \))
- For mid-band freq, capacitor dominates

\[A_V \approx \frac{g_{m1}}{sC_L} \] \hspace{1cm} (12)

\[\omega_t = \frac{g_{m1}}{C_L} \] \hspace{1cm} (13)
Folded-Cascode Opamp

- Maximizing g_m of input maximizes freq response (if not limited by second-poles)
- Choose current of input stage larger than output stage (also maximizes dc gain)
- Might go as high as 4:1 ratio
- Large input gm results in better thermal noise
- Second poles due to nodes at sources of Q5 and Q6
- Minimize areas of drains and sources at these nodes with good layout techniques
- For high-freq, increase current in output stage
Folded-Cascode Slew-Rate

- If Q2 turned off due to large input voltage
 \[
 \text{SR} = \frac{I_{D4}}{C_L}
 \]
 \[\text{(14)}\]
- But if \(I_{\text{bias2}} > I_{D3}\), drain of Q1 pulled near negative power supply
- Would require a long time to recover from slew-rate
- Include Q12 (and Q13) to clamp node closer to positive power supply
- Q12 (and Q13) also dynamically increase bias currents during slew-rate limiting (added benefit)
- They pull more current through Q11 thereby increasing bias current in Q3 and Q4
Folded-Cascode Example

Design Goals

- +/-2.5V power supply and 2mW opamp with 4:1 ratio of current in input stage to output stage
- Set bias current in Q11 to be 1/30 of Q3 (or Q4)
- Channel lengths of 1.6µm and max width of 300µm with $V_{eff}=0.25$ (except input transistors)
- Load cap = 10pF

Circuit Design

\[
I_{\text{total}} = 2(I_{D1} + I_{D6}) = 2(4I_B + I_B) = 10I_B \quad (15)
\]

\[
I_B = I_{D5} = I_{D6} = \frac{I_{\text{total}}}{10} = \frac{(2mW)/5 \text{ V}}{10} = 40 \mu A \quad (16)
\]

\[
I_{D3} = I_{D4} = 5I_{D5} = 200 \mu A \quad (17)
\]
\[I_{D1} = I_{D2} = 4I_{D5} = 160 \, \mu A \] \hfill (18)

- To find transistor sizing:

\[
\left(\frac{W}{L} \right)_i = \frac{2I_{Di}}{\mu_i C_{ox} V_{eff}^2} \hfill (19)
\]

rounding to nearest factor of 10 (and limiting to 300um width) results in

<table>
<thead>
<tr>
<th>Q_1</th>
<th>300/1.6</th>
<th>Q_6</th>
<th>60/1.6</th>
<th>Q_{11}</th>
<th>10/1.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_2</td>
<td>300/1.6</td>
<td>Q_7</td>
<td>20/1.6</td>
<td>Q_{12}</td>
<td>10/1.6</td>
</tr>
<tr>
<td>Q_3</td>
<td>300/1.6</td>
<td>Q_8</td>
<td>20/1.6</td>
<td>Q_{13}</td>
<td>10/1.6</td>
</tr>
<tr>
<td>Q_4</td>
<td>300/1.6</td>
<td>Q_9</td>
<td>20/1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_5</td>
<td>60/1.6</td>
<td>Q_{10}</td>
<td>20/1.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Widths of \(Q_{12} \) and \(Q_{13} \) were somewhat arbitrarily chosen to equal the width of \(Q_{11} \)

- Transconductance of input transistors
\[g_{m1} = \sqrt{2I_{D1}} \mu_n C_{ox}(W/L)_1 = 2.4 \text{ mA/V} \] (20)

- Unity-gain frequency

\[\omega_t = \frac{g_{m1}}{C_L} = 2.4 \times 10^8 \text{ rad/s} \Rightarrow f_t = 38 \text{ MHz} \] (21)

- Slew rate \textit{without} clamp transistors

\[\text{SR} = \frac{I_{D4}}{C_L} = 20 \text{ V/\mu s} \] (22)

