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Abstract

VLIW architectures are well-suited for implementing application-specific programmable pro-

cessors because of their great scalability and modularity. VLIW architectures take advantage of

not only temporal parallelism found in RISC architectures but also spatial parallelism by using

multiple functional units. However, the large instruction storage and bandwidth requirements

have prevented VLIW architectures from being used in cost-sensitive systems.

This thesis describes a VLIW DSP processor called UTDSP, which incorporates a novel and

flexible instruction packing and fetching mechanism to reduce the code size and bandwidth prob-

lems plaguing other VLIW architectures. With this scheme it is possible to actually achieve some

code compression while attaining significant performance speedup over a traditional architecture.

The UTDSP is flexible in that additional functional units with application-specific instructions

can be easily added when required for performance with little impact on its compiler.

The VLSI design and implementation of the UTDSP is presented. This implementation, consist-

ing of five pipeline stages, is capable of executing seven instructions per cycle and provides zero-

overhead hardware loops that are nestable and interruptable. A GUI-based assembly debugger

and architecture simulator were implemented. The UTDSP adopts a synthesis-based design meth-

odology and a novel hierarchical CAD flow that can significantly reduce its area.
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Chapter 1

Introduction

1.1 Motivation

Digital signal processors (DSPs) are specialized microprocessors designed to execute the com-

putationally-intensive operations commonly found in the inner loops of digital signal processing

algorithms. Having been used extensively in embedded systems, DSPs are required to offer high

performance while reducing cost. To fulfill this goal, traditional DSPs use tightly-encoded

instruction sets to reduce instruction memory requirements, and hence cost. Using tightly-

encoded instruction sets reduces not only storage requirements but also instruction memory band-

width, which is a major concern when off-chip instruction memory needs to be used. 

However, tightly-encoded instruction-set architectures (ISAs) are not well-suited for high-level

languages (HLL) compilers to exploit parallelism because most of the instructions are accumula-

tor based, limiting the number of registers that can be specified in an operation. As a result, DSP

compilers generate relatively poor code compared with their counterparts for general-purpose

microprocessors. Therefore, more compiler-friendly DSP architectures that combine high perfor-

mance with low cost are definitely needed. One alternative to the tightly-encoded instruction

architectures is the very long instruction word (VLIW) architecture.

VLIW architectures offer high performance by using multiple, independent functional units,

enabling multiple instruction issue while reducing cost by eliminating dynamic scheduling logic.

Unlike superscalar processors, where data hazards are handled using dynamic scheduling, VLIW

architectures rely on compilers to create a package of instructions that can be simultaneously

issued. VLIW architectures are very well-suited for exploiting a high level of parallelism because

they are easy targets for HLL compilers to generate efficient code. 
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However, VLIW architectures have several limitations that are not favorable in cost-sensitive

DSP processors. First, instruction-memory size is increased substantially due to the unused

encoding slots in long instructions and the extra instructions created using loop unrolling to

exploit parallelism. Second, fetching long instructions from off-chip instruction memory requires

a high bandwidth, which can be a severe problem when pin-count and packaging options are

major constraints.

1.2 Objective and Contributions

The objective of this thesis is to design and implement a VLIW programmable DSP processor

—  UTDSP. The UTDSP eliminates the limitations mentioned above by incorporating a two-level

instruction fetching and packing mechanism. The VLSI implementation of the UTDSP, along

with associated software development tools, is presented in this thesis. The following details three

major contributions of this thesis.

1.2.1 Design and Implementation of a Long-instruction Packer

The UTDSP instruction packer was implemented based on a two-level instruction fetching

mechanism proposed by Mazen Saghir [2]. The UTDSP packer not only packs long instructions

to reduce storage requirements but also serves as an assembler. Benchmark results indicate that

the UTDSP instruction packer outperforms the new TI VelociTI packing algorithm, while solving

the fetching bandwidth problems mentioned previously.

1.2.2 Design and Implementation of Architecture Simulator and GUI-based Assembly Debugger

The UTDSP architecture was designed using an application-driven design methodology where

architectures are designed according to the performance and cost requirements of their target

applications. Being written in a high-level language, the architecture simulator, which also serves

as a behavioural model of the UTDSP, can be easily modified to experiment with design trade-

offs, enabling the application-driven design methodology. An GUI-based assembly debugger was

also implemented to allow programmers to perform interactive debugging features such as mem-

ory probing and breakpoint tracing.

1.2.3 Design and VLSI Implementation of the UTDSP
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The UTDSP, which has five pipeline stages, was implemented using a synthesis-based design

methodology. The UTDSP provides not only a set of highly orthogonal, RISC-like instructions

but also DSP-specific features such as zero-overhead hardware loops. The zero-overhead hard-

ware loops can be nested up to five levels. Also, interrupts and branches are allowed in the inner

loop. A novel hierarchical CAD flow that significantly reduces the resulting area and interconnect

delay of the UTDSP was defined in this thesis. 

1.3 Thesis Organization

This thesis is divided into six chapters. Chapter 2 provides the reader with background informa-

tion on the UTDSP, focusing on a VLIW model architecture and its compiler system. Chapter 3

introduces the design and implementation of the UTDSP packer. Benchmark comparison between

the UTDSP packer and TI’s VelociTI memory packer will be analyzed in this chapter. Chapter 4

describes the design and implementation of the architecture simulator and GUI-based assembly

debugger. Chapter 5 presents the design and VLSI implementation of the UTDSP. Related CAD

issues will be illustrated in this chapter. Chapter 6 concludes this thesis and offers recommenda-

tions for future work.
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Chapter 2

Background

The rapid growth in the consumer electronics market has increased the demand for high-perfor-

mance, low-cost processors for use in embedded systems. Although off-the-shelf DSP processors

can be used to meet these demands, application-specific programmable processors (ASPPs) —

processors that are designed for specific applications —  are more desirable for use in cost-sensi-

tive systems because their architectures and instruction set can be tuned for their specific perfor-

mance and cost requirements. The UTDSP processor, an ASPP aimed at embedded DSP

applications, incorporates an application-driven design methodology, where architectures are

designed according to the requirements of the target applications.

This chapter provides an overview to the UTDSP project and describes background information

upon which this thesis is built. Section 2.1 explains the application-driven design methodology

and how it is used to generate architectures that are easy targets for high-level language (HLL)

compilers. Section 2.2 introduces a flexible model architecture that can be easily modified

according to the performance and cost requirements of the target applications. Section 2.3

describes an optimizing C compiler and its role in tuning the model architecture. Section 2.4

describes two commercially available DSP processors that have VLIW architectures. Section 2.5

summarizes this chapter.

2.1 Application-Driven Design Methodology

Conventional embedded DSP processors are designed without fully appreciating the features

and limitations of their HLL compilers. Moreover, many DSP processors are developed using a

methodology where compiler construction starts after functional silicon is obtained [3][4][5]. This

usually results in a design that is a difficult target for HLL compilers; therefore, the compilers nei-



5

ther take maximum advantage of the hardware resources in the architecture nor generate efficient

assembly code compared with hand-crafted versions. 

Figure 2.1: Application-driven design methodology

In contrast, the UTDSP project uses an application-driven design methodology [1] where archi-

tectures are designed according to the performance and cost requirements of their target applica-

tions. Figure 2.1 shows the flow used in the application-driven design methodology. The design

starts with a flexible model architecture as a template; a suite of benchmarks is used to evaluate

the performance of the model architecture. The model architecture is iteratively modified until it

meets the performance and cost requirements of the target applications. The key component in

this design methodology is the flexible model architecture, which is easy to configure and is able

to exploit parallelism. A flexible, RISC-like instruction set is also provided to make the model

architecture an easy target for HLL compilers. 

As the complexity of DSP applications increases, writing a DSP application entirely in assem-

bly language is no longer feasible although kernels and inner loop code are still often hand-opti-

mized to achieve a better throughput. Therefore, the benchmark suite was developed in the C
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programming language and a C compiler is used to translate the target applications into the

machine operations that can be executed by the model architecture. The C compiler generates

sequential code and performs register allocation based on the instruction set and the number of

registers defined for the model architecture. A post-optimizer is then used to exploit the DSP-spe-

cific features of the model architecture. The post-optimizer also exploits parallelism in the

sequential code and creates executable code that runs on the model architecture. The executable

code is then simulated using an instruction-set simulator to obtain the cost and performance infor-

mation of the model architecture. 

When the performance requirements are not fulfilled, the architecture, compiler, and post-opti-

mizer can be modified to exploit more parallelism. Similarly, when the cost requirements are not

fulfilled, the hardware components that are under-utilized can be removed to reduce system cost.

This process is repeated until the model architecture meets both the cost and the performance

requirements of the target applications. 

The benchmark suite used in this study consists of six kernels and ten applications. Table 2.1

shows the kernel benchmarks, which consists of simple algorithms commonly used in DSP appli-

cations. The kernels usually constitute the inner loop of DSP applications; therefore the effective-

ness of exploiting parallelism in kernels dominates the overall performance. In other words, the

compiler must generate efficient code for kernels to maximize the utilization of the hardware

resources in the model architecture. Table 2.2 shows the DSP application benchmarks, which are

commonly used in embedded systems. Using the suite of benchmarks with the application-driven

design methodology thus makes the resulting model architecture an ideal design for embedded

DSP processors.

Kernels Description

k1
k2

fft_1024
fft_256

Radix-2, in-place, decimation-in-time fast Fourier transform

k3
k4

fir_256_64
fir_32_1

Finite impulse response (FIR) filter

k5
k6

iir_4_64
iir_1_1

Infinite impulse response (IIR) filter

Table 2.1: DSP kernel benchmarks
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2.2 The Model Architecture

Flexibility and compiler programmability are two important requirements for the model archi-

tecture used in the application-driven design methodology. Flexibility enables the model architec-

ture to be easily configured to meet the performance and cost constraints of an application, while

compiler programmability requires the architecture to be an easy target for HLL compilers. A

model architecture that is based on a very long instruction word (VLIW) architecture was chosen

to meet both requirements [2]. 

A VLIW architecture consists of multiple functional units each of which can execute indepen-

dent instructions simultaneously. Unlike CISC instructions, which are vertically encoded, VLIW

k7
k8

latnrm_32_64
latnrm_8_1

Normalized lattice filter

k9
k10

lmsfir_32_64
lmsfir_8_1

Least-mean-squared (LMS) adaptive FIR filter

k11
k12

mult_10_10
mult_4_4

Matrix Multiplication

Applications Description

a1
a2

G721_A
G721_B

Two implementations of the ITU G.721 ADPCM speech 
encoder

a3 V32.modem V.32 modem encoder/decoder

a4 adpcm Adaptive differential pulse-coded modulation speech encoder

a5 compress Image compression using discrete cosine transform (DCT)

a6 edge_detect Edge detection using 2D convolution and Sobel operators

a7 histogram Image enhancement using histogram equalization

a8 lpc Linear predictive coding speech encoder

a9 spectral Spectral analysis using periodogram averaging

a10 trellis Trellis decoder

Table 2.2: DSP application benchmarks

Kernels Description

Table 2.1: DSP kernel benchmarks
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long instructions are horizontally encoded. Each long instruction contains N fields, where N is the

number of operations that can be executed concurrently; each field controls a corresponding func-

tional unit. Figure 2.2 shows an example VLIW long instruction. An optimizing compiler is used

to exploit parallelism and schedule parallel operations into the fields of a long instruction. More-

over, using a highly orthogonal, RISC-like instruction set helps the compiler generate efficient

code for the target architecture. The VLIW architecture is flexible in that additional functional

units can be easily added when required for performance with little impact on the compiler.

Figure 2.3 shows the VLIW model architecture used for the UTDSP. The model contains nine

functional units: two memory units (MU0 and MU1), two address units (AU0 and AU1), two

integer units (DU0 and DU1), two floating-point units (FU0 and FU1), and one control unit

Figure 2.2: Example long instruction for a VLIW with 5 functional units

Figure 2.3: VLIW Model Architecture
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(PCU). MU0 and MU1 execute memory operations. Each memory unit connects to a single-

ported, data-memory bank. AU0 and AU1 execute address operations. DU0 and DU1 execute

integer operations. FU0 and FU1 execute floating-point operations. PCU executes control opera-

tions. Because the model has nine functional units, up to nine parallel operations can be specified

in a long instruction and execute concurrently. Unlike superscalar architectures, where instruction

scheduling is handled dynamically in hardware, VLIWs adopt static scheduling, which requires

compilers to resolve data hazards. Eliminating the dynamic scheduling logic gives VLIWs a faster

execution speed and a smaller silicon area. Because the long instructions consisting of RISC-like

operations can still fit in a pipeline scheme, VLIWs can exploit not only spatial parallelism using

multiple functional units, but also temporal parallelism by introducing the pipeline scheme.

A Harvard memory architecture, where instruction memory is separated from data memory, is

used to increase memory bandwidth and enable the concurrent fetching of instructions and data.

Because the model architecture is a load-store design —  all operands must be first loaded from

data memory to register files through the two MUs, dual data-memory banks are introduced to

reduce the possibility of starving for operands in DSP kernels. To take advantage of the dual data-

memory banks, the compiler must distribute program data among them. More details about

exploiting dual data-memory banks are given in [2][42]. 

