UTDSP: A VLIW Programmable DSP
Processor

Sean Hsien-en Peng

o

ARBOR

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science
Graduate Department of Electrical and Computer Engineering
University of Toronto

a Copyright by Sean Hsien-en Peng 1999

UTDSP: A VLIW Programmable DSP Processor
Sean Hsien-en Peng

Master of Applied Science, 1999
Graduate Department of Electrical and Computer Engineering

University of Toronto

Abstract

VLIW architectures are well-suited for implementing application-specific programmable pro-
cessors because of their great scalability and modularity. VLIW architectures take advantage of
not only temporal parallelism found in RISC architectures but also spatial parallelism by using
multiple functional units. However, the large instruction storage and bandwidth requirements
have prevented VLIW architectures from being used in cost-sensitive systems.

This thesis describes a VLIW DSP processor called UTDSP, which incorporates a novel and
flexible instruction packing and fetching mechanism to reduce the code size and bandwidth prob-
lems plaguing other VLIW architectures. With this scheme it is possible to actually achieve some
code compression while attaining significant performance speedup over atraditiona architecture.
The UTDSP is flexible in that additional functional units with application-specific instructions
can be easily added when required for performance with little impact on its compiler.

The VLSI design and implementation of the UTDSP is presented. Thisimplementation, consist-
ing of five pipeline stages, is capable of executing seven instructions per cycle and provides zero-
overhead hardware loops that are nestable and interruptable. A GUI-based assembly debugger
and architecture simulator were implemented. The UTDSP adopts a synthesis-based design meth-

odology and a novel hierarchical CAD flow that can significantly reduce its area.

To Hsiao-ching, Hsien-yuan, and Yu-liang

Acknowledgements

This thesis could not have been completed without the help of many individuals and organiza-
tions, to whom | am extremely grateful.

| want to thank my supervisor, Professor Paul Chow, for his precious suggestions, friendly
advice, and considerable amount of time that was spent to reading the many drafts of my thesis.
Most of al, however, for his patience and encouragement.

| would like to thank Natural Sciences and Engineering Research Council for their funding in
the past two years. | could not have had the chance to carry out my research at U of T without the
financial support from NSERC.

| offer thanks to Louis Zhang, Jianghong Hu, Brent Beacham, Nirmal Sohi, Deshanand Singh,
Warren Gross, Andy Ye, and Tor Aamodt for all the good times and numerous technical discus-
sions from which I have learned much. Thanks to Dr. Mazen Saghir for defining a clear frame-
work in this research project and for histechnical help. Thanks also to An Wei, Jin Heng, Jianhui,
Michael, Franklin, Edward, and Shuo for al the fun timesin the lab.

| am extremely grateful to my family for all their support and ever-lasting love. Last, but cer-
tainly not least, | would like to thank my wife Hsien-yuan for her love, understanding, and sacri-
fice of countless weekends and holidays in the past years. This thesis involved alot of hard work

and months struggling with CAD tools. | could not have done it without her support.

Table of Contents

CHAPTER 1 Introduction 1
0 R Y/ o 1AV 1o o PO TSRS 1
1.2 Objective and CoNtribDULIONS.........ccooiiiiiiie e s 2

1.2.1 Design and Implementation of a Long-instruction Packercccceeevueennene. 2
1.2.2 Design and Implementation of Architecture Simulator and GUI-based Assem-
bly Debugger 2
1.2.3 Designand VLSI Implementation of the UTDSPccccooevieivceevecce e, 2
IR TN I 0155 K @ (0= 4 7= 1 o o S 3

CHAPTER 2 Background 4
21 Application-Driven Design Methodologlyccevveieiieieieesecse e 4
2.2 TheModel ArChItECIUIE........cccii i 7
2.3 CCompiler and POSt-OptiMmiZErccceeeeieeiesierieeieeseesie e seeseeseessee e eesseesesneees 11
24 TIVeociTl and Philips R.E.A.L DSP Architectures...........ccccoveveninneninneeseeeee 13

241 TIVEOCTI ArChITECIUIocoveeieiiiieieeeee s 13
24.2 PhilipsR.E.AA.L. DSP ArchiteCtureoccooieiiieeneeceseeeeee e 14
2.5 SUIMIMBIY ..ttt ettt ettt e ae e et e e eae e e s e e sse e eane e st e eaeeenseesaeeanreesnneenreenns 16
CHAPTER 3 Long-Instruction Packing and Fetching for the UTDSP 17
3.1 Storing and Decoding LONg INSLIUCLIONS.........cocuiiieiieriiseerie e 17
3.1.1 Reducing the Size of Decoder MemMOIYccccceeeereerieseesieeiee et seesseenee s 19
3.2 Achieving Denser INStruction PaCKingcccuecereereeiieseeseeeeseeseseese e see s eee e 21
3.21 Field Clustering Method ..o 21
3.2.2 Sharing Packing SIOLSccccciiiiiiiiiiierieee e e 22
3.2.3 Choosing the Number of Clustersinthe UTDSPccccccevievvvienenie e, 25
3.24 TheUTDSP Packing Algorithmcccccooiiiiiiiieeee e 26
3.3 Implementation of the UTDSP Packing Software System..........cccccevevveevvseesiecnenne 28
3.3.1 Implementing the UTDSP Packer Using C++ Template Technology 28
34 ReSUITS AN ANBIYSIS....ccoiiiiiieierieeie ettt r e ns 31
3.4.1 Packing Mechanism used for Tl Veloci Tl architectureccccccevvecevvieennee. 31
3.4.2 Benchmark Results for the UTDSP Packer and the Veloci TI Algorithm 33
3.4.3 Impact of the Two-Cluster Packing and Fetching on Execution Performance ...
36
3.5 SUMM@IY .. s b s b e s a b e e nr e be e re e nanes 37

CHAPTER 4 Development Tools

4.1 Behavioural Modelling Methods for the UTDSP.......cccoeiiiiiinieneee e
4.1.1 Choosing the Correct Modelling Languagecccceeveerveveereeriesieesneennenns
4.1.2 Digital Systems Modelling Techniquesfor the UTDSPc.ccccccvvvveneee.
4.2 Design and Implementation of the UTDSP Architecture Simulator
4.2.1 Creating the Object Model of the UTDSPc.coviviiiiiiieeeeeeee
4.2.2 Simulating the UTDSP Object Modelccccevveivvieeeeceeeee e,
4.3 The GUI-Based Assembly Language Debuggercooviierveninenieneneeee
4.3.1 The Features of the Assembly Language Debuggercceoevveverieenene.
4.3.2 Adding Self-Displaying and Event-Listening Abilitiesccccoveneee.

S U 1 010 17! PP TP ORUPP

CHAPTER 5 System Design and VLSI Implementation of the UTDSP

51 TheUTDSP Hardware ArchiteCture............ccocoovieierienieenece e
5.2 INSIIUCLION SEL ..ottt st n e nae s
5.3 ThePipeling ArChItECIUIE.......ccee e
5.3.1 DataHazardsand BYPasSiNgcccccererierreerierieesieesieseesiessieseeseesseeseee e
5.3.2 Control Hazards and Zero-Overhead Looping Instructions
5.3.3 INErTUPt EffECES ..o s
54 ThEPC UNIT oottt
55 TheREQISIEr FilES....oiiiiieee ettt st
5,6 The Datapath COMPONENLS........c.ciiieriireerieeiieseesieeeeseesse e sreeseesreesseesesseesseeseesses
5.6.1 The1.15 Fixed-Point FOrMatccoooervinirnineneeie e
5.6.2 TheModulo Address GENEIalorcoceeereerieriesieeniesee e eees
57 VLS IMplementation [SSUEScccceiiiririienienienee e sie e see e e e sse e e
5.7.1 Design Capture and SYNtNESIScceveeiieeeerieie e
5.7.2 FOOIPIANNING ...ooeiiiieieiieeeie et e
58 Kerne BenChmarks..........ccoiiiiiiiiiiiiiiresesese et
5.9 SUMM@IY ...t s b e e an e s be e e ebe e nnneas

CHAPTER 6 Conclusions and Future Work

6.1 CONCIUSION ...ttt e ettt e e e e e e e e e et e eeeeeeeaae e eeeeeeeeaaaenneeeens
6.2 FULUIE WWOTK ..ottt e e e e e e ettt e e e e e e e e e e e e e e e eeaeenneeees