- Slew rate \textit{with} clamp transistors

\[I_{D12} + I_{D3} = I_{bias2} = 320 \mu A \] (23)

\[I_{D3} = 30I_{D11} \] (24)

\[I_{D11} = 6.6 \mu A + I_{D12} \] (25)
• Solving above results in

\[I_{D11} = 10.53 \ \mu A \] \hspace{2cm} (26)

which implies

\[I_{D3} = I_{D4} = 30I_{D11} = 0.32 \ mA \] \hspace{2cm} (27)

leading to slew-rate

\[SR = \frac{I_{D4}}{C_L} = 32 \ V/\mu s \] \hspace{2cm} (28)

• More importantly, time to recover from slew-rate limiting is decreased.
Linear Settling Time

- Time constant for linear settling time equals inverse of closed-loop 3dB freq, ω_{3dB} where

$$\omega_{3dB} = \beta \omega_t$$ \hspace{1cm} (29)

where β is feedback factor and ω_t is unity-gain freq of amplifier (not including feedback factor)

- For 2-stage opamp, ω_t is relatively independent of load capacitance

- This is NOT the case where load capacitor is compensation capacitor (folded-cascode and current-mirror opamps)

- Need to find equivalent load capacitance
Linear Settling Time

\[\beta = \frac{1/[s(C_1 + C_p)]}{1/[s(C_1 + C_p)] + 1/(sC_2)} = \frac{C_2}{C_1 + C_p + C_2} \] (30)

\[C_L = C_C + C_{load} + \frac{C_2(C_1 + C_p)}{C_1 + C_p + C_2} \] (31)
Linear Settling Time Example

• Given $C_1 = C_2 = C_C = C_{\text{load}} = 5 \text{ pF}$ and $C_p = 0.46 \text{ pF}$, find settling time for 0.1 percent accuracy (i.e. 7τ) for the current-mirror opamp

Solution:

• Equivalent load capacitance

$$C_L = 5 + 5 + \frac{5(5 + 0.46)}{5 + 5 + 0.46} = 12.61 \text{ pF}$$ \hspace{1cm} (32)

which results in a unity gain freq of

$$\omega_t = \frac{Kg_{m1}}{C_L} = \frac{2 \times 1.7 \text{ mA/V}}{12.61 \text{ pF}} = 2.70 \times 10^8 \text{ rad/s}$$ \hspace{1cm} (33)
Linear Settling Time Example

- Feedback factor given by
 \[\beta = \frac{5}{5 + 0.46 + 5} = 0.48 \] \hspace{1cm} (34)
 causing a first-order time constant
 \[\tau = \frac{1}{\beta \omega_t} = 7.8 \text{ ns} \] \hspace{1cm} (35)
- For 0.1 percent accuracy, we need a linear settling time of \(7\tau \) or 54 ns.
- This does not account for any slew-rate limiting time.
Fully Differential Opamps

Advantages

• Use of fully-differential signals helps to reject common-mode noise and even-order linearities — rejection only partial due to non-linearities but much better than single-ended designs

• Fast since no extra current mirror needed

Disadvantages

• Requires common-mode feedback (CMFB) circuitry — sets average output voltage level, should be fast — adds some capacitance to output stage — might limit output signal swing

• Negative going single-ended slew-rate slower since set by bias current — not dynamic
Fully Differential Folded-Cascode Opamp

- **Q1**, **Q2**
- **Q3**, **V_B1**, **Q4**
- **Q5**, **Q6**, **V_B2**
- **Q7**, **Q9**, **Q10**
- **Q11**, **Q12**, **I_{bias}**
- **V_{in}**
- **V_B3**
- **V_{cntrl}**
- **V_{out}**
- CMFB circuit
Common-Mode Feedback Circuits

- Balanced signal on V_{out} does not affect V_{cntrl}
- Does not depend on small-signal analysis
Common-Mode Feedback Circuits

- Useful for switched-capacitor circuits
- Caps Cs set nominal dc bias at bottom of Cc
- Large output signal swing allowed