The model has three register files to store address, integer, and floating-point operands, respec-

tively. Specifically, the integer functional units only operate on registers in the integer register

file; the address units only operate on registers in the address register file. Similarly, the floating-

point units can only access the registers in the floating-point register file. All register files are con-

nected to the memory units so that data can be loaded from data-memory banks to any one of the

register files. The program-control unit is also connected to all register files to allow data transfers

between them. 

However, one major drawback that prevents VLIWs from being used in cost-sensitive systems

is their high instruction bandwidth. As shown in Figure 2.3, the model architecture needs a 288-

bit bus for instruction fetching. Because a long instruction must be fetched from memory on every

clock cycle, the performance will be severely degraded when off-chip instruction memory is used

and the number of available pins is not enough for implementing a full fetch bus. Another draw-

back is the large instruction storage when compilers cannot exploit enough parallelism to sched-
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ule operations into long instructions. Storing the long instructions that have many unused fields in

their original format is therefore very wasteful, and results in increased system costs. 

To solve the bandwidth and storage problems mentioned above, Mazen Saghir proposed a long

instruction fetching and packing mechanism [2] based on writable control stores [6][7]. The writ-

able control stores can be found in a microprogrammed computer where an instruction contains a

pointer to horizontal microcode stored in the control store. Similarly, long instructions can be

stored in the control store and their pointers are stored in the instruction memory. When a pointer

is fetched from the instruction memory, it is used to fetch its associated long instruction from the

control store (decoder memory). Figure 2.4 shows a block diagram of the instruction and decoder

memory. The instruction memory stores single operations or pointers to long instructions. The

operations stored in the instruction memory are called uni-op instructions —  long instructions that

contain only one operation. In contrast, the pointers stored in the instruction memory are called

multi-op pointers, which point to the actual long instructions stored in the decoder memory. The

instruction fetching and packing mechanism used in the UTDSP processor was implemented

Figure 2.4: Basic Structure of Instruction Decoder
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based on this two-level fetching model. More details will be given in Chapter 3 where the design

and implementation of the UTDSP Packer is explained. 

2.3 C Compiler and Post-Optimizer

A C compiler translates a program written in C into a functionally equivalent program taking

the form of the machine language of the target architecture; it uses machine-independent optimi-

zations to increase the run-time performance of the resulting machine code. These optimizations

usually include loop unrolling, common sub-expression elimination, strength reduction, and con-

stant propagation [8]. Furthermore, the compiler can perform specific machine-dependent optimi-

zations to take maximum advantage of the hardware resources in the target architecture. For

instance, the machine-dependent optimizations include instruction scheduling, software pipelin-

ing, register renaming, data prefetching, and branch prediction when the target architecture is a

general-purpose RISC processor. 

Originally, the C compiler for the model architecture was based on the GNU C compiler (Gcc)

because it is public-domain software; it uses a good suite of scalar optimizations; and it is easy to

retarget to different architectures. However, the intermediate form Gcc uses provides too little

information about the source program to implement machine-dependent optimizations. To imple-

ment DSP-specific optimizations without modifying Gcc, a post-optimizing pass was developed

to perform the machine-dependent optimizations for the model architecture. Figure 2.5 shows the

resulting two-phase compilation process. In the first phase, the C compiler translates C programs

into sequential assembly language operations that can be executed on the model architecture. In

the second phase, the post-optimizer back-end performs the architecture-specific optimization.

The initial work on Gcc and the post-optimizer was done by Vijaya Singh [9]. The post-optimizer

was later augmented by Mazen Saghir [2][43] and Mark Stoodley [10]. The Gcc front-end was

later again replaced by the SUIF compiler [11] to enable the use of a more natural coding style for

applications.The SUIF compiler was ported to the model architecture by Sanjay Pujare [12]. 

The post-optimizer optimizes the execution performance of a program by taking maximum

advantage of the underlying hardware resources in the model architecture; it applies five optimi-
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zation passes to the sequential machine operations generated by the front-end C compiler and cre-

ates long instructions that can execute on the model architecture. The five passes include the

program analysis pass, the modulo addressing pass, the low-overhead looping pass, the data allo-

cation pass, and the operation compaction pass, as shown in Figure 2.5.

First, the program analysis pass constructs a control-flow graph for the code generated by the

front-end compiler. It then extracts information about its data-flow, control-flow, and aliasing

characteristics, which are needed in the other phases. Second, the modulo addressing pass con-

verts all arrays in the original code to circular buffers so that the elements in the arrays are

accessed in a modulo manner. Third, the low-overhead looping pass tries to replace conditional

branch instructions in a loop with a single low-overhead looping operation that specifies the itera-

tion count and the addresses of the first and last instruction in the loop body. Fourth, the data allo-

cation pass takes advantage of the dual data-memory banks of the model architecture and exploits

parallelism by distributing program data among the banks. Finally, the operation compaction pass

packs machine operations into long instructions using a list scheduling algorithm [13].

Figure 2.5: Two-phase compilation: C Compiler and Post-Optimizer
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2.4 TI VelociTI and Philips R.E.A.L DSP Architectures

This section describes VLIW architectures that are used in two commercially available DSP

processors —  TI TMS320C62xx and Philips R.E.A.L DSP.

2.4.1 TI VelociTI Architecture

The VelociTI architecture is used in the TMS320C62xx, which is the latest in the TMS320 fam-

ily of DSPs. The VelociTI architecture is an advanced VLIW design that has a long-instruction

packing scheme to reduce storage requirements. The VelociTI uses a deep pipeline to eliminate

traditional pipeline bottlenecks including memory access and multiply-accumulate operations.

Figure 2.6 shows the block diagram of the VelociTI architecture.

Figure 2.6: The TI VelociTI Architecture
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There are eight functional units in the VelociTI architecture. They are divided into two data

paths. Each data path has four functional units and a register file. The data in the two register files

can be exchanged via a crosspath. Each functional unit can execute only a subset of the VelociTI

instruction set. The VelociTI has a highly orthogonal, RISC-like instruction set and a load-store

architecture —  memory accesses are performed using explicit load or store instructions. 

As shown in Figure 2.6, the VelociTI has three pipeline phases: Fetch, Decode, and Execute.

The Fetch phase consists of four pipeline stages. In the Fetch phase, a program address is gener-

ated and used to fetch a long instruction (Fetch Packet) from instruction memory. In the Decode

phase, which consists of two pipeline stages, the operations in the fetched long instruction are dis-

patched to their corresponding functional units via a crossbar. The crossbar is used because the

VelociTI has a long-instruction packing scheme to reduce storage requirements. The details of

this packing scheme will be discussed in Section 3.4.1.

In the Execute phase, the dispatched operations are executed in their corresponding functional

units. The Execute phase is divided into 5 pipeline stages because each instruction uses different

number of pipeline stages. Most of the instructions use one pipeline stage, whereas some instruc-

tions such as branch require 5 pipeline stages to execute. More details can be found in [14][26].

2.4.2 Philips R.E.A.L. DSP Architecture

The R.E.A.L. DSP (Reconfigurable Embedded DSP Architecture at Low-power and Low-cost)

is designed as a flexible embedded core to enable an application-specific tuning and fast turn-

around time. The R.E.A.L. DSP is a VLIW design with a dual Harvard architecture and 3 pipeline

stages. The R.E.A.L. uses a look-up table to store its VLIW instructions. Figure 2.7 shows the

block diagram of the R.E.A.L. DSP core.

When a 16-bit word is fetched from program memory and if its first 8 bits equal to the specified

enabling mode, the lower byte of the word will be used as an address to fetch its corresponding

long instruction stored in the ASI look-up table. The VLIW instructions stored in the ASI look-up

table are 96-bit long and can specify many operations to control not only functional units but also

application specific execution units (AXU). The AXUs are designed to execute a special set of

instructions that are tuned for target applications. Most importantly, they can be placed anywhere

in the datapath or the address functional units. 
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The ASI look-up table can contain only 256 long instructions and it does not use any instruction

packing scheme. Although it stores the duplicates of a long instruction in the same table entry to

reduce its storage requirement, we believe that the storage requirement is unlikely to be reduced

because the possibility of having exactly the same long instructions is rare. More details can be

found in [3][45].

Figure 2.7: The Philips R.E.A.L DSP architecture
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2.5 Summary

This chapter introduced the compiler system and the model architecture developed for an appli-

cation-driven design methodology. In the application-driven design framework, the compiler-gen-

erated code for a set of target applications is used to measure the performance of the flexible

model architecture. The measurements are compared with the application-specific constraints and

the model architecture is iteratively modified until all the constraints are met. 

The model architecture is based on a VLIW model because it is very flexible and can easily be

configured to meet the target constraints. Although the long-instruction scheme in VLIWs is an

easy target for HLL compilers, its high bandwidth and storage requirements prevent VLIWs from

being used in cost-sensitive embedded systems. A long-instruction packing and fetching scheme

that is based on a control-store mechanism was proposed by Mazen Saghir to overcome these

problems [2]. 

Compiling an application into the long-instruction format involves a two-phase process. The

first phase is to translate the source code into basic machine operations using the GNU C com-

piler; the second phase performs architecture-specific optimizations using a post-optimizer and

generates long instructions that can run on the model architecture.

Having covered the work done by previous researchers and two commercially available DSP

architectures in this chapter, the following chapters will focus on the design and VLSI implemen-

tation of the UTDSP processor and associate development tools. The UTDSP processor is based

on the model architecture and incorporates the long-instruction encoding mechanism to solve the

instruction bandwidth and storage problems.
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Chapter 3

Long-Instruction Packing and Fetching for 
the UTDSP

In the last chapter, the model architecture and the optimizing compiler systems were discussed.

Although the optimizing compiler could exploit enough parallelism and generate efficient code

with the flexible model architecture, the storage requirements of long instructions and the high

instruction bandwidth required represent major obstacles in developing a feasible system. This

chapter describes the UTDSP instruction fetching and packing mechanism, which solves the

problems mentioned above.

The UTDSP instruction fetching and packing mechanism was designed based on the two-level

instruction fetching scheme discussed in the last chapter. Section 3.1 describes the basic architec-

ture of this mechanism and a simple packing algorithm that reduces the instruction storage

requirements. Section 3.2 presents a two-cluster packing algorithm that achieves a denser packing

result by dividing a long instruction into two sub-words and sharing memory locations. 

Section 3.3 describes the software implementation of the UTDSP packer using the two-cluster

packing algorithm. It also shows that data structures constructed using template techniques not

only ease the implementation of the UTDSP packer and assembly tools, but also shorten the

design time used to explore various packing algorithms. Section 3.4 examines the impact of the

packing algorithms on the storage requirements and compares the benchmark results of the

UTDSP packer with that of Texas Instruments’ VelociTI packing [14]. Section 3.5 summarizes

this chapter.

3.1 Storing and Decoding Long Instructions

Fig 3.1 shows the two-level instruction memory system used in the UTDSP to store the long-

instructions. This architecture was proposed by Mazen Saghir [2]. The instruction memory sys-
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tem consists of two blocks: the instruction memory and the decoder memory. Long instructions

that contain only one operation —  uni-op operations —  are stored in the instruction memory,

while the other long instructions are stored in the decoder memory and their addresses —  multi-

op pointers —  are stored in the instruction memory instead. The decoder memory contains seven

banks, each of which is associated with a functional unit; therefore, the operations stored in a

decoder-memory bank will be executed in its associated functional unit. Although the seven oper-

ations in a long-instruction word are distributed in the different banks of the decoder memory,

they are stored in the memory locations that have the same physical address so that they can be

fetched using their corresponding multi-op pointer stored in the instruction memory. 

When a word is fetched from the instruction memory, its most-significant bit is examined to

determine if the word is a uni-op operation or a multi-op pointer. If it is a uni-op operation, it is

directly issued to an appropriate functional unit where it can be executed. In contrast, if a multi-op

pointer is fetched, it is used to access the memory locations in the decoder-memory banks and the

Figure 3.1: Block diagram of the UTDSP memory system
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seven operations stored in the locations addressed by the multi-op pointer will be dispatched to

their corresponding functional units. 

3.1.1 Reducing the Size of Decoder Memory

Storing long-instructions in their original formats illustrated in Figure 3.1 can be very wasteful

because of NOPs —  the no operation fields in the long instructions. One way to reduce the overall

size of the decoder memory is to store instructions in a way that allows some of the memory for

NOPs to be omitted. Let the priority of a field in a multi-op instruction be the number of NOPs

stored in the decoder-memory bank associated with the field. Multi-op instructions with opera-

tions in the higher-priority fields are stored first, starting from address zero, while instructions

with operations in the lower-priority fields are stored last. Figure 3.2 shows the impact of storing

instructions according to field priorities on the decoder memory. 

In Figure 3.2 (A) multi-op instructions are stored in an arbitrary manner. Observe that bank4

suffers the most from the poor ordering of the multi-op instructions because bank4 contains the

most NOPs (white boxes). Therefore, field F4, associated with bank4, is assigned the highest pri-

ority and the multi-op instructions that have operations in field F4 are stored first. Figure 3.2 (B)

shows that multi-op instructions are stored according to field priorities. In this case the storage

requirement for bank4 can be reduced to three words by chopping off the four consecutive empty

words.