Appendix A: UTDSP Instruction Set

Bibliography

List of Figures

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 3.1:
Figure 3.2:

Figure 3.3:

Figure 3.4
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 3.9:
Figure 3.10:
Figure 3.11:
Figure 3.12:

Figure 4.1:
Figure4.2:

Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:

Application-driven design methodologyccccvveeririiiieneeeee e 5
Examplelong instruction for aVLIW with 5 functional unitscccoceveriereennene. 8
VLIW MOl AFChITECIUI ...ttt 8
Basic Structure of INStruction DECOTEScoerereririeriniriee e 10
Two-phase compilation: C Compiler and Post-Optimizercceceeveeceeieesieceennnns 12
The T1 VEIOCI T ATrChITECIUIEoveieeieieieeeee e 13
The PhilipS R.E.A.L DSP arChiteCtUre.........coieeiieiesieerieeee e 15
Block diagram of the UTDSP Memory SyStem........cccoveereneenennienee e 18
(A) Multi-op instructions stored in an arbitrary manner (B) Multi-op instructions

stored according to field Prioriti€Scccvveeieece e 19

(A) Storing multi-op instructionsin their original format (B) Storing multi-op instruc-
tioNS N apacked fFOIMELcco i 20
Field clustering packing Method ..o 21
Combining the two-cluster packing and dlot-sharing methods.............ccccceevveveneee. 23
The UTDSP packing algorithm..........coooiieiiee e 27
The UTDSP packer and software SyStemM.........ccveeveeienieesiese e 29
GeneriC lNKEA HISE TN C.eee e e 30
Container template class LIStKT> iN CH ... 31
Packing mechanismin the TI Veloci Tl architecture..........ccocooeveeieneenenceneeene 32
The storage requirements of different packing methods...........ccccoccvvveveiceevvcnenee. 34
The storage requirements of the UTDSP kernel benchmarks for different packing

1= 1070 TSP 35
Design Gap between behavioural and RTL mOdels.........coooveierieninnenieneeseeee 39

(A) An FSM that acceptsinput sequence “10". (B) The FSM'’s equival ent object mod-
el. (C) Theresulting digital system blocks converted directly from the object model.
41

The object Model Of tNE UTDSP.......ooiiie e 44
Connecting and simulating the objectsin the UTDSP moddlccccevveiiiveniennee. 45
The UTDSP assembly language debuggerooovveeievecieee e 47
The Inst object with self-displaying and event-listening abilities..........ccccceeveeennen. 48

Vi

Figure 4.7
Figure5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:

Figure 5.9:

Figure 5.10:
Figure 5.11:
Figure 5.12:
Figure 5.13:
Figure 5.14:
Figure 5.15:
Figure 5.16:
Figure5.17:
Figure 5.18:

A simulation result plotter and atest bench for RTL modeccccoovvvvieeivcennene 49
The UTDSP hardware BIOCKS.cccoueiiieresese e 52
The pipeline architectures of RISC and the UTDSP........ccccceviviievieve e 54
RAW hazards and bypassing path...........ccooeioiiiiiieeeeee e 55
The UTDSP instruction pipeline when predict-taken schemeisused 56
The UTDSP zero-overhead hardwar€ 100pcooveieererieniene e 57
The UTDSP instruction pipeline when handling an interrupt...........cccocvveevveeennens 58
The block diagram of the PC UNitcccooceiieiiceseee e 59
Constructing aregister file with 6 read and 4 write ports using dual-ported SRAM
0F= T 0L PR OURRTOPRRTPPRPRTPIN 61
The data formats that are used in the UTDSP inStructions...........cccceveveereenienennnens 63
The UTDSP modulo instruction format vs. the typical formatcccceeevvenennee. 64
The UTDSP CAD MethOdOIOgYc.cccverueerieiieiieeieseeseseeseesie e sree e see e eee e 65
Before and after 10giC MEIrQiNG........coveieieereeie e 71
Group connectivity analysis and the final floorplan ... 71
Block interconnect without using global-pin-optimization...........cccccecceverieneennene 72
Block interconnect after global-pin-optimizationccooeveneeieneenese e 72
The final top-level routing (5.5 MM X 6.0 MM)coovviieriece e 73
One of the previous top-level routing with a poor floorplan (7.2 mm x 7.2 mm) ..73
The UTDSP assembly code for the inner loop of FIR benchmark 75

Vii

List of Tables

Table 2.1:
Table 2.2:
Table 3.1:
Table 3.2:
Table 3.3:
Table 3.4
Table5.1:
Table5.2:
Table 5.3
Table 5.4:
Table5.5:
Table5.6:
Table5.7:

Table A.1:
Table A.2:
TableA.3:
Table A .4:

DSP kernel DENChMarks...... oo s 6
DSP application DENCAMArKS..........coiiiiiiieee e s 7
Impact of subset packing on decoder-memory requirements..........ccoceeeereereeeenneens 24
Maximum addressable space of different clustering configurations........................ 25
Average storage requirements of theresultsin Figure 3.12..........ccccccvvvevvecieceennene 35
Trade-off between storage requirements and execution performance...................... 36
The value of NEXT_PC and its associated conditions............cccoevveeveeieeciieesieennne. 60
The two instructions that are removed from the original UTDSP instruction set62
The delay of the first three critical path groups..........ccveeveeiineeneece e 67
Gate counts and areas of the componentsinthe UTDSPccccceevveevvcceeneeeene 67
UTDSP benchmark results for compiler-generated kernel code............cccccevveneneen. 70
Comparison between UTDSP and two VLIW DSPs.......ccooovieeveeiereee e 74
The MAC instruction for block ProCeSSINgGcccceveeiiriereriesee e 75
IMEMOTY INSLIUCLIONS.ouieiieiie ettt sttt st saeeaesnee e 78
Addressing INSIIUCLIONScovuiiuiiieeie ettt ee e 78
INEEQGEN INSITUCLIONSevveeecie ettt re e s e e sneeaeeneenreas 79
CONLrOl INSEIUCLIONS ...ttt b bbb 80

viii

Chapter 1

Introduction

1.1 Motivation

Digital signal processors (DSPs) are specialized microprocessors designed to execute the com-
putationally-intensive operations commonly found in the inner loops of digital signal processing
algorithms. Having been used extensively in embedded systems, DSPs are required to offer high
performance while reducing cost. To fulfill this goal, traditional DSPs use tightly-encoded
instruction sets to reduce instruction memory requirements, and hence cost. Using tightly-
encoded instruction sets reduces not only storage requirements but al so instruction memory band-
width, which isamajor concern when off-chip instruction memory needs to be used.

However, tightly-encoded instruction-set architectures (ISAs) are not well-suited for high-level
languages (HLL) compilersto exploit parallelism because most of the instructions are accumula-
tor based, limiting the number of registers that can be specified in an operation. As aresult, DSP
compilers generate relatively poor code compared with their counterparts for general-purpose
microprocessors. Therefore, more compiler-friendly DSP architectures that combine high perfor-
mance with low cost are definitely needed. One dternative to the tightly-encoded instruction
architecturesisthe very long instruction word (VLIW) architecture.

VLIW architectures offer high performance by using multiple, independent functiona units,
enabling multiple instruction issue while reducing cost by eliminating dynamic scheduling logic.
Unlike superscalar processors, where data hazards are handled using dynamic scheduling, VLIW
architectures rely on compilers to create a package of instructions that can be simultaneously
issued. VLIW architectures are very well-suited for exploiting a high level of parallelism because

they are easy targets for HLL compilersto generate efficient code.

However, VLIW architectures have several limitations that are not favorable in cost-sensitive
DSP processors. First, instruction-memory size is increased substantially due to the unused
encoding dots in long instructions and the extra instructions created using loop unrolling to
exploit parallelism. Second, fetching long instructions from off-chip instruction memory requires
a high bandwidth, which can be a severe problem when pin-count and packaging options are

major constraints.

1.2 Objective and Contributions

The objective of this thesisis to design and implement a VLIW programmable DSP processor
— UTDSP. The UTDSP eliminates the limitations mentioned above by incorporating a two-level
instruction fetching and packing mechanism. The VLS| implementation of the UTDSP, along
with associated software devel opment tools, is presented in thisthesis. The following details three

major contributions of this thesis.
1.2.1 Design and Implementation of a Long-instruction Packer

The UTDSP instruction packer was implemented based on a two-level instruction fetching
mechanism proposed by Mazen Saghir [2]. The UTDSP packer not only packs long instructions
to reduce storage requirements but also serves as an assembler. Benchmark results indicate that
the UTDSP instruction packer outperformsthe new Tl Veloci Tl packing algorithm, while solving

the fetching bandwidth problems mentioned previoudly.
1.2.2 Design and Implementation of Architecture Simulator and GUI-based Assembly Debugger

The UTDSP architecture was designed using an application-driven design methodology where
architectures are designed according to the performance and cost requirements of their target
applications. Being written in a high-level language, the architecture ssmulator, which also serves
as a behavioural model of the UTDSP, can be easily modified to experiment with design trade-
offs, enabling the application-driven design methodology. An GUI-based assembly debugger was
also implemented to allow programmers to perform interactive debugging features such as mem-

ory probing and breakpoint tracing.

1.2.3 Design and VLSI Implementation of the UTDSP

The UTDSP, which has five pipeline stages, was implemented using a synthesis-based design
methodology. The UTDSP provides not only a set of highly orthogonal, RISC-like instructions
but also DSP-specific features such as zero-overhead hardware loops. The zero-overhead hard-
ware loops can be nested up to five levels. Also, interrupts and branches are allowed in the inner
loop. A novel hierarchical CAD flow that significantly reduces the resulting area and interconnect
delay of the UTDSP was defined in this thesis.

1.3 Thesis Organization

Thisthesisisdivided into six chapters. Chapter 2 provides the reader with background informa-
tion on the UTDSP, focusing on a VLIW model architecture and its compiler system. Chapter 3
introduces the design and implementation of the UTDSP packer. Benchmark comparison between
the UTDSP packer and TI's Veloci TI memory packer will be analyzed in this chapter. Chapter 4
describes the design and implementation of the architecture ssmulator and GUI-based assembly
debugger. Chapter 5 presents the design and VLS| implementation of the UTDSP. Related CAD
issues will beillustrated in this chapter. Chapter 6 concludes this thesis and offers recommenda-

tions for future work.

Chapter 2

Background

The rapid growth in the consumer electronics market has increased the demand for high-perfor-
mance, low-cost processors for use in embedded systems. Although off-the-shelf DSP processors
can be used to meet these demands, application-specific programmable processors (ASPPs) —
processors that are designed for specific applications— are more desirable for use in cost-sensi-
tive systems because their architectures and instruction set can be tuned for their specific perfor-
mance and cost requirements. The UTDSP processor, an ASPP aimed at embedded DSP
applications, incorporates an application-driven design methodology, where architectures are
designed according to the requirements of the target applications.

This chapter provides an overview to the UTDSP project and describes background information
upon which this thesis is built. Section 2.1 explains the application-driven design methodology
and how it is used to generate architectures that are easy targets for high-level language (HLL)
compilers. Section 2.2 introduces a flexible model architecture that can be easily modified
according to the performance and cost requirements of the target applications. Section 2.3
describes an optimizing C compiler and its role in tuning the model architecture. Section 2.4
describes two commercialy available DSP processors that have VLIW architectures. Section 2.5

summarizes this chapter.

2.1 Application-Driven Design Methodology

Conventional embedded DSP processors are designed without fully appreciating the features
and limitations of their HLL compilers. Moreover, many DSP processors are developed using a
methodology where compiler construction starts after functional silicon is obtained [3][4][5]. This

usually resultsin adesign that isadifficult target for HLL compilers; therefore, the compilers nei-

ther take maximum advantage of the hardware resources in the architecture nor generate efficient

assembly code compared with hand-crafted versions.

Target Applications

C Compiler

Post-Optimizer

Model Architecture

Instruction
Simulator

‘ Performance/Cost I . I
Trade-Off Target Constraints

Figure 2.1: Application-driven design methodol ogy

In contrast, the UTDSP project uses an application-driven design methodology [1] where archi-
tectures are designed according to the performance and cost requirements of their target applica-
tions. Figure 2.1 shows the flow used in the application-driven design methodology. The design
starts with a flexible model architecture as a template; a suite of benchmarks is used to evaluate
the performance of the model architecture. The model architecture is iteratively modified until it
meets the performance and cost requirements of the target applications. The key component in
this design methodology is the flexible model architecture, which is easy to configure and is able
to exploit paralelism. A flexible, RISC-like instruction set is also provided to make the model
architecture an easy target for HLL compilers.

As the complexity of DSP applications increases, writing a DSP application entirely in assem-
bly language is no longer feasible although kernels and inner loop code are still often hand-opti-

mized to achieve a better throughput. Therefore, the benchmark suite was developed in the C

programming language and a C compiler is used to trandate the target applications into the
machine operations that can be executed by the model architecture. The C compiler generates
sequential code and performs register alocation based on the instruction set and the number of
registers defined for the model architecture. A post-optimizer is then used to exploit the DSP-spe-
cific features of the model architecture. The post-optimizer also exploits paralelism in the
sequential code and creates executable code that runs on the model architecture. The executable
code is then simulated using an instruction-set ssmulator to obtain the cost and performance infor-
mation of the model architecture.

When the performance requirements are not fulfilled, the architecture, compiler, and post-opti-
mizer can be modified to exploit more parallelism. Similarly, when the cost requirements are not
fulfilled, the hardware components that are under-utilized can be removed to reduce system cost.
This process is repeated until the model architecture meets both the cost and the performance
requirements of the target applications.

The benchmark suite used in this study consists of six kernels and ten applications. Table 2.1
shows the kernel benchmarks, which consists of simple agorithms commonly used in DSP appli-
cations. The kernels usually constitute the inner loop of DSP applications; therefore the effective-
ness of exploiting parallelism in kernels dominates the overall performance. In other words, the
compiler must generate efficient code for kernels to maximize the utilization of the hardware
resources in the model architecture. Table 2.2 shows the DSP application benchmarks, which are
commonly used in embedded systems. Using the suite of benchmarks with the application-driven
design methodology thus makes the resulting model architecture an ideal design for embedded

DSP processors.
Kernels Description
k1l fft_1024 Radix-2, in-place, decimation-in-time fast Fourier transform
k2 fft_256
k3 fir_ 256 64 Finite impulse response (FIR) filter
k4 fir 321
k5 iir 4 64 Infinite impulse response (1IR) filter
k6 iir 1.1

Table 2.1: DSP kernel benchmarks

Kernels Description
k7 lathrm_32 64 Normalized lattice filter
k8 latnrm 8 1
k9 Imsfir_32 64 L east-mean-squared (LM S) adaptive FIR filter
k10 Imsfir 8 1
kil mult_10_10 Matrix Multiplication
k12 | mult44
Table 2.1: DSP kernel benchmarks

Applications Description
al G721 A Two implementations of the ITU G.721 ADPCM speech
a2 G721 B encoder
a3 V32.modem V.32 modem encoder/decoder
a4 adpcm Adaptive differential pulse-coded modulation speech encoder
a5 compress Image compression using discrete cosine transform (DCT)
ab edge detect Edge detection using 2D convolution and Sobel operators
ar histogram Image enhancement using histogram equalization
a8 Ipc Linear predictive coding speech encoder
a9 spectral Spectral analysis using periodogram averaging
al0 | trellis Trellis decoder

Table 2.2: DSP application benchmarks

2.2 The Model Architecture

Flexibility and compiler programmability are two important requirements for the model archi-
tecture used in the application-driven design methodology. Flexibility enables the model architec-
ture to be easily configured to meet the performance and cost constraints of an application, while
compiler programmability requires the architecture to be an easy target for HLL compilers. A
model architecture that is based on a very long instruction word (VLIW) architecture was chosen
to meet both requirements [2].

A VLIW architecture consists of multiple functional units each of which can execute indepen-

dent instructions simultaneously. Unlike CISC instructions, which are vertically encoded, VLIW

F1 F2 F3 F4 F5
Inc d3,d2 | St (a1),d2 | Ld(a2),d4 | Dec d5,d6 | Jsra9

Figure 2.2: Example long instruction for aVLIW with 5 functional units

Instruction Data memory Data memory
Memory
Bank Bank X BankY

____________ 32] _J[_s_z________l

|

l MU-1 :

' :

i $ 32 !