Moreover, the decoder-memory size can be further reduced by storing multi-op instructions

with mutually exclusive operation fields into the same long-instruction word. Figure 3.3 (A)

Figure 3.2: (A) Multi-op instructions stored in an arbitrary manner (B) Multi-op instructions stored 
according to field priorities
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shows that three multi-op instructions are stored as three, separate, long-instruction words. When

stored in this format, the instructions occupy 21 words, of which 14, or approximately 67% are

NOPs. In contrast, Figure 3.3 (B) shows that the three instructions are packed into a single long-

instruction word because their operations use mutually exclusive fields. In this case, storing the

long instructions needs only seven memory words. Therefore, packing multi-op instructions with

mutually exclusive fields into a single long instruction reduces the size of the decoder memory

significantly.

To fetch the original operations of a multi-op instruction from the packed long-instruction word,

the multi-op pointer should store not only the address of the packed word, but also a bit mask that

selects specific memory banks in the decoder memory. Figure 3.3 (B) shows the bit mask fields in

the multi-op pointers stored in the instruction memory. Note that the number of bits in the bit

mask is the same as the number of memory banks; each bit in the mask is used to select its corre-

Figure 3.3: (A) Storing multi-op instructions in their original format (B) Storing multi-op instructions 
in a packed format
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sponding memory bank. The decoder-memory banks that are not selected by the bit mask will

return NOPs.

3.2 Achieving Denser Instruction Packing

The major drawback of the packing method described in Section 3.1 is that two instructions

cannot be packed into a single decoder-memory word even if they share only one field. This sec-

tion describes two methods that can be used to achieve a denser instruction packing result. The

final implementation of the UTDSP packer incorporates these two methods.

3.2.1 Field Clustering Method

Figure 3.4 (a) illustrates the problem where two instructions cannot be packed into a single

word because both instructions use field F7. Mazen Saghir proposed a field clustering method to

solve this problem [2]. Observe that the remaining fields in both instructions are mutually exclu-

Figure 3.4: Field clustering packing method



22

sive, and that they could have been packed into the same memory word if field F7 was ignored.

This suggests that dividing the memory banks into clusters can achieve a denser packing result.

Figure 3.4 (B) shows that the memory banks are grouped into two clusters: cluster A consisting of

memory banks B1 to B4, and cluster B consisting of banks B5 to B7. 

As a result, in this example, multi-op instruction word W1 is divided into subwords W1-a and

W1-b; W2 is divided into subwords W2-a and W2-b. The packing method is then applied to each

cluster separately. Applying the packing method to cluster A will pack W1-a and W1-b into one

subword in the decoder memory because the operations in W1-a and W1-b use mutually exclu-

sive fields. The subwords W2-a and W2-b remain the same because both instructions use field F7.

The Figure 3.4 (c) shows the final packing result using this two-cluster grouping method. Note

that another set of bit masks and address fields must be added into the multi-op pointers to extract

operations from the two different clusters. Figure 3.4 (c) also shows the contents of the multi-op

pointers, which are used to extract the original multi-op instructions W1 and W2 from the two

clusters. 

3.2.2 Sharing Packing Slots

Clustering enables the exploitation of redundancy at the sub-instruction level, meaning that only

one copy of the identical sub-instructions need to be stored in the decoder memory; however, the

ideal packing result is still not achievable unless a seven-cluster configuration is used [2]. A fur-

ther improvement to clustering can be achieved by making the following observation: 
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Using the two-cluster packing method described in Section 3.2.1 increases the possibility of

finding subset instructions to share the same decoder-memory word. Figure 3.5 shows that a

denser packing result can be achieved by combining this subset sharing method with the two-clus-

ter packing. In this example, the three subwords of long instructions W1, W2, and W3 in Cluster

A can be packed into one subword in the decoder memory. The advantage of using the subset

packing is that this mechanism needs no extra hardware. 

Table 3.1 shows the impact of using the subset packing method on the decoder-memory require-

ments of the kernel and application benchmarks described in Chapter 2. The average decoder-

memory requirements in the table are normalized to the ideal packing case, where ideal means

that there are no NOPs in the decoder memory. Using the subset packing method reduces the

decoder-memory requirements of the two-cluster packing by 10.16% and 10.25% on average in

the kernel and application benchmarks respectively, achieving a packing result that is better than

Figure 3.5: Combining the two-cluster packing and slot-sharing methods
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the ideal packing case. It is even possible that with more clever register allocation, this result

could be further improved.

Kernel 
Benchmarks

Decoder-memory
Requirement

(Ideal Packing 
Case)

Decoder-memory 
Requirement

(Two-cluster Pack-
ing)

Decoder-memory 
Requirement

(Two-cluster & 
Subset Packing)

Saving on 
Decoder-memory

using Subset 
Packing

FFT_1024 1 1.10 1.10 0%

FFT_256 1 1.10 1.10 0%

FIR_256_64 1 1.16 1.16 0%

FIR_32_1 1 1.13 0.87 23.53%

IIR_4_64 1 1.11 1.08 2.5%

IIR_1_1 1 1.13 1.13 0%

latnrm_32_64 1 1.25 1.13 10%

latnrm_8_1 1 1.12 1 10.53%

lmsfir_32_64 1 1.10 0.86 21.74%

lmsfir_8_1 1 1.08 0.8 25.58%

mult_10_10 1 1.13 1.04 7.41%

mult_4_4 1 1.13 1.04 7.41%

all_kernels 1 1.16 0.89 23.33%

Average 1 1.13 1.02 10.16%

Application 
Benchmarks

Decoder-memory
Requirement

(Ideal Packing 
Case)

Decoder-memory 
Requirement

(Two-cluster Pack-
ing)

Decoder-memory 
Requirement

(Two-cluster & 
Subset Packing)

Saving on 
Decoder-memory

using Subset 
Packing

G721a 1 1.08 0.95 11.85%

G721b 1 1.13 1.07 5.77%

V32.modem 1 1.08 0.89 17.80%

adpcm 1 1.12 1.09 2.44%

compress 1 1.08 0.98 8.80%

edge_detect 1 1.12 0.95 14.86%

histogram 1 1.06 0.96 9.30%

lpc 1 1.10 1.05 4.88%

spectral 1 1.07 1 6.95%

trellis 1 1.06 0.92 12.63%

all_applications 1 1.08 0.89 17.43%

Average 1 1.09 0.98 10.25%

Table 3.1: Impact of subset packing on decoder-memory requirements
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3.2.3 Choosing the Number of Clusters in the UTDSP

In theory, there can be as many clusters as there are decoder-memory banks to achieve a denser

packing result. In practice, however, the number of clusters that can be used is limited by the

bandwidth of the instruction memory. Because one of the major reasons for using this two-level

memory hierarchy is to reduce the off-chip instruction memory bandwidth, design decisions must

be made based on a fixed instruction memory bandwidth. 

The UTDSP model uses a 32-bit instruction word; therefore, the multi-op pointers should also

be 32-bits long, so that both uni-op instructions and multi-op pointers can be stored in the instruc-

tion memory without wasting any bits. The bit mask fields in the multi-op pointer need seven bits

in total to control the seven memory banks in the decoder memory. Also, the most-significant bit

is used to identify itself as a uni-op or a multi-op pointer. As a result, 24 bits are left for encoding

one or more address fields in a multi-op pointer. 

Choosing the number of clusters to use in the decoder memory is a trade-off between the

reduced cost achieved by a denser packing result, and the degraded performance resulting from a

smaller size of decoder memory. Table 3.2 shows the maximum addressable decoder-memory

space of different clustering configurations. On the basis of the data shown in the table, the two-

cluster configuration was chosen for the UTDSP processor because the two-cluster case has a

denser packing result than the ideal one (Table 3.1), while providing a much larger addressable

space than the three-cluster configuration. For the three-cluster configuration, the total address-

able decoder-memory space is only 2.2 K words, which is too small for most of the DSP applica-

tions.

Number of 
Clusters

Total 
address 

bits

Number of 
bits in a 

cluster address 
pointer

Addressable 
Memory space 
in each bank

Total addressable 
decoder memory 

space

1 24 24 16 M words 112 M words

2 24 12 4 K words 28 K words

3 24 8 256 words 2.2k words

4 24 6 64 words 448 words

Table 3.2: Maximum addressable space of different clustering configurations
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To reduce the possibility of having NOPs in subwords, decoder-memory banks B1 to B4 were

grouped into Cluster A and banks B5 to B7 were grouped into Cluster B. This configuration was

chosen because the UTDSP compiler often schedules two memory load/store operations (associ-

ated with banks B1 and B2) and two address pointer operations (associated with banks B3 and

B4) into one long instruction. Although further optimization might be achieved by using different

grouping configurations, it was not attempted because using the subset packing method has

already produced a result that is better than the ideal case according to Section 3.2.2.

3.2.4 The UTDSP Packing Algorithm 

The original pseudo-code for the UTDSP packing algorithm was proposed by Mazen Saghir [2]

and was then modified by the author to incorporate the subset packing method. The modified

UTDSP packing algorithm, which is based on the two-cluster configuration, is described in Fig-

ure 3.6. This algorithm starts with a given list of unpacked instructions and two empty lists that

are used to store the packed long-instruction words for the two clusters. The main loop is executed

as many times as there are active fields. An active field is a member operation that has not been

packed into its corresponding decoder-memory bank. At the beginning of each loop iteration, the

number of active fields for each decoder-memory bank is calculated to decide its rank and the tar-

get bank in the current iteration. The highest rank (rank 7) is assigned to the decoder-memory

bank that has the least number of active fields, while the lowest rank (rank 1) is assigned to the

one that has the most number of active fields. The target bank is the one that has the highest rank

(rank 7). Recall the situation described in Figure 3.2, where the memory banks with fewer opera-

tions suffer the most from the poor instruction ordering. Therefore, the long instructions that have

operations to be stored in the target bank should be processed first. 

Once the target bank has been determined, the unpacked instructions are divided into two lists: a

candidate list and a reserve list. The candidate list contains instructions that have member opera-

tions associated with the target bank; the reserve list contains the remaining instructions. The

instruction with the highest cost —  the sum of the ranks of the memory banks associated with the

operations contained —  is then removed from the candidate list. The removed instruction will be

added into the decoder-memory list provided it is not a subset of any existing word in the decoder

memory list. If it is a subset of an existing decoder-memory word, it will be packed into the exist-

ing word as opposed to being added into the decoder-memory list as a new entry.
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Figure 3.6: The UTDSP packing algorithm
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To use the empty fields in the newly added decoder-memory word, the reserve instructions are

next searched for the instruction with the highest cost that can be packed into the memory word.

The search is continued until no more instructions in the reserve list can be packed into the current

decoder-memory word. After all instructions in the candidate list are processed, a new iteration

starts again until all the active fields are stored. Because the decoder memory has two clusters,

this packing process, described above, will be repeated for the second cluster.

3.3 Implementation of the UTDSP Packing Software System

The UTDSP long-instruction packer, which was implemented based on the algorithm described

in the previous section, not only performs the two-cluster packing, but also parses assembly code

and generates associated files for instruction simulation, assembly debugging, and VHDL simula-

tion. Figure 3.7 illustrates the software modules in the UTDSP packer and the data flow between

the modules and other development tools.

The UTDSP packer consists of a front-end assembly parser, the two-cluster packing kernel, an

assembler, a TI VelociTI packing simulator, an output file generator, and a command center. The

command center takes the hardware configuration of the UTDSP as input and sets up correspond-

ing packing constraints for the packing kernel. The front-end parser parses VLIW assembly code

and generates appropriate error messages when a syntax error is found. The packing kernel per-

forms the UTDSP packing algorithm and passes the results to the assembler, which calculates

addresses and encodes instructions. Finally, the output file generation module converts the pack-

ing results into various formats for simulation purposes. The VelociTI packing module uses the

algorithm adopted by the Texas Instruments’ new VelociTI architecture to pack the long instruc-

tions; the packing result of this VelociTI packer are compared with that of the UTDSP packer for

benchmarking purposes. Section 3.4 details the comparison results.

3.3.1 Implementing the UTDSP Packer Using C++ Template Technology

As shown in Figure 3.7, the UTDSP packer needs not only a good packing algorithm, but also a

powerful ability to handle the list-intensive processing in the software modules. Moreover, to ease

the development and exploration of different packing algorithms, robust underlying data struc-

tures are needed to process the required computations. The most important data structure required
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is a linked list that operates on many different data types —  from both built-in and user-defined

records —  with associated functions such as insertion, deletion, merging, sorting, and binary

search. 

One way to build such a linked list is to use generic data structures. Figure 3.8 shows an internal

representation of the generic linked list in C language. The list will have the same structure

regardless of whether it stores strings, integers, floats, or user-defined data types. Note that the

data items are not stored in the nodes of the list. Instead, each node contains a pointer to its data

item. The fact that the data items don’t reside in the nodes themselves leads to several drawbacks.

Figure 3.7: The UTDSP packer and software system
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First, pointer dereferencing is needed to get the actual value of a data item, rather then looking

directly in the node. Second, a function pointer to the comparison function specific to its associ-

ated data type must be passed into procedures such as sorting and merging. This means that com-

parison functions must be explicitly constructed even for built-in data types such as integer and

float. 