! BUS I |

| |

! | Y { 32 { 32 i

|

| . . - . Floating-Point |

: Address Register file Integer Register File Register File i

|

| |

| ! ! | U S

|

: AU-0 AU-1 DU-0 DU-1 FU-0 FU-1 :

| |

: |32 |32 |32 |32 |32 |32 i

|

| |

Figure 2.3: VLIW Model Architecture

long instructions are horizontally encoded. Each long instruction contains N fields, where N isthe
number of operations that can be executed concurrently; each field controls a corresponding func-
tional unit. Figure 2.2 shows an example VLIW long instruction. An optimizing compiler is used
to exploit parallelism and schedule parallel operations into the fields of along instruction. More-
over, using a highly orthogonal, RISC-like instruction set helps the compiler generate efficient
code for the target architecture. The VLIW architecture is flexible in that additional functional
units can be easily added when required for performance with little impact on the compiler.
Figure 2.3 shows the VLIW model architecture used for the UTDSP. The model contains nine
functiona units. two memory units (MUO and MU1), two address units (AUO and AU1), two
integer units (DUO and DU1), two floating-point units (FUO and FU1), and one control unit

(PCU). MUO and MU1 execute memory operations. Each memory unit connects to a single-
ported, data-memory bank. AUO and AU1 execute address operations. DUO and DU1 execute
integer operations. FUO and FU1 execute floating-point operations. PCU executes control opera-
tions. Because the model has nine functional units, up to nine parallel operations can be specified
in along instruction and execute concurrently. Unlike superscalar architectures, where instruction
scheduling is handled dynamically in hardware, VLIWSs adopt static scheduling, which requires
compilersto resolve data hazards. Eliminating the dynamic scheduling logic gives VLIWs afaster
execution speed and a smaller silicon area. Because the long instructions consisting of RISC-like
operations can till fit in a pipeline scheme, VLIWSs can exploit not only spatial parallelism using
multiple functional units, but also temporal parallelism by introducing the pipeline scheme.

A Harvard memory architecture, where instruction memory is separated from data memory, is
used to increase memory bandwidth and enable the concurrent fetching of instructions and data.
Because the model architecture is a load-store design — all operands must be first loaded from
data memory to register files through the two MUs, dua data-memory banks are introduced to
reduce the possibility of starving for operandsin DSP kernels. To take advantage of the dual data-
memory banks, the compiler must distribute program data among them. More details about
exploiting dual data-memory banks are givenin [2][42].

The model has three register files to store address, integer, and floating-point operands, respec-
tively. Specifically, the integer functional units only operate on registers in the integer register
file; the address units only operate on registers in the address register file. Similarly, the floating-
point units can only access the registersin the floating-point register file. All register files are con-
nected to the memory units so that data can be loaded from data-memory banks to any one of the
register files. The program-control unit isaso connected to all register filesto allow datatransfers
between them.

However, one major drawback that prevents VLIWS from being used in cost-sensitive systems
is their high instruction bandwidth. As shown in Figure 2.3, the model architecture needs a 288-
bit bus for instruction fetching. Because along instruction must be fetched from memory on every
clock cycle, the performance will be severely degraded when off-chip instruction memory is used
and the number of available pinsis not enough for implementing a full fetch bus. Another draw-

back is the large instruction storage when compilers cannot exploit enough parallelism to sched-

Instruction
Memory

Uni-Op Inst Multi-Op Pointer

v

Decoder Memory

(Writable Control Store)

A 4

Long Instruction Register I

Data Path (Functional Units)

Figure 2.4: Basic Structure of Instruction Decoder

ule operations into long instructions. Storing the long instructions that have many unused fieldsin
their original format is therefore very wasteful, and resultsin increased system costs.

To solve the bandwidth and storage problems mentioned above, Mazen Saghir proposed along
instruction fetching and packing mechanism [2] based on writable control stores[6][7]. The writ-
able control stores can be found in a microprogrammed computer where an instruction contains a
pointer to horizontal microcode stored in the control store. Similarly, long instructions can be
stored in the control store and their pointers are stored in the instruction memory. When a pointer
is fetched from the instruction memory, it is used to fetch its associated long instruction from the
control store (decoder memory). Figure 2.4 shows a block diagram of the instruction and decoder
memory. The instruction memory stores single operations or pointers to long instructions. The
operations stored in the instruction memory are called uni-op instructions— long instructions that
contain only one operation. In contrast, the pointers stored in the instruction memory are called
multi-op pointers, which point to the actual long instructions stored in the decoder memory. The

instruction fetching and packing mechanism used in the UTDSP processor was implemented

10

based on this two-level fetching model. More details will be given in Chapter 3 where the design
and implementation of the UTDSP Packer is explained.

2.3 C Compiler and Post-Optimizer

A C compiler trandlates a program written in C into a functionally equivalent program taking
the form of the machine language of the target architecture; it uses machine-independent optimi-
zations to increase the run-time performance of the resulting machine code. These optimizations
usually include loop unrolling, common sub-expression elimination, strength reduction, and con-
stant propagation [8]. Furthermore, the compiler can perform specific machine-dependent optimi-
zations to take maximum advantage of the hardware resources in the target architecture. For
instance, the machine-dependent optimizations include instruction scheduling, software pipelin-
ing, register renaming, data prefetching, and branch prediction when the target architecture is a
general-purpose RISC processor.

Originally, the C compiler for the model architecture was based on the GNU C compiler (Gcc)
because it is public-domain software; it uses a good suite of scalar optimizations; and it is easy to
retarget to different architectures. However, the intermediate form Gec uses provides too little
information about the source program to implement machine-dependent optimizations. To imple-
ment DSP-specific optimizations without modifying Gcc, a post-optimizing pass was developed
to perform the machine-dependent optimizations for the model architecture. Figure 2.5 shows the
resulting two-phase compilation process. In the first phase, the C compiler translates C programs
into sequentia assembly language operations that can be executed on the model architecture. In
the second phase, the post-optimizer back-end performs the architecture-specific optimization.
Theinitial work on Gee and the post-optimizer was done by Vijaya Singh [9]. The post-optimizer
was later augmented by Mazen Saghir [2][43] and Mark Stoodley [10]. The Gcce front-end was
later again replaced by the SUIF compiler [11] to enable the use of amore natural coding style for
applications.The SUIF compiler was ported to the model architecture by Sanjay Pujare [12].

The post-optimizer optimizes the execution performance of a program by taking maximum

advantage of the underlying hardware resources in the model architecture; it applies five optimi-

11

C Source Code I Basic Machine Operations

v v

Program Analysis

C Compiler
(Front End)

Modulo Addressing

Low-Overhead Looping

Post-Optimizer Data Allocation

Operation Compaction

Ll

VLIW Long Instructions
Figure 2.5: Two-phase compilation: C Compiler and Post-Optimizer

zation passes to the sequential machine operations generated by the front-end C compiler and cre-
ates long instructions that can execute on the model architecture. The five passes include the
program analysis pass, the modulo addressing pass, the low-overhead looping pass, the data allo-
cation pass, and the operation compaction pass, as shown in Figure 2.5.

First, the program analysis pass constructs a control-flow graph for the code generated by the
front-end compiler. It then extracts information about its data-flow, control-flow, and aliasing
characteristics, which are needed in the other phases. Second, the modulo addressing pass con-
verts al arrays in the original code to circular buffers so that the elements in the arrays are
accessed in a modulo manner. Third, the low-overhead looping pass tries to replace conditional
branch instructionsin aloop with a single low-overhead looping operation that specifiesthe itera-
tion count and the addresses of the first and last instruction in the loop body. Fourth, the data allo-
cation pass takes advantage of the dual data-memory banks of the model architecture and exploits
parallelism by distributing program data among the banks. Finally, the operation compaction pass

packs machine operations into long instructions using a list scheduling algorithm [13].

12

2.4 TI VelociTI and Philips R.E.A.LL DSP Architectures

This section describes VLIW architectures that are used in two commercially available DSP
processors— Tl TMS320C62xx and Philips R.E.A.L DSP.

2.4.1 TI VelociTI Architecture

The Veloci Tl architectureis used in the TM S320C62xx, which isthe latest in the TM S320 fam-
ily of DSPs. The Veloci Tl architecture is an advanced VLIW design that has a long-instruction
packing scheme to reduce storage requirements. The Veloci Tl uses a deep pipeline to eliminate
traditional pipeline bottlenecks including memory access and multiply-accumulate operations.

Figure 2.6 shows the block diagram of the Veloci Tl architecture.

[s [stH | saDD [saDD [smpyH | svmpy [s | B | PG
FETCH [s8pD [sapp | sHR | sHR [Ismpyd [sy | 1w | LDw] PS
[s | sth [seop | saoo [svevn | smey | suse | B | PW
[sabD | saDD | sHR | sHR [smpyH [svpyH | tbow | bw | PR
[I I I I | | I] DP

v v v v v v v) 2
DECODE CROSSBAR

I__L||+||+||+|DC|*||+||‘_'|IA_|
[C1][$1)[w BT Dz mz][s2 |
! 1T 1 3 ! 1 1

Register file A Register file B

rF 3 F S

L2

:

| Data memory interface control |

EXECUTE —

Data address 1 z Data address 2

Ll -

Internal data memory

Figure 2.6: The Tl Veloci Tl Architecture

13

There are eight functional units in the Veloci Tl architecture. They are divided into two data
paths. Each data path has four functional units and aregister file. The datain the two register files
can be exchanged via a crosspath. Each functional unit can execute only a subset of the Veloci Tl
instruction set. The Veloci Tl has a highly orthogonal, RISC-like instruction set and a load-store
architecture— memory accesses are performed using explicit load or store instructions.

As shown in Figure 2.6, the Veloci Tl has three pipeline phases: Fetch, Decode, and Execute.
The Fetch phase consists of four pipeline stages. In the Fetch phase, a program address is gener-
ated and used to fetch along instruction (Fetch Packet) from instruction memory. In the Decode
phase, which consists of two pipeline stages, the operations in the fetched long instruction are dis-
patched to their corresponding functional units via a crossbar. The crossbar is used because the
VelociTl has a long-instruction packing scheme to reduce storage requirements. The details of
this packing scheme will be discussed in Section 3.4.1.

In the Execute phase, the dispatched operations are executed in their corresponding functional
units. The Execute phase is divided into 5 pipeline stages because each instruction uses different
number of pipeline stages. Most of the instructions use one pipeline stage, whereas some instruc-

tions such as branch require 5 pipeline stages to execute. More details can be found in [14][26].
2.4.2 Philips R.E.A.L. DSP Architecture

The R.E.A.L. DSP (Reconfigurable Embedded DSP Architecture at Low-power and L ow-cost)
is designed as a flexible embedded core to enable an application-specific tuning and fast turn-
aroundtime. The R.E.A.L. DSPisaVLIW design with adual Harvard architecture and 3 pipeline
stages. The R.E.A.L. uses a look-up table to store its VLIW instructions. Figure 2.7 shows the
block diagram of the R.E.A.L. DSP core.

When a 16-hit word is fetched from program memory and if itsfirst 8 bits equal to the specified
enabling mode, the lower byte of the word will be used as an address to fetch its corresponding
long instruction stored in the ASI look-up table. The VLIW instructions stored in the ASI look-up
table are 96-bit long and can specify many operations to control not only functional units but also
application specific execution units (AXU). The AXUs are designed to execute a special set of
instructions that are tuned for target applications. Most importantly, they can be placed anywhere
in the datapath or the address functional units.

14

The ASI look-up table can contain only 256 long instructions and it does not use any instruction
packing scheme. Although it stores the duplicates of along instruction in the same table entry to
reduce its storage requirement, we believe that the storage requirement is unlikely to be reduced
because the possibility of having exactly the same long instructions is rare. More details can be
found in [3][45].

16 bit program memory word

8 bits 8 bits
Mode ASlindex
Enable Mode Address
= 01000000 > ASI lookup «
table
1
1 11 1 1 11
Address Unit 96 bits VLIW instruction | address Unit
[| |
X Data Memory Y Data Memory
o] X0 . 1 y0 <
i BX >< y1 -

x ()
Po]

DSU i
'y Scaling
A 4 \0 \0 y h 4 \Ov
ALU3 ALU2 ALU1 ALUO
\T/ \T/ \T/ Shift
AXU it
Saturatlon | Saturation | unt

y

+

Register File

Figure 2.7: The Philips R.E.A.L DSP architecture

15

2.5 Summary

This chapter introduced the compiler system and the model architecture developed for an appli-
cation-driven design methodology. In the application-driven design framework, the compiler-gen-
erated code for a set of target applications is used to measure the performance of the flexible
model architecture. The measurements are compared with the application-specific constraints and
the model architectureisiteratively modified until all the constraints are met.

The model architecture is based on a VLIW model because it is very flexible and can easily be
configured to meet the target constraints. Although the long-instruction scheme in VLIWs is an
easy target for HLL compilers, its high bandwidth and storage requirements prevent VLIWSs from
being used in cost-sensitive embedded systems. A long-instruction packing and fetching scheme
that is based on a control-store mechanism was proposed by Mazen Saghir to overcome these
problems|[2].

Compiling an application into the long-instruction format involves a two-phase process. The
first phase is to trandate the source code into basic machine operations using the GNU C com-
piler; the second phase performs architecture-specific optimizations using a post-optimizer and
generates long instructions that can run on the model architecture.

Having covered the work done by previous researchers and two commercially available DSP
architectures in this chapter, the following chapters will focus on the design and VLS| implemen-
tation of the UTDSP processor and associate development tools. The UTDSP processor is based
on the model architecture and incorporates the long-instruction encoding mechanism to solve the

instruction bandwidth and storage problems.

16

Chapter 3

Long-Instruction Packing and Fetching for
the UTDSP

In the last chapter, the model architecture and the optimizing compiler systems were discussed.
Although the optimizing compiler could exploit enough parallelism and generate efficient code
with the flexible model architecture, the storage requirements of long instructions and the high
instruction bandwidth required represent major obstacles in developing a feasible system. This
chapter describes the UTDSP instruction fetching and packing mechanism, which solves the
problems mentioned above.

The UTDSP instruction fetching and packing mechanism was designed based on the two-level
instruction fetching scheme discussed in the last chapter. Section 3.1 describes the basic architec-
ture of this mechanism and a simple packing agorithm that reduces the instruction storage
reguirements. Section 3.2 presents a two-cluster packing algorithm that achieves a denser packing
result by dividing along instruction into two sub-words and sharing memory locations.

Section 3.3 describes the software implementation of the UTDSP packer using the two-cluster
packing algorithm. It also shows that data structures constructed using template techniques not
only ease the implementation of the UTDSP packer and assembly tools, but also shorten the
design time used to explore various packing algorithms. Section 3.4 examines the impact of the
packing algorithms on the storage requirements and compares the benchmark results of the
UTDSP packer with that of Texas Instruments Veloci Tl packing [14]. Section 3.5 summarizes
this chapter.

3.1 Storing and Decoding Long Instructions

Fig 3.1 shows the two-level instruction memory system used in the UTDSP to store the long-

instructions. This architecture was proposed by Mazen Saghir [2]. The instruction memory sys-

17

Uni-OP

Multi-OP | Instruction Memory

MSB selects Multi-Op / Uni-Op Instruction Register

Decoder Memory

Bank1 Bank2 Bank3 Bank4 Bank7

Op1 Op2 Op3 Op4 Op7
| | | | ...-’

\” . ! '\ ‘ "\ > o o

| ! ! !

FU-1 FU-2 FU-3 FU-4 eeo o FU-7

Figure 3.1: Block diagram of the UTDSP memory system

tem consists of two blocks: the instruction memory and the decoder memory. Long instructions
that contain only one operation — uni-op operations — are stored in the instruction memory,
while the other long instructions are stored in the decoder memory and their addresses — muilti-
op pointers — are stored in the instruction memory instead. The decoder memory contains seven
banks, each of which is associated with a functiona unit; therefore, the operations stored in a
decoder-memory bank will be executed in its associated functional unit. Although the seven oper-
ations in a long-instruction word are distributed in the different banks of the decoder memory,
they are stored in the memory locations that have the same physical address so that they can be
fetched using their corresponding multi-op pointer stored in the instruction memory.