C++ templates solve the problems mentioned above and provide several advantages over the

generic data structures in C. First, neither constructing explicit comparison functions nor passing

pointers to the sorting procedures is needed. By overloading the comparison operators such as

“>”, “<“, and “=”, comparisons of user-defined data types can be stated in the same format as that

of built-in data types (ex. A > B). Second, a robust garbage collection mechanism can be encapsu-

lated inside object destructors to completely eliminate memory leak problems, which often occur

in the generic data structure implementations in C. For these advantages, the C++ template tech-

nique is used for the implementation of the UTDSP packer.

The most important part in the implementation of the UTDSP packer and assembler systems is

List<T> —  a C++ container template class that can store data items of any data type and perform

various operations, such as insertion, deletion, sorting, and search, on its data items. Figure 3.9

shows the internal representation of List<T>. The argument class T represents all data types that

are to be stored in the list container. Various user-defined classes that can be stored in List<T>

were implemented to ease the development of the UTDSP packer. The user-defined classes

include Token, DecoderMemory, and DataMemory, which are used to store parsed tokens,

decoder-memory words, and data-memory words, respectively. 

Figure 3.8: Generic linked list in C
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By using the robust underlying data structures designed in template techniques, the complexity

and code size of the top-level application design are dramatically reduced; therefore, various

packing algorithms can be easily explored to find the optimized one for the UTDSP packer.

3.4 Results and Analysis

Having covered the design and implementation of the UTDSP packer, this section examines the

impact of using the two-cluster instruction packing algorithm on the storage requirements. For

comparison purposes, TI’s packing method was also implemented. Section 3.4.1 introduces the

packing methods used in TI’s VelociTI DSP architecture [14]. Section 3.4.2 analyzes the bench-

mark results of the TI VelociTI packing algorithm and the UTDSP packer. Section 3.4.3 discusses

the impact of the two-cluster packing and fetching on execution performance.

3.4.1 Packing Mechanism used for TI VelociTI architecture

The VelociTI architecture used in the TI TMS320C62xx family of DSPs is a VLIW design that

has a long-instruction packing mechanism. Figure 3.10 shows the packing mechanism used in the

VelociTI architecture. In VelociTI there are eight instruction slots in one long-instruction word,

which form a fetch packet (FP). Each instruction fetch moves an FP from the instruction memory

to the instruction register. All the instructions that are executed in the same cycle are packed into

one execute packet (EP); therefore, the number of instructions that can be contained in an EP

Figure 3.9: Container template class List<T> in C++
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ranges from one to eight. The EPs are then packed into a block of consecutive FPs in an adjacent

manner. The only restriction is that no EP can be split across two FPs. 

In the example shown in Figure 3.10, execution packets are formed by compressing out the

NOP operations in the original long instructions. The execution packets are then packed to form

fetch packets; execute packets EP1 and EP 2 are packed into FP 1. In contrast, EP 3 and EP 4 can-

not be packed because EP 4 cannot be stored separately in two FPs. During program execution,

when FP1 is fetched, EP1 is first executed and then EP2. Then FP2 is fetched and EP3 is exe-

cuted, followed by the fetch of FP3 and the execution of EP4. In this packing mechanism, an extra

decode phase and a crossbar are needed to decode the instructions in an EP and assign them to

appropriate data path and functional units.

Figure 3.10: Packing mechanism in the TI VelociTI architecture
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3.4.2 Benchmark Results for the UTDSP Packer and the VelociTI Algorithm

To evaluate the VelociTI packing algorithm, a packing kernel that uses the VelociTI algorithm

was implemented and incorporated into the UTDSP packer. The UTDSP packing kernel was also

modified to collect statistical data in each packing phase. Figure 3.11 shows the methods used to

calculate the storage requirements for the different packing schemes. First, the original format

represents the storage requirements for the upper bound in which all instructions are stored in

their original, long-instruction format in the instruction memory without using the second-level

decoder memory. Second, the uni-op case represents a lower bound, where only the valid opera-

tions are stored in the instruction memory. Third, the UTDSP packing method A uses the two-

cluster and subset packing algorithm with an assumption that the size of each decoder-memory

bank can be configured independently, while packing method B assumes that the banks in a clus-

ter must have the same size. Although the assumption made in method A seems too optimistic,

method A is closer to reality because the decoder-memory configuration can be selected based on

the average usage of memory banks in the target application domain. 

The benchmarks used in this analysis are obtained from the UTDSP benchmark suite described

in Chapter 2. Figure 3.12 shows the storage requirements of the benchmarks for each of the pack-

ing methods mentioned above. In each case, the storage size is normalized to the upper bound.

The results indicate that the storage requirements of packing method A are 39% - 65% (average

51%) of those for the upper bound, which is slightly better than the packing rate of the VelociTI

packing method (average 53%). The results also show that the storage requirements of packing

method B are 49% - 77% (average 61%) of those for the upper bound. Table 3.3 summarizes

these results. Because the UTDSP adopts an application-driven design methodology, where hard-

ware configurations are chosen according to the target applications, the statistical results gener-

ated from packing method A can be used to select the configurations for the decoder-memory

banks to minimize the storage requirements. 

Moreover, the UTDSP packing mechanism provides a solution to the memory bandwidth prob-

lems that the VelociTI packing method cannot solve. Specifically, the VelociTI packing method

requires that its instruction memory stay on-chip to maintain the original throughput. When the
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size of long instructions exceeds the capacity of the on-chip instruction memory and the off-chip

instruction memory has to be used, fetching long instructions from the off-chip memory through a

32-bit bus will significantly degrade the expected throughput. 

Figure 3.11: The storage requirements of different packing methods
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In contrast, the UTDSP solves these bandwidth problems and reduces to a minimum the impact

of insufficient on-chip memory on performance in the following two ways: First, by storing only

uni-op operations and multi-op pointers in the instruction memory, the instruction-memory band-

width is reduced to 32 bits, which enables the use of off-chip instruction memory without affect-

ing the performance. Second, since 90% of a program’s execution time is spent on 10% of its

code, only the kernel parts of DSP applications need to be stored on-chip when the on-chip mem-

Packing Method Average Storage Requirement

Original unpacked format 1

UTDSP packing method B 0.61

TI VelociTI packing 0.53

UTDSP packing method A 0.51

Table 3.3: Average storage requirements of the results in Figure 3.12

Figure 3.12: The storage requirements of the UTDSP kernel benchmarks for different packing methods
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ory is not large enough to accommodate all the long instructions. The remaining long instructions

can be serialized and stored in the off-chip instruction memory without severely degrading the

original performance.

Also, the UTDSP instruction fetching mechanism needs neither the cross bar nor the extra

decoding logic that is used in the TI VelociTI architecture to route the operations in a long

instruction to their corresponding functional units. Therefore, the UTDSP scales better than the TI

VelociTI architecture when extra functional units are added for performance.

3.4.3 Impact of the Two-Cluster Packing and Fetching on Execution Performance

The major drawbacks that prevent VLIW architectures from being used in cost-sensitive sys-

tems are their high instruction bandwidth and storage requirements. However, with the two-clus-

ter packing and fetching mechanism, the UTDSP can achieve significant performance speedup

over a traditional architecture using its VLIW design, while maintaining the same instruction-

memory bandwidth and having a modest increase in storage requirement. Table 3.4 summarizes

the average execution performance and storage requirements of the two-cluster packing scheme

and the uni-op case. In the uni-op case (lower bound), all the operations in long instructions are

serialized and stored in the instruction memory as uni-op instructions; therefore, there is no fine-

grain parallelism to exploit in the uni-op case. 

The data shown in the table are normalized to the uni-op case. These results show that the area

overhead introduced by the two-cluster packing mechanism is 27% of the total storage area in the

uni-op case. However, the execution performance of the two-cluster scheme is 2.6 times faster

than that of the uni-op case. Moreover, both cases have the same instruction-memory bandwidth

(32 bits). Using the two-cluster mechanism not only significantly increases the UTDSP perfor-

mance but also reduces the area overhead to a minimum. For comparison purposes, the average

storage requirement of the TI VelociTI packing is also shown in the table. The execution perfor-

Average Storage 
Requirements

Average Execution 
Performance

Uni-op Case 1 1

Two-cluster Packing 1.27 2.6

TI VelociTI Packing 1.30 N/A

Table 3.4: Trade-off between storage requirements and execution performance
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mance of the VelociTI architecture is unknown because its architecture simulator is not available.

However, it can be expected that the UTDSP achieves an execution performance comparable to

the VelociTI because they have similar VLIW architectures, pipeline stages, and instruction exe-

cution methods.

3.5 Summary

This chapter described the packing and fetching mechanism used in the UTDSP. This long-

instruction packing scheme reduces the storage requirements while eliminating the memory band-

width problems that plague other VLIW architectures. The implementation of the long-instruction

packer incorporates a template design approach that dramatically reduces design efforts and com-

plexity. Benchmark results indicate that the UTDSP packing scheme achieves a packing rate com-

parable to its commercial counterpart and provides a solution to the storage problems that the

VelociTI cannot solve.
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Chapter 4

Development Tools

This chapter describes the design and implementation of two important development tools for

the UTDSP system: an architecture simulator and a GUI-based assembly debugger. First, the

architecture simulator collects run-time data and helps to evaluate various design decisions such

as decoder-memory size, instruction-set modification, and register-file port sharing. Being written

in a high-level language, the architecture simulator, which also serves as a behavioural model of

the UTDSP, can be easily modified to experiment with design trade-offs. Once the experimenta-

tion is finished, register transfer level (RTL) modelling can be constructed according to the opti-

mized hardware configurations. Second, the assembly debugger provides a true graphical

windowing system with interactive debugging features, such as single-step tracing, memory prob-

ing, and breakpoint debugging, to ease the development of assembly programs.

Section 4.1 describes a hardware modelling technique that is used to construct the architecture

simulator in a high-level language. This modelling technique, which is based on the object-ori-

ented (OO) method, eliminates the design gap between the behavioural and RTL models of the

UTDSP, so that the behavioural model can be easily converted into its corresponding RTL model.

Moreover, using this OO model, the GUI-based assembly debugger can be implemented by just

adding self-displaying and event-listening capabilities to the hardware objects in the architecture

simulator. Section 4.2 shows the design and implementation of the architecture simulator. Section

4.3 describes the implementation of the GUI-based assembly debugger. Section 4.4 summarizes

this chapter.
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4.1 Behavioural Modelling Methods for the UTDSP

In the application-driven design methodology described in Chapter 2, the UTDSP needs to be

modified according to the target applications; therefore, it is highly desirable that the UTDSP pro-

vide a model in a high-level language to shorten the turnaround time for the design exploration.

Once the exploration is finished and the hardware configuration is decided, the model can be

translated into an RTL model in Verilog or VHDL. This rewriting step is the so called design gap

[17][22], which is shown in Figure 4.1. Compared with the other design phases shown in the fig-

ure, which are automated by CAD tools, the rewriting step requires that designers manually create

two different versions of the design; therefore, the design gap duplicates design effort and

becomes a bottleneck in the design flow. To minimize the design gap, the architecture simulator

has to be constructed in a level of abstraction that is high enough to allow a short turnaround, but

is able to ease the translation to its corresponding RTL model.

Moreover, when the UTDSP is used in a core-based design and needs to be modified for system

integration, the architecture simulator will play an important role in providing a fast, easy-to-

Figure 4.1: Design Gap between behavioural and RTL models
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modify simulation model. With the size and complexity of today’s hardware design, modular,

composable design based on a system-on-a-chip (SOC) methodology is the only approach that

works [15]. Under the SOC methodology, providing behavioural models with a high enough level

of productivity for system blocks early in the design cycle is a major issue.

Conventionally, hardware designers tend to use procedural languages like C to construct the

behavioural model of their design and collect the statistics needed for performance optimization.

This method is particularly common for CPU development [17]. However, C models suffer from

the design gap problem most because C is unable to provide enough language constructs for digi-

tal hardware modelling. There is no real connection from C models to hardware design [17][22].

Therefore, the UTDSP architecture simulator should be built not only to perform the design

exploration but also to minimize the design gap to ease the development of its corresponding RTL

model. Also, the architecture simulator must be easily converted into a GUI-based assembly

debugger with little or no extra effort. This capability is especially important in a core-base design

because designers are ensured to have a GUI-based debugger that is functionally consistent with

their modified behavioural model. 

4.1.1 Choosing the Correct Modelling Language

Choosing a language model that best describes the characteristics of digital hardware is impor-

tant to fulfill the goal mentioned above. Current high-level programming languages can be cate-

gorized into four models: procedural model, logic model, functional model, and object model

[18]. First, in the procedural model, a program consists of a sequence of instructions that access

named memory locations; problems are solved by executing the instructions that change the val-

ues of the memory locations. Languages using the procedural model include Pascal, C, and For-

tran. Second, in the logic model, a program consists of a series of queries that are used to find

solutions, and a set of databases. When queried, the databases answer the question by inferring

new information using their existing knowledge and implication rules. Prolog is one of the lan-

guages using the logic model. Third, in the functional model, a program consists of a series of

functions that might be composed of other functions; problems are solved by applying the func-

tions to input data to generate output data. Lisp, APL, and Scheme are languages using the func-

tional model. Finally, in the object model, problems are solved by creating objects that model

real-world entities and sending messages to them. The objects react to the messages according to
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their own behavioural patterns. Languages that use the object model include Smalltalk, C++, and

Java.