When a word is fetched from the instruction memory, its most-significant bit is examined to
determine if the word is a uni-op operation or a multi-op pointer. If it is a uni-op operation, it is
directly issued to an appropriate functional unit where it can be executed. In contrast, if amulti-op

pointer isfetched, it is used to access the memory locations in the decoder-memory banks and the

18

Multi-op| F1 | F2 | F3 | F4 | [F1 | F2 | F3 | F4 |

0x06 17 S
0x05 |6 NNNN\N\NE AR 13
ox04 15 L | [R V' |
0x03 14 S S i |- ‘1
0x02 13 B NN 17
0x01 12 H | I 5
0x00 11 Bank1 Bank2 Bank3 Bank4 Bank1 Bank2 Bank3 Bank4 12
(A) (B)

Figure 3.2: (A) Multi-op instructions stored in an arbitrary manner (B) Multi-op instructions stored
according to field priorities

seven operations stored in the locations addressed by the multi-op pointer will be dispatched to

their corresponding functional units.
3.1.1 Reducing the Size of Decoder Memory

Storing long-instructions in their origina formats illustrated in Figure 3.1 can be very wasteful
because of NOPs— the no operation fieldsin the long instructions. One way to reduce the overall
size of the decoder memory is to store instructions in a way that allows some of the memory for
NOPs to be omitted. Let the priority of afield in a multi-op instruction be the number of NOPs
stored in the decoder-memory bank associated with the field. Multi-op instructions with opera-
tions in the higher-priority fields are stored first, starting from address zero, while instructions
with operations in the lower-priority fields are stored last. Figure 3.2 shows the impact of storing
instructions according to field priorities on the decoder memory.

In Figure 3.2 (A) multi-op instructions are stored in an arbitrary manner. Observe that bank4
suffers the most from the poor ordering of the multi-op instructions because bank4 contains the
most NOPs (white boxes). Therefore, field F4, associated with bank4, is assigned the highest pri-
ority and the multi-op instructions that have operations in field F4 are stored first. Figure 3.2 (B)
shows that multi-op instructions are stored according to field priorities. In this case the storage
requirement for bank4 can be reduced to three words by chopping off the four consecutive empty
words.

Moreover, the decoder-memory size can be further reduced by storing multi-op instructions

with mutually exclusive operation fields into the same long-instruction word. Figure 3.3 (A)

19

[]
Inst 1

Inst2 | 0x10 | Instruction Memory

Inst3
[

Decoder Memory
0x30

ox20 | | [1 | | [1
ox10 | [| [[[[|

B1 B2 B3 B4 BS B6 B7
(A)

Bit Mask Address

Inst1 |1]0101010] 0x30 Inst ¢ .
Inst 2 1000100 o0x30 nstruction Memory

Inst3 |1]o010001] 0x30

-

Decoder Memory

oxso [TNCUNENNSENN R
(B)

Figure 3.3: (A) Storing multi-op instructionsin their original format (B) Storing multi-op instructions
in a packed format

shows that three multi-op instructions are stored as three, separate, long-instruction words. When
stored in this format, the instructions occupy 21 words, of which 14, or approximately 67% are
NOPs. In contrast, Figure 3.3 (B) shows that the three instructions are packed into a single long-
instruction word because their operations use mutually exclusive fields. In this case, storing the
long instructions needs only seven memory words. Therefore, packing multi-op instructions with
mutually exclusive fields into a single long instruction reduces the size of the decoder memory
significantly.

To fetch the original operations of amulti-op instruction from the packed long-instruction word,
the multi-op pointer should store not only the address of the packed word, but also a bit mask that
selects specific memory banks in the decoder memory. Figure 3.3 (B) showsthe bit mask fieldsin
the multi-op pointers stored in the instruction memory. Note that the number of bits in the bit

mask is the same as the number of memory banks; each bit in the mask is used to select its corre-

20

w1l T TN
wz [I I

Corresponding
Memory Banks B1 B2 B3 B4 B5 B6 B7

(A)
Decoder Memory
Cluster A Cluster B
B1 B2 B3 B4 BS5 B6 B7
wi-l T | ([oo
wza[N]| (DN N w2-b

(B)

1
M1 Addr1 M2 Addr2
Multi-op Pointer for W1 | 1| 1001 | 0x30 011 | 0x20 |

Instruction Memory

Multi-op Pointer for W2 | 1| 0110 0x30 | 101 0x30 |
1
Decoder Memory

Cluster A Cluster B
B1 B2 B3 B4 B5 B6 B7

[D ox2o
B B oxso

0x20

ox30

(©)

Figure 3.4: Field clustering packing method

sponding memory bank. The decoder-memory banks that are not selected by the bit mask will
return NOPs.

3.2 Achieving Denser Instruction Packing

The major drawback of the packing method described in Section 3.1 is that two instructions
cannot be packed into a single decoder-memory word even if they share only one field. This sec-
tion describes two methods that can be used to achieve a denser instruction packing result. The

final implementation of the UTDSP packer incorporates these two methods.
3.2.1 Field Clustering Method

Figure 3.4 (@) illustrates the problem where two instructions cannot be packed into a single
word because both instructions use field F7. Mazen Saghir proposed a field clustering method to

solve this problem [2]. Observe that the remaining fields in both instructions are mutually exclu-

21

sive, and that they could have been packed into the same memory word if field F7 was ignored.
This suggests that dividing the memory banks into clusters can achieve a denser packing result.
Figure 3.4 (B) shows that the memory banks are grouped into two clusters: cluster A consisting of
memory banks B1 to B4, and cluster B consisting of banks B5 to B7.

As aresult, in this example, multi-op instruction word W1 is divided into subwords W1-a and
W1-b; W2 isdivided into subwords W2-a and W2-b. The packing method is then applied to each
cluster separately. Applying the packing method to cluster A will pack W1-aand W1-b into one
subword in the decoder memory because the operations in W1-a and W1-b use mutualy exclu-
sivefields. The subwords W2-a and W2-b remain the same because both instructions use field F7.
The Figure 3.4 (c) shows the final packing result using this two-cluster grouping method. Note
that another set of bit masks and address fields must be added into the multi-op pointers to extract
operations from the two different clusters. Figure 3.4 (¢) also shows the contents of the multi-op
pointers, which are used to extract the original multi-op instructions W1 and W2 from the two

clusters.
3.2.2 Sharing Packing Slots

Clustering enabl es the exploitation of redundancy at the sub-instruction level, meaning that only
one copy of the identical sub-instructions need to be stored in the decoder memory; however, the
ideal packing result is still not achievable unless a seven-cluster configuration is used [2]. A fur-

ther improvement to clustering can be achieved by making the following observation:

® Observation:
With the help of the bit mask fields in multi-op pointers, two instructions
can be packed into the same decoder-memory word as long as one

instruction is a subset of the other one.

® The definition of subset in along instruction is described as follows:

A long instruction X is said to be a subset of the long instruction Y
if and only if every operation in X can be found in the corresponding
field in Y ,or the corresponding field in Y is empty.

22

Cluster A Cluster B
B1 B2 B3 B4 B5 B6 B7
w1 | [[[A T b | x [I
w2z [HEEN A] | N w |
w3 [[Y 1 s
Subset Packing +
Multi-op Pointer for W1| 1] 0011| ox30 | 110 0x20
Multi-op Pointer for W2| 1| 0110| ox30 | 011 | 0x20 Instruction Memory
Multi-op Pointer for W3| 1 1100| 0x30 101 | 0x30

Decoder Memory 1 l

Cluster A Cluster B
B1 B2 B3 B4 B5 B6 B7
0x20 0x20
ox30_c HEM A~ [b 1| |1 [s] ox3o0

Figure 3.5: Combining the two-cluster packing and slot-sharing methods

Using the two-cluster packing method described in Section 3.2.1 increases the possibility of
finding subset instructions to share the same decoder-memory word. Figure 3.5 shows that a
denser packing result can be achieved by combining this subset sharing method with the two-clus-
ter packing. In this example, the three subwords of long instructions W1, W2, and W3 in Cluster
A can be packed into one subword in the decoder memory. The advantage of using the subset
packing is that this mechanism needs no extra hardware.

Table 3.1 showsthe impact of using the subset packing method on the decoder-memory require-
ments of the kernel and application benchmarks described in Chapter 2. The average decoder-
memory requirements in the table are normalized to the ideal packing case, where ideal means
that there are no NOPs in the decoder memory. Using the subset packing method reduces the
decoder-memory requirements of the two-cluster packing by 10.16% and 10.25% on average in

the kernel and application benchmarks respectively, achieving a packing result that is better than

23

the ideal packing case. It is even possible that with more clever register allocation, this result

could be further improved.

Kernel Decoder-memory | Decoder-memory | Decoder-memory Saving on
Benchmarks Requirement Requirement Requirement Decoder-memory
(Ideal Packing | (Two-cluster Pack- | (Two-cluster & using Subset
Case) ing) Subset Packing) Packing
FFT_1024 1 1.10 1.10 0%
FFT_256 1 1.10 1.10 0%
FIR_256 64 1 1.16 1.16 0%
FIR 32 1 1 1.13 0.87 23.53%
IR 4 64 1 111 1.08 2.5%
IR 1 1 1 1.13 1.13 0%
latnrm_32_64 1 1.25 1.13 10%
latnrm_8 1 1 112 1 10.53%
Imsfir_32_64 1 1.10 0.86 21.74%
Imsfir_8 1 1 1.08 0.8 25.58%
mult_10 10 1 113 1.04 7.41%
mult_4 4 1 113 1.04 7.41%
al_kernels 1 1.16 0.89 23.33%
Average 1 1.13 1.02 10.16%
Application Decoder-memory | Decoder-memory | Decoder-memory Saving on
Benchmarks Requirement Requirement Requirement Decoder-memory
(Ideal Packing | (Two-cluster Pack- | (Two-cluster & using Subset
Case) ing) Subset Packing) Packing
G72la 1 1.08 0.95 11.85%
G721b 1 1.13 1.07 5.77%
V32.modem 1 1.08 0.89 17.80%
adpcm 1 112 1.09 2.44%
compress 1 1.08 0.98 8.80%
edge_detect 1 112 0.95 14.86%
histogram 1 1.06 0.96 9.30%
Ipc 1 1.10 1.05 4.88%
spectral 1 1.07 1 6.95%
trellis 1 1.06 0.92 12.63%
al_applications 1 1.08 0.89 17.43%
Average 1 1.09 0.98 10.25%

Table 3.1: Impact of subset packing on decoder-memory regquirements

24

3.2.3 Choosing the Number of Clusters in the UTDSP

In theory, there can be as many clusters as there are decoder-memory banks to achieve a denser
packing result. In practice, however, the number of clusters that can be used is limited by the
bandwidth of the instruction memory. Because one of the major reasons for using this two-level
memory hierarchy isto reduce the off-chip instruction memory bandwidth, design decisions must
be made based on a fixed instruction memory bandwidth.

The UTDSP model uses a 32-bit instruction word; therefore, the multi-op pointers should also
be 32-bits long, so that both uni-op instructions and multi-op pointers can be stored in the instruc-
tion memory without wasting any bits. The bit mask fields in the multi-op pointer need seven bits
in total to control the seven memory banks in the decoder memory. Also, the most-significant bit
isused to identify itself as a uni-op or amulti-op pointer. As aresult, 24 bits are | eft for encoding
one or more address fields in a multi-op pointer.

Choosing the number of clusters to use in the decoder memory is a trade-off between the
reduced cost achieved by a denser packing result, and the degraded performance resulting from a
smaller size of decoder memory. Table 3.2 shows the maximum addressable decoder-memory
space of different clustering configurations. On the basis of the data shown in the table, the two-
cluster configuration was chosen for the UTDSP processor because the two-cluster case has a
denser packing result than the ideal one (Table 3.1), while providing a much larger addressable
gpace than the three-cluster configuration. For the three-cluster configuration, the total address-

able decoder-memory space is only 2.2 K words, which istoo small for most of the DSP applica-

tions.
Totd Nu_mbgr of Addressable Total addressable
Number of bitsin a
address Memory space | decoder memory
Clusters) cluster address .
bits : in each bank Space
pointer
1 24 24 16 M words 112 M words
2 24 12 4 K words 28 K words
3 24 8 256 words 2.2k words
4 24 6 64 words 448 words

Table 3.2: Maximum addressabl e space of different clustering configurations

25

To reduce the possibility of having NOPs in subwords, decoder-memory banks B1 to B4 were
grouped into Cluster A and banks B5 to B7 were grouped into Cluster B. This configuration was
chosen because the UTDSP compiler often schedules two memory |oad/store operations (associ-
ated with banks B1 and B2) and two address pointer operations (associated with banks B3 and
B4) into one long instruction. Although further optimization might be achieved by using different
grouping configurations, it was not attempted because using the subset packing method has
already produced aresult that is better than the ideal case according to Section 3.2.2.

3.2.4 The UTDSP Packing Algorithm

The original pseudo-code for the UTDSP packing algorithm was proposed by Mazen Saghir [2]
and was then modified by the author to incorporate the subset packing method. The modified
UTDSP packing algorithm, which is based on the two-cluster configuration, is described in Fig-
ure 3.6. This algorithm starts with a given list of unpacked instructions and two empty lists that
are used to store the packed long-instruction words for the two clusters. The main loop is executed
as many times as there are active fields. An active field is a member operation that has not been
packed into its corresponding decoder-memory bank. At the beginning of each loop iteration, the
number of active fields for each decoder-memory bank is calculated to decide its rank and the tar-
get bank in the current iteration. The highest rank (rank 7) is assigned to the decoder-memory
bank that has the least number of active fields, while the lowest rank (rank 1) is assigned to the
one that has the most number of active fields. The target bank is the one that has the highest rank
(rank 7). Recall the situation described in Figure 3.2, where the memory banks with fewer opera-
tions suffer the most from the poor instruction ordering. Therefore, the long instructions that have
operations to be stored in the target bank should be processed first.

Oncethe target bank has been determined, the unpacked instructions are divided into two lists: a
candidate list and areserve list. The candidate list contains instructions that have member opera-
tions associated with the target bank; the reserve list contains the remaining instructions. The
instruction with the highest cost — the sum of the ranks of the memory banks associated with the
operations contained — is then removed from the candidate list. The removed instruction will be
added into the decoder-memory list provided it is not asubset of any existing word in the decoder
memory list. If it isasubset of an existing decoder-memory word, it will be packed into the exist-

ing word as opposed to being added into the decoder-memory list as a new entry.

26

Algorithm: Two-cluster packing and slot-sharing method for Decoder Memory
Input: Alist of multi-op instructions
Output: (1) A list of instruction memory words
(multi-op pointers and uni-op operations)
(2) Two lists of long instructions (Cluster A and Cluster B)

Assumptions and Definitions:

(1) Let S be the list of multi-op instructions

(2) Let X be the list of long instructions (decoder memory slots) in cluster A.

(3) Let Y be the list of long instructions (decoder memory slots) in cluster B.

(4) An active field is an operation in a multi-op instruction that is to be stored in its
corresponding bank.

(5) A target bank is the memory bank that has the lowest number of active fields.

(6) Candidate listis alist of instructions that has an active field; reserve list is alist
that has no active field.

1. While (there is an active field in cluster A banks) do
2. Count the number of active ficlds for cach bank in cluster A)
3. Choose the target bank.
4 Divide S into candidate list and reserve list according to the target bank.
5. While (there is an instruction in candidate list) do
6.Inst <= remove the instruction with highest cost from candidate list.
(Please referto Section 3.2 4 for the definition of cost.)
7. Search existing slots in X for a sharable slot.
§ . If (sharable slot is found) then
9. Pack Inst into the sharable slot found in X.
Elsc
10. Fit_list <= find instructions that ar¢ a subsct of Inst from reserve list.
11. While (there is an instruction in Fit_list) do
13. Best_fit <= remove the instruction with highest cost
from Fit_list.
14.1f (Best_fit isa subset of Inst) then
Inst <= Pack Best_fitinto Inst.
15. Add Inst to X.
16 Repeat step 1to 15, replace all Xs by Ys and cluster A by cluster B.

Figure 3.6: The UTDSP packing algorithm

27

To use the empty fields in the newly added decoder-memory word, the reserve instructions are
next searched for the instruction with the highest cost that can be packed into the memory word.
The search is continued until no more instructionsin the reserve list can be packed into the current
decoder-memory word. After al instructions in the candidate list are processed, a new iteration
starts again until all the active fields are stored. Because the decoder memory has two clusters,

this packing process, described above, will be repeated for the second cluster.

3.3 Implementation of the UTDSP Packing Software System

The UTDSP long-instruction packer, which was implemented based on the algorithm described
in the previous section, not only performs the two-cluster packing, but also parses assembly code
and generates associated files for instruction simulation, assembly debugging, and VHDL simula-
tion. Figure 3.7 illustrates the software modules in the UTDSP packer and the data flow between
the modules and other development tools.