4.1.2 Digital Systems Modelling Techniques for the UTDSP

We believe that the object model is most suitable for digital system modelling, and should be

chosen for implementing the UTDSP simulator and debugger. We established several digital

hardware modelling methods using the object model so that the implementation of the simulator

and debugger can follow these rules. First, an object itself can describe a complete finite state

machine (FSM) without using any auxiliary functions or data structures. In fact, an object can

model any class of automata in the Chomsky hierarchy [19] by using its data members as state

memory, and its member operations as state transitions. Figure 4.2 (A) shows a simple FSM that

recognizes the input sequence “10”. Figure 4.2 (B) shows its corresponding object representation.

Figure 4.2: (A) An FSM that accepts input sequence “10”. (B) The FSM’s equivalent object model. (C) 
The resulting digital system blocks converted directly from the object model.
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The sequence recognizer object has three data members: CurrentState, CurrentInput, and

Receiver. CurrentState stores the current state of the object itself; CurrentInput stores the cur-

rent value of its input signal. Receiver stores the references of the objects to which the recognizer

sends its output signal. In this case, the recognizer sends its output signal to the LED object,

which will light up when it receives the input(one) message. The recognizer object responds to

three different messages: clk(), input(), and reset(). When receiving the input() message, the rec-

ognizer invokes its class method input() and updates CurrentInput. When receiving the reset()

message, the recognizer invokes its class method reset() and initializes CurrentState to state A.

When receiving the clk() message, the recognizer determines its new state according to Current-

State and CurrentInput. Note that if the new state is the accepting state (state C), the recognizer

will send message input(one) to the LED object.

Second, the message sending mechanism used in the communication between objects is used to

model the signals sent between digital components. Figure 4.2 (C) shows the resulting digital sys-

tem that is constructed by directly translating the message interfaces and partition from its object

representation described in Figure 4.2 (B). Using this modelling method maintains an identical

system partition and block interfaces between a behavioural model and its digital hardware.

Third, the relationship between a class and its objects in the object model is exactly the same as

that between a component type and its instances in digital systems. Specifically, in digital sys-

tems, an arbitrary number of instances (objects) can be instantiated from a specific component

type (class). Each of the instances has the same behavioural pattern (class methods) defined in

their component type, but each one has its own current state (object’s own data members). For

example, in a shift register that consists of D flip-flops, each of the D flip-flops keeps its own cur-

rent state —  the data latched —  although they have the same behaviour —  the truth table of D

flip-flops. 

4.2 Design and Implementation of the UTDSP Architecture Simulator

The UTDSP architecture simulator is designed with the following three goals: First, it should be

easily constructed and be able to collect statistics required for performance analysis. Second, it

should bridge the design gap so that the RTL model of the UTDSP can be constructed according

to the system partition and block interfaces of the UTDSP architecture simulator. Third, it must be
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designed in a way that an interactive GUI can be incorporated into the model, so that core-based

designers can always have a functionally equivalent GUI-based assembly debugger no matter

how they modify the behavioural model.

Java was chosen to implement the UTDSP architecture simulator because it fulfills the goals

mentioned above. Java helps the implementation of the simulator and debugger in the following

ways: First, Java is a pure OO language, which provides the object model needed for modelling

digital systems. Second, Java provides an abstract window toolkit (AWT) so that the GUI-based

assembly debugger can be implemented by adding window-displaying and event-listening capa-

bilities to the UTDSP architecture simulator. Third, unlike the window systems of the other pro-

gramming languages, Java AWT achieves a high degree of portability, which makes the GUI-

based assembly language debugger run on different computer systems without modifying its

source code. Finally, the speed disadvantages of Java versus C or C++ are becoming less of an

issue as Just-In-Time (JIT) and native-code compilers are becoming available [20].

4.2.1 Creating the Object Model of the UTDSP

Figure 4.3 shows the object model of the UTDSP and the message sending mechanism between

the objects. Each object represents a hardware component in the UTDSP; the messages that it

receives represent the input signals of the component, while the messages it sends represent the

output signals. The PC object generates addresses that are used to fetch uni-op operations or

multi-op pointers from the instruction memory object (Inst). 

The PC object contains two Stack objects, which are used to handle the address operations for

branching and zero-overhead looping instructions. Upon receiving the fetch() message, the Inst

object will use the address embedded in the message to retrieve the corresponding instruction

from its data members and send the instruction to the two Cluster objects. After receiving the

fetch() message sent from Inst, the two Cluster objects retrieve the corresponding multi-op

operations and broadcast them with the exec() message to the associated functional unit objects

(EU 1 - EU 7), which handle the logical and arithmetic operations. 

Similarly, when the EU objects need operands, they will send requests to the register file objects

(REG) and REGs will return the data requested. On the other hand, when EUs execute load or

store operations, they will send requests to the data memory objects (DataMem) and the Data-
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Mems will perform the memory accesses requested. Finally, the Control object handles the

DMA requests that transfer data between the IO objects and DataMems. 

4.2.2 Simulating the UTDSP Object Model

Simulating the UTDSP object model is simple. Every object is responsible for keeping its own

properties (data structures) and remembering its own behaviour (algorithms); therefore, the top-

level simulator driver no longer needs the complex data structures and algorithms that are usually

seen in the simulators built using the procedural model. To simulate the object model of the

UTDSP, the objects must be connected according to their signal flow so that they know where to

send messages at run time. Consequently, each object has data members that are used to store the

object references of its message receivers. 

When an object needs to broadcast messages to the receiver objects that are connected to one of

its output ports, it will fetch the references stored in the data member associated with that port and

Figure 4.3: The object model of the UTDSP
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send the messages to each of the references. Figure 4.4 shows an example of how the objects are

connected according to their signal flow and how the simulation is performed by message send-

ing. 

In this example, the Control object will send the jump(targetAddress) message to the PC when

a jump instruction is executed. Upon receiving the jump() message, the PC invokes method

jump() and executes the following three steps: First, the PC sends the push(currentPC) message

to the Stack object where the current program counter (currentPC) is pushed onto its internal

stack. Second, the program counter is updated with targetAddress. Third, the PC sends the

fetch(currentPC) message to the Inst object where instruction fetching is performed.

This example shows that the hardware modelling methods we use not only reduce the complex-

ity of the software construction, but also provide a well-defined system partition and block inter-

faces that subsequent RTL modelling can adopt. Being constructed in the object model, the

UTDSP architecture simulator can easily collect run-time data for each hardware object and help

to evaluate various design decisions early in the design phase. This capability is extremely impor-

tant because it would otherwise be too expensive to wait until the design has been modeled at the

RTL level. 

Figure 4.4: Connecting and simulating the objects in the UTDSP model
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4.3 The GUI-Based Assembly Language Debugger

An assembly language debugger is a front-end program that provides the user interface and the

functionality of an instruction set simulator. The assembly language debugger provides program-

mers a tool to optimize DSP kernels. Because the major portion of the execution time for a DSP

application is usually spent in its inner loop code, optimizing the inner-loop assembly code

directly increases the overall performance of the application.

4.3.1 The Features of the Assembly Language Debugger

The UTDSP assembly language debugger provides a true graphical user interface with a set of

powerful debugging features. Figure 4.5 shows the UTDSP debugger. The features provided

include the following: First, the debugger can perform single-step or multi-step execution by

specifying the number of steps to execute. Second, the debugger can highlight the hardware

resources —  instructions, memory locations, functional units, and IO ports —  that are currently

accessed. This feature is especially useful when programmers debug their assembly programs —

they can use single-step execution to trace and observe the memory locations and hardware com-

ponents that are highlighted in different colors to verify if there is any memory location or compo-

nent that is incorrectly accessed.

Third, the debugger allows programmers to set up breakpoints by simply clicking on the mem-

ory locations, register file entries, or instructions that are to be monitored. Simulation will halt

when a breakpoint is reached. 

4.3.2 Adding Self-Displaying and Event-Listening Abilities

The debugger was implemented by adding a self-displaying and event-listening capabilities to

the hardware objects of the UTDSP architecture simulator. The inconsistency problem between

the debugger and the architecture simulator never exists because they use the same set of hard-

ware objects. In other words, the debugger need not be modified when there is a change made to

the architecture simulator. This capability is especially useful for core-based designers because

they will have a functionally equivalent debugger ready for use after having modified the UTDSP

simulator. Being implemented in Java, the self-displaying and event-listening features can be eas-

ily incorporated into the UTDSP objects using the Java Abstract Window Toolkit (AWT) [21].

The problem of displaying objects demonstrates the extensibility and maintenance advantages of
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the Java object model. Java AWT has an OO solution (not surprisingly) to this problem: it

requires that every displayable object respond to the paint() message where the object describes

how to draw itself. Similarly, responding to the event-listening messages makes an object be able

to handle the mouse events. Figure 4.6 shows an example of how to equip a UTDSP object with

the self-displaying and event-listening abilities. This example shows the modifications made to

the Inst object so that it can display its memory contents and allow users to set up breakpoints by

clicking on the memory locations that are to be monitored.

Figure 4.5: The UTDSP assembly language debugger
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The new Inst class inherits from (implements) three AWT classes: the Panel class, the

ActionListener class, and the ItemListener class. Inheriting from the Panel class entitles the

Inst class to override the paint() method in which the steps of how to draw the Inst object are

described. Moreover, being derived from the Panel class, the Inst object becomes a container

that can contain the objects instantiated from any AWT class, such as the Button class and the

multiple-selection List class. As shown in Figure 4.6, two Buttons and one multiple-selection

List are added into the Inst object. The multiple-selection List is used to store the instructions to

make them clickable, so that a breakpoint attribute can be added to a instruction when it is

clicked. 

Similarly, Inheriting from the ActionListener class entitles the Inst object to override the

event-handling methods in which the events generated from the Buttons are handled. Clicking

on a Button will generate an event object that contains information about its source. The Button

then finds all the objects that are registered in its Listener and sends the actionPerformed(event)

message to those registered objects. In the case shown in Figure 4.6, the Inst object is registered

in the Listener of the Debug Button object; therefore, when clicked, the Debug button gener-

Figure 4.6: The Inst object with self-displaying and event-listening abilities
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ates an event and sends the actionPerformed(event) message to Inst. The Inst object then handles

the event using its corresponding methods.

Sometimes it is necessary to visualize the simulation output from the debugger or architecture

simulator. Using Java AWT eases the implementation of a simulation output plotter that can be

incorporated into the assembly debugger or architecture simulator. Figure 4.7 shows a simulation

output plotter that was constructed to visualize the output of a 3D graphics application. This plot-

ter, which consists of four replaceable module panels, serves not only as a simulation result dis-

player but also a test bench that automates the tedious steps in the functional verification phase. 

In the testbench mode, users specify input test vectors from Panel A and the RTL simulation is

then launched using the Synopsys VSS simulator. Panel D shows the RTL simulation status and

error messages, if any, generated from the Synopsys simulator. The output vectors from the RTL

simulation will be sent to Panel B where the output vectors are plotted according to the algorithms

defined in the panel. Panel C displays the results calculated using a functionally equivalent, float-

ing-point Java program for the DSP application under test. Like commercially available virtual

Figure 4.7: A simulation result plotter and a test bench for RTL model



50

instrumentation products [23][16], this platform is flexible in that each module panel is indepen-

dent and can be replaced by other panels that are designed for different DSP applications.

4.4 Summary

This chapter describes the design and implementation of the UTDSP architecture simulator and

the GUI-based assembly language debugger. The Object-Oriented method used not only bridges

the design gap between the behaviour and RTL models of the UTDSP but also eases the develop-

ment of the assembly debugger. Being implemented in Java, the assembly debugger can be easily

constructed by adding self-displaying and event-listening capabilities to the objects in the archi-

tecture simulator. The next chapter will focus on the VLSI implementation of the UTDSP. The

CAD methodology used and benchmark results will be also illustrated.
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Chapter 5

System Design and VLSI Implementation of 
the UTDSP

This chapter focuses on the hardware design and VLSI implementation of the UTDSP. There

are four major parts in this chapter: First, Sections 5.1 - 5.3 show the architecture of the UTDSP

by giving an overview of its hardware resources, instruction set, and pipeline architecture. Sec-

ond, Sections 5.4 - 5.6 discuss the hardware design of some important blocks in the UTDSP.

Third, Section 5.7 describes a novel CAD methodology and design flow that is used to realize the

chip. Fourth, Section 5.8 shows benchmark results and compares the UTDSP with two commer-

cially available DSP processors that also use VLIW architectures.

5.1 The UTDSP Hardware Architecture

Figure 5.1 shows the hardware blocks of the UTDSP. The UTDSP has a RISC-like architecture

with five pipeline stages. They are: IF-1, Instruction fetch stage 1; IF-2, Instruction fetch stage 2;

ID, Instruction decode and register fetch; EX, Execution of the ALU and memory access instruc-

tions; and WB, Write the result into the destination registers.

The UTDSP hardware can be divided into six major sections: the PC Unit, the Instruction Mem-

ory, the Decoder Memory, the Register Files, the Execute Units, and the Controller Unit. The PC

Unit generates instruction addresses, computes the destinations of branches, and handles the nec-

essary stack operations in loop instructions. During the IF-1 stage, the address generated from the

PC Unit is used to fetch the uni-op instructions or multi-op pointers stored in the Instruction

Memory. During the IF-2 stage, a multi-op pointer fetched in the IF-1 stage is used to fetch the

actual long instructions from the Decoder Memory, which consists of two clusters (Cluster A and

Cluster B). In contrast, uni-op instructions fetched in the IF-1 stage are directly passed to the

appropriate function units.
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In the ID stage, the operations in a long instruction are decoded in their corresponding execution

units. There are seven execution units (functional units) in the UTDSP: MU1 and MU2 execute

load and store instructions; AU1 and AU2 execute address instructions; DU1 and DU2 execute

integer ALU instructions; and PCU executes branch and control instructions. The required oper-

ands for an instruction are loaded into the ID/EX pipeline registers from the two register files

(REG A and REG D) during the ID stage. REG A has 16 registers used for address operations,

while REG D has 16 registers for integer calculations. 

In the EX stage, AUs and DUs execute instructions in their ALUs, while MUs perform load and

store operations to data memory banks. There are two data memory banks (DataMem X and Data-

Mem Y) in the UTDSP, each of which has its own independent address and data buses. MU1 is

associated with DataMem X, while MU2 is associated with DataMem Y. The results obtained in

Figure 5.1: The UTDSP hardware blocks



53

the EX stage will be written back to the Register Files during the WB stage. Finally, DMA and

interrupt requests are handled by the Controller Unit, which can control the operations of the pipe-

line registers in the UTDSP.

5.2 Instruction Set

The UTDSP instruction set was originally proposed by Mazen Saghir [2] and was then modified

by the author to reduce the number of ports on the Register Files. Several additional instructions

were introduced to ease fixed-point calculations and to improve machine performance. There are

69 instructions in total, which are shown in Appendix A. Each execution unit can execute only a

subset of the UTDSP instructions. The instructions can be categorized into four groups according

to their associated execution units:

• Memory instructions: The UTDSP is a load-store architecture, meaning the only memory

instructions are explicit loads and stores. Memory instructions can be executed only in memory

units MU1 and MU2. MU1 is associated with DataMem X, while MU2 is associated with Data-

Mem Y. 

• Addressing Instructions: The addressing instructions operate on address registers, and include

special instructions that use modulo- and bit-reversed addressing. The addressing instructions

are executed in address units AU1 and AU2.

• Integer instructions: In addition to a common set of arithmetic and logical instructions, the inte-

ger instructions include multiply-accumulate (MAC) instructions, which are heavily used in

DSP algorithms. Moreover, multiplication and MAC instructions that use the 1.15 fixed-point

format were also introduced to minimize the number of shift instructions required in fixed-point

calculations. The 1.15 fixed-point format will be described in Section 5.5.1, where datapaths are

discussed. All integer instructions operate on integer registers, and are executed in integer units

DU1 and DU2.

• Control instructions: In addition to a set of instructions that change control flow, control instruc-

tions include zero-overhead looping instructions that cause a single instruction or a block of

operations to be repeatedly executed for a specified number of iterations with no branch penal-
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ties. Moreover, the UTDSP hardware is designed to be able to handle nested looping instruc-

tions with up to five levels. Control instructions are also responsible for moving data between

the integer register file and the address register file. DMA operations are also included in the

control instructions. 

5.3 The Pipeline Architecture

As shown in Figure 5.1, the UTDSP has a five-stage pipeline architecture, which is slightly dif-

ferent from that of the standard RISC processor described by Patterson & Hennessey [24]. The

UTDSP eliminates the MEM stage used in the RISC architecture. Instead, memory accesses are

performed in the two memory units (MU1 and MU2) during the EX stage. To not increase the

pipeline latency, MUs support only the register-indirect addressing mode for load and store

instructions. In other words, MUs can initiate a memory access from the very beginning of the EX

stage without having to calculate the target address in the EX stage. Figure 5.2 shows the differ-

ence between a typical RISC and the UTDSP pipelines.

There are three type of hazards that can occur as a result of pipelining: structural hazards, data

hazards, and control hazards. Structural hazards occur when there are resource conflicts. Data

hazards occur when there is a data dependence between instructions. Control hazards occur as a

result of branch instructions. The UTDSP eliminates the data hazards by using bypassing hard-

ware and minimizes the control hazards by introducing zero-overhead looping instructions.

5.3.1 Data Hazards and Bypassing

The data hazards that can occur in the UTDSP pipeline are the read after write (RAW) data haz-

ards. Consider the instruction sequence shown in Figure 5.3. The load instruction will not update

Figure 5.2: The pipeline architectures of RISC and the UTDSP
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register D1 until the WB stage in cycle 5, while the add instruction reads register D1 during the ID

stage in cycle 4. As a result, the add instruction will read an incorrect operand value from D1,

causing a RAW hazard. To solve this problem without stalling the pipeline, a bypassing path is

added to forward the correct result for D1 from pipeline register EX/WB to the EX stage. Figure

5.3 also shows the bypassing path.

In a VLIW processor with n functional units, bypassing becomes a costly function to implement

because the area complexity of the comparators and bypassing buses required is O(dn2), where d

is the number of pipeline stages between ID and WB [25]. The UTDSP pipeline eliminates the

MEM stage by using register indirect mode as the only addressing mode for load and store

instructions. This pipeline design provides several advantages in VLIW architectures: First, the

frequency of RAW hazards will decrease and all RAW hazards can be solved by using the

bypassing technique. Second, the number of comparators and bypassing buses required is reduced

by 50%. The trade-off is that the UTDSP compiler will have to schedule an extra add operation

before load/store operations if the displacement addressing mode is required; however, the effect

on execution time is very small because this extra instruction can be usually scheduled as part of a

previous long instruction.

5.3.2 Control Hazards and Zero-Overhead Looping Instructions

The UTDSP pipeline has a branch penalty of two cycles. In a branch instruction, the result of its

comparison is not known until the end of the ID stage. By this time, two instructions have been

fetched before the result of the branch can take effect. The UTDSP statically predicts that the

branch will not be taken. If the branch is taken, the two instructions in the IF 1 and IF 2 stages

Figure 5.3: RAW hazards and bypassing path
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(two branch-delay slots) are squashed or cancelled. An alternative scheme is to predict every

branch as taken. In this scheme, the UTDSP compiler has to schedule the two branch-delay slots

from the target of the branch. If the branch is not taken, the two instructions in the delay slots are

squashed. Figure 5.4 shows the predict-taken scheduling scheme and the behaviour of an untaken

branch in the pipeline. Although statistics show that 67% of the conditional branches are taken on

average [38], the UTDSP uses the predict-untaken scheme because the current UTDSP compiler

is unable to schedule the delay slots.

DSP algorithms usually consist of loop-intensive kernels such as FIR, IIR, FFT, and matrix

multiplication. Using jump and branch instructions for the looping control will impose a great

branch penalty and thus significantly degrade performance. The UTDSP provides two types of

zero-overhead hardware loops that solve this problem: single-instruction loops and multi-instruc-

tion loops. The loops can be nested up to five levels. Figure 5.5 shows an example of the UTDSP

Figure 5.4: The UTDSP instruction pipeline when predict-taken scheme is used
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hardware loops and its corresponding instruction sequences in the pipeline. Observe that in this

example there is no branch overhead between the first and second loop iterations. Handling inter-

rupts, branch, and jump to subroutine (JSR) instructions in nested loops presents a challenge in

the design of the PC unit. The details will be described in Section 5.4, where the PC unit is dis-

cussed.

5.3.3 Interrupt Effects

The UTDSP provides three user-defined interrupt vectors. When an interrupt occurs, the

UTDSP allows instructions in the pipeline to finish executing. The processor then begins fetching

from the interrupt vector associated with the interrupt. Each interrupt vector may start with a JSR

instruction that transfers the control flow to its interrupt service routine provided by programmers.

Figure 5.6 shows the effect of an interrupt on the pipeline operations.

When an interrupt occurs in cycle three, the UTDSP will fetch the first instruction (JSR V1) in

the corresponding interrupt vector in cycle 4. The first instruction of the interrupt service routine

(V1) associated with the interrupt will be fetched in cycle 7. This mechanism results in a loss of

two instruction cycles. The instruction that semantically follows instruction I3 will be fetched on

return from the interrupt service routine. The UTDSP also provides a fast interrupt if the size of a

user-defined interrupt service routine is small enough to be fitted into an interrupt vector (10 long

Figure 5.5: The UTDSP zero-overhead hardware loop
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instruction words). In the fast interrupt mode, programmers replace instruction JSR V1 with

instruction V1 —  the first instruction in the interrupt service routine. This method eliminates the

two cycles of overhead.

5.4 The PC Unit

The PC Unit handles the addressing of instructions and saving instruction addresses so that the

machine can be restarted after an interrupt. The PC Unit presents one of the major challenges in

the UTDSP design because it not only handles the traditional tasks that are usually seen in RISC

processors but also provides the zero-overhead hardware loops that are completely nestable and

interruptable. Figure 5.7 shows the block diagram of the PC Unit. For simplicity, the diagram

shows only some important signals.

There are six major blocks in the PC Unit: Incrementer, PC Register, PC Controller, DO Stack,

JSR Stack, and Counter. The Incrementer computes the value of the PC bus incremented by one.

The PC Register stores the current PC and can flush or stall the PC bus according to the flush/stall

signals. The DO Stack stores the loop beginning and end addresses and repetition count. The JSR

Stack stores the return addresses for JSR instructions. The PC Controller receives the decoding

results of the instructions in the ID stage, determines the next PC value, and controls the opera-

tions of the two stacks. The Counter keeps track of the current iteration count for hardware loops. 

Figure 5.6: The UTDSP instruction pipeline when handling an interrupt
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The PC Controller plays an important role in handling the nestable, zero-overhead hardware

loops. Table 5.1 describes the logic in the PC Controller that determines the NEXT_PC value for

instruction fetching in the next cycle.

As shown in Table 5.1, if the instruction in the ID stage is JMP or JSR, the NEXT_PC will be

set to its branch destination address (Jmp/JsrTarget). If the instruction is a subroutine return call

(RTS), the top entry in the JSR Stack (TopReturnAddr) is assigned to the NEXT_PC. Similarly,

when the single-instruction loop (REP) is encountered, the NEXT_PC will be changed to the

address of the instruction that semantically follows that loop instruction (ID_NEXT_PC). The

Figure 5.7: The block diagram of the PC Unit
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nestable, zero-overhead DO loops are handled by popping the top entry (TopBegin) in the DO

Stack and assigning that entry to the NEXT_PC when the end address (TopEnd) of the current

loop body is encountered. Finally, when an interrupt occurs, the NEXT_PC will be assigned to its

corresponding interrupt vector.

5.5 The Register Files

Like other VLIW architectures, the UTDSP suffers from the large number of ports on its regis-

ter files. The original instruction set of the UTDSP as specified in [2] requires 11 read and 5 write

ports on the address register file (REG A), while requiring 9 read and 5 write ports on the integer

register file (REG D). We proposed a method to implement these multi-ported register files using

dual-ported SRAM macros. This method incorporates the ideas used in two VLIW processors:

CYDRA-5 [40] and LIFE [39]. 

In the CYDRA-5 processor, multiple identical register files are used to reduce the number of

read ports on its register file. In contrast, the LIFE processor reduces the number of write ports on

its register file by using time-multiplexing, allowing only one functional unit to write into the reg-

ister file at a given time. By combining these two methods, we proposed an architecture that uses

dual-ported SRAM macros to construct the multi-ported register files because the dual-ported

macros are usually available in memory compilers. Figure 5.8 shows the proposed architecture.

Conditions NEXT_PC

(JMP = ‘1’) or (JSR = ‘1’) Jmp/JsrTarget

RTS = ‘1’ TopReturnAddr

REP = ‘1’ ID_NEXT_PC

NeedToRepeat PC

(DO = ‘1’) and (PC = DoEnd) ID_NEXT_PC

(PC = TopEnd) and (DoNumberLeft <> 0) and (DoStack is 
NOT empty)

TopBegin

INT = ‘1’ Interrupt_Vector

None of above is true PCPlus1

Table 5.1: The value of NEXT_PC and its associated conditions
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However, this architecture requires that the number of read and write ports be a multiple of two.

To fulfill this requirement, we used the UTDSP architecture simulator to evaluate various modifi-

cation decisions to reduce the impact on performance. Finally, several modifications were made

to reduce the number of ports and fulfill the requirement, while imposing a zero penalty on the

performance of the UTDSP kernel benchmarks. 

First, being seldom used, the memory instructions that load to or store from REG A were

removed from the UTDSP instruction set, reducing the number of read ports on REG A by two (2

address functional units). Table 5.2 lists the removed instructions. Second, the format of the mod-

ulo address instructions was changed, reducing the number of read ports on REG D by two. More

details about the modulo addressing mode will be discussed in Section 5.6.2. Third, let the PCU

share its read and write ports with MU 2, reducing one read and one write port on both REG A

and REG D. This port sharing method was used because of the following two reasons:

Figure 5.8: Constructing a register file with 6 read and 4 write ports using dual-ported SRAM macros
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First, most of the loop structures in the UTDSP kernel benchmarks take advantage of the zero-

overhead do loop instructions with known loop iterations at compile time, eliminating the neces-

sity of reading the loop iterations from the register files. Second, even in some of the benchmarks

(like FFT) where the number of inner loop iterations has to be changed at run time, occupying a

read port by the do instruction will affect neither the existing scheduling nor the execution time of

the inner loop code because the do instruction is not part of its following inner loop body that is to

be repeated.

As a result, REG A now has only 6 read and 4 write ports, while REG D has 8 read and 4 write

ports. Moreover, the reduction in the number of ports on REG A and REG D will not affect the

performance of the UTDSP kernel benchmarks.

5.6 The Datapath Components

The UTDSP adopts a synthesis-based design methodology where all datapath components are

described in VHDL and thus are fully parameterizable. The current implementation has a 16-bit,

fixed-point datapath. There are two integer functional units (DU1 and DU2) in the UTDSP, each

of which has an integer ALU and an accumulator. Each integer ALU has a 16-bit multiplier, a

shifter, and an adder/subtractor. Similarly, the two address functional units have their own address

ALUs and each address ALU has a shifter and a modulo address generator. Section 5.6.1 will

briefly describe the fixed-point formats that are used in the multipliers. Section 5.6.2 shows the

modulo address generator used in the UTDSP. 

5.6.1 The 1.15 Fixed-Point Format

The UTDSP provides two types of multiplication and multiply-accumulate instructions: the

integer type and the 1.15 fixed-point type. Figure 5.9 distinguishes the differences between these

two types. When multiplying two fractional values in the 1.15 format, the result needs to be

Instructions Syntax Functional Description

Load address register ld.a (ai), aj aj = Memory[ai]

Store address register st.a (ai), aj Memory[ai] = aj

Table 5.2: The two instructions that are removed from the original UTDSP instruction set
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upshifted one bit to obtain the normalized data, which means that one extra shift operation will be

needed for every multiplication instruction. To solve this problem, the UTDSP provides a set of

instructions that are optimized for the 1.15 format, eliminating the need for extra shift instruc-

tions. Figure 5.9 also lists the instructions of the two formats.

5.6.2 The Modulo Address Generator

Many DSPs have a modulo addressing mode, which eliminates the need for checking the array

pointer in a buffer to see if it has reached the boundary of the buffer and automatically circulates

the pointer back to its valid starting position when it is out of bounds. Typically there are two

methods for implementing the modulo addressing mode. In the first method, the modulo address

generator uses a modifier register that contains only the length of the buffer and calculates the

starting address of the circular buffer using hardware. However, this implementation method has

to restrict the starting address and the size of the buffer [26][27].

In the second method, the modulo address generator uses start and end registers to hold the start

and end addresses for each circular buffer. This method enables a true modulo addressing by

allowing arbitrary buffer sizes and displacements. Research shows that this method is desirable

Figure 5.9: The data formats that are used in the UTDSP instructions
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for next-generation DSPs [28]. Processors using the approach include the Lucent DSP16xx [29]

and the TI TMS320C5x [30]. The UTDSP adopts the second method for two reasons: First, the

second method simplifies the hardware design and significantly reduces the resulting area. Sec-

ond, this method enables a modulo instruction that uses fewer read ports of the address register

file, which is an important concern in VLIW architectures. Figure 5.10 shows the resulting

instruction formats for the two different methods. Each address functional unit has a circular

buffer whose start and end registers can be changed using the set instruction as shown in Figure

5.10.

5.7 VLSI Implementation Issues

The VLSI implementation of the UTDSP presents a major challenge in both design capture and

CAD methodology. It needs not only great efforts in VHDL modelling but also a state-of-the-art

CAD methodology that can provide the required features for back-end flow. Research has shown

that the interconnect delays in deep-sub-micron (DSM) designs will actually decrease at the

50,000-gate module level as feature sizes shrink [31]. However, partitioning a huge chip into

50,000-gate blocks is not a trivial task. To solve this new partitioning problem, a flexible, hierar-

Figure 5.10: The UTDSP modulo instruction format vs. the typical format
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chical CAD flow was defined that not only creates the blocks of the desired size but also signifi-

cantly reduces the delay and area of the resulting UTDSP chip. Figure 5.11 shows this

hierarchical design flow. The following sections will discuss each phase of this flow.

5.7.1 Design Capture and Synthesis

The technology used for the UTDSP is a 0.35 µm CMOS with three metal layers from TSMC

[41]. The library cells were also from TSMC. The single-ported SRAM macros that were devel-

oped by CMC [32] were used to implement the memory blocks in the UTDSP. The Instruction

Memory block consists of one wsramsp256x32 macro —  an SRAM macro that has 256 words

Figure 5.11: The UTDSP CAD methodology
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with 32 bits per word. Each Decoder Memory bank also consists of one wsramsp256x32 macro.

There are two Data Memory blocks in the UTDSP, each of which consists of four wsramsp256x8

macros —  1 Kbyte in each Data Memory Bank.

The remaining parts of the UTDSP are described using register-transfer-level (RTL) VHDL

code. Because CMC was unable to release the dual-ported SRAM macros or an SRAM compiler

with a multi-port capability, the register files in the UTDSP were synthesized, increasing their

areas significantly. The area penalty of using synthesized register files will be discussed later. The

multiplier and adder/subtractor were implemented using the DesignWare library provided by

Synopsys [33]. The total VHDL code including testbench has 10,100 lines. RTL simulation was

performed to verify the functional correctness of the RTL model. 

In the logic synthesis phase, the RTL model was translated into a functionally-equivalent gate-

level netlist under user-specified constraints such as timing and area. The critical path compo-

nents, such as ALUs, were synthesized using strict timing constraints to reduce the critical path

delay. In contrast, the other components of the UTDSP were synthesized using area constraints to

reduce their areas. The final synthesis results show that the critical path has a 15.8 ns delay,

enabling a maximum clock rate of 63 MHz under best-case operating conditions without taking

interconnect delay into account.

Table 5.3 summarizes the delay of the first three critical path groups and the components that

account for the major delay in each group. Observe that the multiply-accumulate (MAC) unit

accounts for 11 ns of the critical path delay in the ALU and bypassing path group. Due to the lim-

itations of our current Synopsys licenses, the fastest implementations for the synthesized multipli-

ers and adders are CSA (Carry Save Array) and CLA (Carry Look-Ahead), respectively.

Therefore, if a faster MAC unit with a delay less than or equal to 8.5 ns can be obtained, the criti-

cal path delay can be reduced to 13.3 ns, enabling a maximum clock rate of 75 MHz. Further

reduction of the critical path delay can be achieved by using faster on-chip memory macros. The

delays of worst-case operating conditions are also summarized in Table 5.3. Under the worst-case

conditions, the UTDSP can achieve a maximum clock rate of 29 MHz. However, it is our under-

standing that a significant yield is achievable at the best case timing [44].

The gate-level model was then verified using the same testbench used for the RTL simulation.

Sometimes the gate-level simulation fails because of setup and hold violations. In these cases,
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redoing the synthesis with more accurate timing constraints will fix the problems. To avoid setup

and hold violations downstream in the post-layout phase, the clock source was defined with a

slightly larger clock skew tolerance. After passing the gate-level simulation, the netlist is ready

for the back-end hierarchical flow.

Table 5.4 summarizes the gate counts and actual areas of the major components in the UTDSP.

The areas are measured from the routed layout of each component. The areas shown contain about

40% routing area on average. This utilization rate could be improved if more metal layers were

available for routing. Observe that a very large portion of the core area is occupied by the two

synthesized register files. To estimate the area of the chip if the synthesized register files can be

replaced by ones made using full-custom design methods, we use the area model of on-chip multi-

port memory proposed by Michael Flynn et al. [34] to estimate the area of the register files. Table

5.4 shows that using register files made with full-custom design methods will reduce the core area

of the UTDSP from 12 mm2 to 8.48 mm2. 

Critical Path Group Maximum delay in the 
group

Major component and its delay

Best 
Case

Worst 
Case

Component Best 
Case

Worst
Case

ALU and bypassing paths 15.8 ns 34.7 ns MAC Unit 11 ns 25 ns

Data Memory and bypassing 
paths

13.3 ns 20 ns On-chip Data Memory 9 ns 11 ns

Decoder Memory paths 9.3 ns 11.7 ns On-chip Decoder Mem-
ory

9 ns 11 ns

Table 5.3: The delay of the first three critical path groups

Component Gate Count Area after routing 
(mm2)

If multi-port SRAM 
compiler is used

PC Unit 6078 1.13

Memory Units (x2) 1961 0.40

Address Units (x2) 7843 1.21

Integer Units (x2) 17647 2.81

PCU 3333 0.62

Table 5.4: Gate counts and areas of the components in the UTDSP
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Recall from the previous chapters that the UTDSP is designed to meet the increasing demand

for high performance, low-cost processors for use in cost-sensitive embedded systems. The

UTDSP provides a unique feature that makes itself an ideal application-specific programmable

processor. Being designed using the application-driven design methodology described in Chapter

2, the UTDSP has a flexible architecture and instruction set that can be easily modified to meet

the performance and cost requirements of target applications. 

We argue that the synthesis-based implementation method is the most suitable for the UTDSP

because being implemented in VHDL, the ALUs and instruction set of the UTDSP can be easily

modified, enabling the application-driven design methodology and a short time-to-market. If a

higher operating speed is required, the MAC unit can be implemented using a full-custom design

method to reduce the critical path delay with little impact on the flexibility of the UTDSP archi-

tecture.

5.7.2 Floorplanning

In conventional back-end flows, floorplanning tools usually perform two tasks: The placement

of blocks and the placement of logic cells in the blocks. The floorplan tools take a gate-level

netlist and create corresponding blocks according to the logical hierarchy in the netlist. Therefore,

conventional floorplanning only tries to minimize area or interconnect delay by arranging the

Controller (DMA + Interrupt) 4118 0.61

Glue logic 7843 1.34

Register Files (x2) 23725 3.88 0.36

UTDSP Core (Sum of above) 72548 12 8.48

Instruction and Decoder Mem-
ory Blocks (2Kx32 bits)

57843 6.05

Data Memory Blocks (2Kx8) 11765 2.75

Top-level routing channels 0 2.2

UTDSP Core + On-chip Mem-
ory blocks (no pads)

142156 23 19.48

The UTDSP chip (with pads) 33 29.48

Component Gate Count Area after routing 
(mm2)

If multi-port SRAM 
compiler is used

Table 5.4: Gate counts and areas of the components in the UTDSP
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locations and aspect ratios of these blocks. However, the logical hierarchy in the original design

does not necessarily mean a good partition for minimizing the interconnect delay and area of a

chip.

As mentioned before, research has shown that the interconnect delays in deep-sub-micron

(DSM) designs will actually decrease at the 50,000-gate module level as feature sizes shrink [31],

Therefore, partitioning a chip into 50,000-gate blocks becomes a new floorplanning task that

needs to be solved in this design phase. The UTDSP CAD flow takes advantage of the intercon-

nect analysis tool and logic merging features provided in the Cadence Physical Design Planner

(PDP 3.4C). The interconnect analysis tool can choose the blocks to be merged to minimize the

number of external nets —  the nets that connect blocks, while the logic merging features can

merge selected blocks into a new block. However, it is difficult to perform merging and floorplan-

ning without the information about the physical layout of underlying blocks. Therefore, some of

the blocks will be pre-routed and their geometry information can be fed back to the floorplan tool.

When the final version of floorplan is decided, global-pin-optimization will be performed to opti-

mize the pin locations of these blocks so that the top-level interconnection can be reduced to a

minimum.

Figure 5.12 shows the physical groups before and after logic merging. The 16 physical groups

in the original design were merged into five groups to minimize the number of external nets

between the blocks, while keeping the size of each block in the range where its interconnect delay

can be reduced. Figure 5.13 shows the block interconnection analysis and the final floorplan for

the UTDSP. Observe that the space between blocks was kept very small so that the area of the

chip can be reduced. However, to successfully route the top-level wires in such a small area, the

locations of the pins in the blocks have to be arranged in a way where most of the wires can travel

in their shortest distances. This step is called global-pin-optimization [36]. After the pin locations

of these blocks are optimized, the placement and routing in each block can be performed accord-

ing to its pin locations. Figure 5.14 and Figure 5.15 show that the global-pin-optimization signifi-

cantly reduces the interconnect between blocks. Sometimes the placement and routing in blocks

fail because the areas of these blocks are insufficient. Reshaping the sizes of these blocks and

redoing the floorplanning and global-pin-optimization are needed to solve this situation.
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Although this floorplanning method is iterative and very time consuming, the final layout of the

UTDSP shows a tremendous reduction in both area and interconnect delay. Figure 5.16 shows the

result of the final top-level routing and Figure 5.17 shows one previous version of the UTDSP,

where logic merging and floorplanning were performed in a different configuration. This poor

floorplanning resulted in an area of 7.2 mm by 7.2 mm, which is much larger than the current size

(5.5 mm by 6 mm). Therefore, applying this hierarchical floorplanning technique resulted in an

area reduction of 36% in this case. 

To obtain the postlayout timing information of the UTDSP, a full-chip R/C extraction was per-

formed after routing to calculate the interconnect delay. The results show that the maximum inter-

connect delay in the first critical path group is 92 ps, resulting in a total delay of 16 ns in the

critical path. The maximum interconnect delay in the second critical path group is only 45 ps.

Therefore, the UTDSP can achieve a maximum clock rate about 63 MHz. This result shows that a

good floorplan reduces not only the area of the chip but also its interconnect delay.

5.8 Kernel Benchmarks

The UTDSP not only has an architecture that is an easy target for HLL compilers but also pro-

vides nestable, zero-overhead hardware loops that are ideal for loop-intensive DSP kernels. Table

5.5 summarizes the loop performance of the UTDSP kernel benchmarks, which were created by

compiling their functionally-equivalent C code using the UTDSP compiler.

UTDSP Kernels Cycles

N-tap FIR with M points M(N+4) +2

N cascaded Biquad IIR with M points M(5N+3)

N-section Normalized Lattice filter with M points M(6N+3)

N-tap LMS adaptive filter with M pointers M(4N+6)

N radix-2 FFT butterfly 4N

NxN matrix multiplication N(N2+3N+1)

Table 5.5: UTDSP benchmark results for compiler-generated kernel code
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Figure 5.12: Before and after logic merging

Figure 5.13: Group connectivity analysis and the final floorplan
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Figure 5.14: Block interconnect without using global-pin-optimization

Figure 5.15: Block interconnect after global-pin-optimization
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.

Figure 5.16: The final top-level routing (5.5 mm x 6.0 mm)

Figure 5.17: One of the previous top-level routing with a poor floorplan (7.2 mm x 7.2 mm)
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To compare the UTDSP with the Philips R.E.A.L DSP [3] and the TI TMS320C62xx [26],

which have similar VLIW architectures, an FIR benchmark used in the publications [3][37] of

both processors was hand-translated into the UTDSP assembly program. To make a fair compari-

son, the assembly code was hand-optimized by the author because the assembly code for the other

two processors were also hand-crafted by their best assembly programmers. Table 5.6 summa-

rizes the features of these processors and the benchmark results. It shows that the UTDSP can

achieve a higher performance in terms of the cycle count in this FIR benchmark. 

This benchmark result demonstrates how the application-driven design methodology works

with the flexible architecture of the UTDSP. To take advantage of the dual multiplier structure in

the FIR computation, we used a block processing method, which is also used in the FIR bench-

mark [3] of the R.E.A.L DSP. In the block processing method, two output samples have to be cal-

culated concurrently to reduce the cycle count by half; therefore, in each cycle two consecutive

input samples and one coefficient must be loaded from the data memory. However, in each cycle

the UTDSP can load only two new operands —  one input sample and one coefficient, making the

dual data-memory banks a bottleneck in the FIR benchmark. 

To solve this problem, we introduced a new MAC instruction that not only performs the multi-

ply-accumulate operation but also moves the operands. Table 5.7 shows this instruction and its

corresponding operations. Note that this instruction does not need an extra write port on the regis-

UTDSP Philips R.E.A.L 
DSP

TI 
TMS320C6201

Design Methodology Synthesis-based Synthesis-based Full-custom

Deliverable Form 1. 108-pin PGA
2. Synthesizable 
core

Synthesizeable 
core

352-pin BGA

Process technology 0.35 µm CMOS 0.25 µm CMOS 0.25 µm CMOS

Max. Clock Frequency 63 MHz 85 MHz 167- 200 MHz

Number of Functional 
Units

7 10 8

Number of Multipliers 2 2 2

Cycle Count for FIR
with M outputs and N 
taps.

M(N+6)/2 + 7 M(N+9)/2 + 8 M(N+8)/2 + 6

Table 5.6: Comparison between UTDSP and two VLIW DSPs
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ter file because the original multiply-accumulate operation stores its result to the accumulator

(Acc), making its write port available during the WB stage for the shuffling operation. By using

this MAC instruction, the inner loop body, which calculates two output samples simultaneously,

can be scheduled into one long instruction. Figure 5.18 shows the inner loop code of the FIR

benchmark. Observe that the inner loop contains only one long instruction (INST 2), which con-

sists of six parallel operations. Without this MAC instruction, one extra long instruction has to be

scheduled into the inner loop body, doubling the current cycle count.

5.9 Summary

The chapter discusses the hardware design of the UTDSP and various VLSI implementation

issues. The design of the nestable, zero-overhead hardware loops is highlighted. A novel hierar-

chical CAD flow was used to minimize both the interconnect delay and chip area of the UTDSP.

Applying the hierarchical CAD flow resulted in an excellent floorplan that could reduce the area

by 36% in one of the examples shown. Finally, the kernel benchmark results are shown and a

comparison with two other VLIW processors is provided.

Instruction Syntax Operations

Multiply-accumulate
(for block processing)

madd2m di, dj, dk Acc = Acc + (di * dj)
dk = di

Table 5.7: The MAC instruction for block processing

Figure 5.18: The UTDSP assembly code for the inner loop of FIR benchmark

INST 1: rep N // repeat the following instruction N times. N = number of coefficients

INST 2: ld.d (a1), d1 // load next input sample

ld.d (a2), d2 // load next coefficient

inc a1, a15, a1 // increment input sample array pointer a1

inc a2, a15, a2 // increment coefficient array pointer a2

madd2m d1, d2, d3 // calculate the term and move the input sample d1 to d3 for subsequent output

madd2m d3, d2, null  // calculate the term for subsequent output sample
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

This thesis discusses the design and implementation of the UTDSP system, which consists of

three parts: the long-instruction packing scheme, the development software, and the VLSI imple-

mentation of the UTDSP processor. Each part contributes to the UTDSP system in its own way

and makes the UTDSP a complete system that is comparable to commercially-available DSP

products.

First, the UTDSP packing scheme reduces storage requirements, while eliminating the memory

bandwidth problems that plague other VLIW architectures. The UTDSP packing algorithm incor-

porates a two-cluster packing and slot sharing methods to minimize storage requirements. Bench-

mark results indicate that the UTDSP packing scheme achieves a performance comparable to its

commercial counterpart. 

Second, the development software, consisting of an architecture simulator and an assembly

debugger, not only enables an application-driven design methodology but also provides program-

mers an interactive GUI-based debugging tool. The architecture simulator was designed in a

novel method where the design gap between the behavioural and RTL models of the UTDSP can

be minimized. The GUI-based assembly debugger was implemented by adding a self-displaying

and event-listening capabilities to the architecture simulator. This means that designers will

always have a functionally equivalent debugger ready for use after having modified the architec-

ture simulator. This capability is especially useful in a core-based design.

Third, designed with a goal to provide high performance and low cost, the UTDSP not only has

a flexible architecture that is an easy target for HLL compilers, but also provides features such as
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zero-overhead hardware loops to optimize the performance in loop-intensive computations. The

VLSI implementation of the UTDSP adopts a synthesis-based design methodology and a novel

hierarchical floorplanning technique that can significantly reduce the resulting area and intercon-

nect delay of the UTDSP.

6.2 Future Work

Following are some suggestions for future work that can be used to improve the UTDSP sys-

tem.

• Building the register files of the UTDSP using SRAM compilers with multi-port capabilities.

Due to the unavailability of SRAM compilers with multi-port capabilities, the register files in

the UTDSP were synthesized directly from VHDL code, which significantly increased the area

of the UTDSP. It would be desirable if the register files could be generated using SRAM com-

pilers.

• Implementing the UTDSP in a CMOS technology with more metal layers.

The UTDSP was implemented in a 0.35 µm CMOS technology with only three metal layers.

The layout of library cells uses the first metal layer exclusively, leaving only two metal layers

for routing. Therefore, congestion situations often occurred and failed the routing of blocks. The

size of the blocks had to be increased to successfully route the design, resulting in a low utiliza-

tion rate. The area of the UTDSP can be further reduced if more metal layers are available for

routing.

• Further minimizing the design gap

Although the behavioural modelling method described in Chapter 4 can bridge the design gap

between the behavioural and RTL model of the UTDSP, it still requires that designers manually

create the RTL model. We have already started investigating the possibility of describing digital

hardware using a set of specialized Java classes and constructing a compiler that converts the

Java-based hardware description into synthesizable RTL code, completely eliminating the

design gap. 
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Appendix A

UTDSP Instruction Set

Operation Syntax Functional Description

Load integer register ld.d (ai), dj dj = Memory[ai]

Store integer register st.d (ai), dj Memory[ai] = dj

Table A.1: Memory Instructions

Operation Syntax Functional Description

Address decrement dec ai, aj, ak ak = ai - aj

Modulo address decrement decmod ai, aj, ak ak = (ai - aj) mod Buffer Size

Bit-reversed address decrement decfft ai, aj, ak ak = ai - aj (bit-reversed)

Address increment inc, ai, aj, ak ak = ai + aj

Modulo address increment incmod ai, aj, ak ak = (ai + aj) mod Buffer Size

Bit-reversed address increment incfft ai, aj, ak ak = ai + aj (bit-reversed)

Bit-wise AND and.a ai, aj, ak ak = ai & aj

Arithmetic shift left asl.a ai, aj, ak ak = ai << aj (arithmetic)

Arithmetic shift right asr.a ai, aj, ak ak = ai >> aj (arithmetic)

Bit-wise inclusive OR ior.a ai, aj, ak ak = ai | aj

Logical shift left lsl.a ai, aj, ak ak = ai << aj (logical)

Logical shift right lsr.a ai, aj, ak ak = ai >> aj (logical)

Bit-wise exclusive OR xor.a ai, aj, ak ak = ai ^ aj

Set equal seq.a ai, aj, ak ak = (ai == aj)

Bit-wise NOT not.a ai, ak ak = ~ ai

Move register mov.a ai, ak ak = ai

Table A.2: Addressing Instructions
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Set up the first circular buffer set1 ai, aj begin register = ai 
end register = aj

Set up the second circular buffer set2 ai, aj begin register = ai 
end register = aj

Move immediate movi.a #X, ak ak = #X

Operation Syntax Functional Description

Absolute value abs.d. di, dk dk = | di |

Bit-wise NOT not.d di, dk dk = ~ di

Move register mov.d di, dk dk = di

Add add.d di, dj, dk dk = di + dj

Bit-wise AND and.d di, dj, dk dk = di & dj

Arithmetic shift left asl.d di, dj, dk dk = di << dj (arithmetic)

Arithmetic shift right asr.d di, dj, dk dk = di >> dj (arithmetic)

Bit-wise inclusive OR ior.d di, dj, dk dk = di | dj

Logical shift left lsl.d di, dj, dk dk = di << dj (logical)

Logical shift right lsr.d di, dj, dk dk = di >> dj (logical)

Subtract sub.d di, dj, dk dk = di - dj

Bit-wise exclusive OR xor.d di, dj, dk dk = di ^ dj

Set equal seq.d di, dj, dk dk = (di == dj)

Set not equal sne.d di, dj, dk dk = (di != dj)

Set greater than sgt.d di, dj, dk dk = (di > dj)

Set less than slt.d di, dj, dk dk = (di < dj)

Multiply (1.15 format) multf.d di, dj, dk dk = di * dj

Multiply mult.d di, dj, dk dk = di * dj

Move immediate movi.d #X, dk dk = #X

Multiply-accumulate madd.d di, dj, dk, dl dl = dk + (di * dj)

Multiply-accumulate (1.15) maddf.d di, dj, dk, dl dl = dk + (di * dj)

Multiply-subtract msub.d di, dj, dk, dl dl = dk + (di * dj)

Multiply-subtract (1.15) msubf.d di, dj, dk, dl dl = dk + (di * dj)

Setup Accumulator 0 (Acc0) setacc0 di Acc0 = di

Setup Accumulator 0 (Acc1) setacc1 di Acc1 = di

Multiply-accumulate (Acc0) madd2d0 di, dj, dk dk = Acc0 + (di * dj)

Table A.3: Integer Instructions

Operation Syntax Functional Description

Table A.2: Addressing Instructions
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Multiply-accumulate (Acc1) madd2d1 di, dj, dk dk = Acc1 + (di * dj)

Multiply-accumulate 
(Acc0:1.15format)

madd2f0 di, dj, dk dk = Acc0 + (di * dj)

Multiply-accumulate
(Acc1: 1.15 format)

madd2f1 di, dj, dk dk = Acc1 + (di * dj)

Multiply-accumulate
(for block processing)

madd2m di, dj, dk Acc = Acc + (di * dj)
dk = di

Multiply-accumulate (1.15)
(for block processing)

madd2fm di, dj, dk Acc = Acc + (di * dj)
dk = di

Operation Syntax Functional Description

Address to integer mova2d ai, dk dk = ai

Integer to address movd2a di, ak ak = di

Single-instruction repeat rep #X Repeat following instruction #X 
times

Instruction block repeat do #X, label Repeat instruction block #X times

Instruction block repeat do.a ai, label Repeat instruction block (ai) 
times

Instruction block repeat do.d di, label Repeat instruction block (di) 
times

Branch if address register equal 
to zero

beqz.a ai, label if (ai == 0) PC = label

Branch if integer register equal 
to zero

beqz.d di, label if (di == 0) PC = label

Branch if address register not 
equal to zero

bnez.a ai, label if (ai != 0) PC = label

Branch if integer register not 
equal to zero

bnez.d di, label if (di != 0) PC = label

Jump indirect jmp.a (ai) PC = (ai)

Jump direct jmp label PC = label

Jump subroutine jsr label Push current PC
PC = label

Return from subroutine rts Restore PC from the stack

Trap trap #6/60
trap #5/50

DMA read from IO to X/Y bank
DMA write to IO from X/Y bank

Wait until interrupt wait Processor go to idle status

Halt halt System halt

Table A.4: Control Instructions

Operation Syntax Functional Description

Table A.3: Integer Instructions
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