The UTDSP packer consists of a front-end assembly parser, the two-cluster packing kernel, an
assembler, aTl Veloci Tl packing simulator, an output file generator, and a command center. The
command center takes the hardware configuration of the UTDSP as input and sets up correspond-
ing packing constraints for the packing kernel. The front-end parser parses VLIW assembly code
and generates appropriate error messages when a syntax error is found. The packing kernel per-
forms the UTDSP packing algorithm and passes the results to the assembler, which calculates
addresses and encodes instructions. Finally, the output file generation module converts the pack-
ing results into various formats for simulation purposes. The Veloci Tl packing module uses the
algorithm adopted by the Texas Instruments new Veloci Tl architecture to pack the long instruc-
tions; the packing result of thisVeloci Tl packer are compared with that of the UTDSP packer for

benchmarking purposes. Section 3.4 details the comparison results.
3.3.1 Implementing the UTDSP Packer Using C++ Template Technology

Asshown in Figure 3.7, the UTDSP packer needs not only a good packing algorithm, but also a
powerful ability to handle the list-intensive processing in the software modules. Moreover, to ease
the development and exploration of different packing algorithms, robust underlying data struc-

tures are needed to process the required computations. The most important data structure required

28

Architecture-Independent
VLIW Assembly Code
C1:load, stor, add, sub
C2: load, load mac,jsr
C3:jmp

User Input
Front-end Parser
UTDSP Packer q
Command ;L\éﬁ::rclﬂ
A. T -Cluster Packi -
Center & SieiShanng okne]] [Simulator
UTDSP Assembler
Fil .
82:,'2‘:;“:,?, Packing Results
Comparison &
Analysis
Binary

ROM Image

GUI-Based Interactive
Assembly Debugger

Architecture

Synopsys
Simulator

VHDL Simulator

Figure 3.7: The UTDSP packer and software system

isalinked list that operates on many different data types — from both built-in and user-defined
records — with associated functions such as insertion, deletion, merging, sorting, and binary
search.

Oneway to build such alinked list isto use generic data structures. Figure 3.8 shows an internal
representation of the generic linked list in C language. The list will have the same structure
regardless of whether it stores strings, integers, floats, or user-defined data types. Note that the
data items are not stored in the nodes of the list. Instead, each node contains a pointer to its data

item. The fact that the dataitems don't reside in the nodes themsel ves |eads to several drawbacks.

29

List Head List

&A Node
|||||—— T T T T .

Real
Data

Figure 3.8: Generic linked listin C

First, pointer dereferencing is needed to get the actual value of a data item, rather then looking
directly in the node. Second, a function pointer to the comparison function specific to its associ-
ated data type must be passed into procedures such as sorting and merging. This means that com-
parison functions must be explicitly constructed even for built-in data types such as integer and
float.

C++ templates solve the problems mentioned above and provide severa advantages over the
generic data structuresin C. First, neither constructing explicit comparison functions nor passing
pointers to the sorting procedures is needed. By overloading the comparison operators such as
“>" U<t and “ =", comparisons of user-defined data types can be stated in the same format as that
of built-in datatypes (ex. A > B). Second, arobust garbage collection mechanism can be encapsu-
lated inside object destructors to completely eliminate memory leak problems, which often occur
in the generic data structure implementations in C. For these advantages, the C++ template tech-
nique is used for the implementation of the UTDSP packer.

The most important part in the implementation of the UTDSP packer and assembler systemsis
List<T>— aC++ container template class that can store dataitems of any data type and perform
various operations, such as insertion, deletion, sorting, and search, on its data items. Figure 3.9
shows the internal representation of List<T>. The argument class T represents all data types that
are to be stored in the list container. Various user-defined classes that can be stored in List<T>
were implemented to ease the development of the UTDSP packer. The user-defined classes
include Token, DecoderMemory, and DataMemory, which are used to store parsed tokens,

decoder-memory words, and data-memory words, respectively.

30

List Tail

List Head
L@ @ fn
List Head List Tail

LD e

T can be any class: String, Instruction..

Figure 3.9: Container template class List<T> in C++

By using the robust underlying data structures designed in template techniques, the complexity
and code size of the top-level application design are dramatically reduced; therefore, various

packing algorithms can be easily explored to find the optimized one for the UTDSP packer.

3.4 Results and Analysis

Having covered the design and implementation of the UTDSP packer, this section examines the
impact of using the two-cluster instruction packing algorithm on the storage requirements. For
comparison purposes, Tl's packing method was also implemented. Section 3.4.1 introduces the
packing methods used in TI's Veloci TI DSP architecture [14]. Section 3.4.2 analyzes the bench-
mark results of the TI Veloci Tl packing algorithm and the UTDSP packer. Section 3.4.3 discusses

the impact of the two-cluster packing and fetching on execution performance.

3.4.1 Packing Mechanism used for TI VelociTI architecture

The Veloci Tl architecture used in the TI TMS320C62xx family of DSPsisaVLIW design that
has a long-instruction packing mechanism. Figure 3.10 shows the packing mechanism used in the
Veloci Tl architecture. In Veloci Tl there are eight instruction slots in one long-instruction word,
which form afetch packet (FP). Each instruction fetch moves an FP from the instruction memory
to the instruction register. All the instructions that are executed in the same cycle are packed into

one execute packet (EP); therefore, the number of instructions that can be contained in an EP

31

Original Long Instructions

Form Execute Packets

EP 1 I I | [
EP 2| [[[| |

[
EP 3 ASSSURSSIIRITTTYYY | [
EP 4 222722727777 %77 |

¥

Form Fetch Packets

FP 1| I I [[[
FP 2 RSOSSN I I I
FP 3| ez 477272 77773 | |

!

Crossbar

¥V ¥ ¥ ¥ ¥ ¥ ¥ ¥
D1|L1 | M1| B1|{ D2 | L2 | m2| B2

Figure 3.10: Packing mechanismin the Tl VelociTI architecture

ranges from one to eight. The EPs are then packed into a block of consecutive FPs in an adjacent
manner. The only restriction is that no EP can be split across two FPs.

In the example shown in Figure 3.10, execution packets are formed by compressing out the
NOP operations in the original long instructions. The execution packets are then packed to form
fetch packets; execute packets EP1 and EP 2 are packed into FP 1. In contrast, EP 3 and EP 4 can-
not be packed because EP 4 cannot be stored separately in two FPs. During program execution,
when FP1 is fetched, EP1 is first executed and then EP2. Then FP2 is fetched and EP3 is exe-
cuted, followed by the fetch of FP3 and the execution of EPA4. In this packing mechanism, an extra
decode phase and a crossbar are needed to decode the instructions in an EP and assign them to
appropriate data path and functional units.

32

3.4.2 Benchmark Results for the UTDSP Packer and the VelociTI Algorithm

To evaluate the Veloci Tl packing algorithm, a packing kernel that uses the Veloci Tl algorithm
was implemented and incorporated into the UTDSP packer. The UTDSP packing kernel was also
modified to collect statistical data in each packing phase. Figure 3.11 shows the methods used to
calculate the storage requirements for the different packing schemes. First, the original format
represents the storage requirements for the upper bound in which all instructions are stored in
their original, long-instruction format in the instruction memory without using the second-level
decoder memory. Second, the uni-op case represents a lower bound, where only the valid opera-
tions are stored in the instruction memory. Third, the UTDSP packing method A uses the two-
cluster and subset packing algorithm with an assumption that the size of each decoder-memory
bank can be configured independently, while packing method B assumes that the banks in a clus-
ter must have the same size. Although the assumption made in method A seems too optimistic,
method A is closer to reality because the decoder-memory configuration can be selected based on
the average usage of memory banksin the target application domain.

The benchmarks used in this analysis are obtained from the UTDSP benchmark suite described
in Chapter 2. Figure 3.12 shows the storage requirements of the benchmarks for each of the pack-
ing methods mentioned above. In each case, the storage size is normalized to the upper bound.
The results indicate that the storage requirements of packing method A are 39% - 65% (average
51%) of those for the upper bound, which is dightly better than the packing rate of the VelociTI
packing method (average 53%). The results al'so show that the storage requirements of packing
method B are 49% - 77% (average 61%) of those for the upper bound. Table 3.3 summarizes
these results. Because the UTDSP adopts an application-driven design methodology, where hard-
ware configurations are chosen according to the target applications, the statistical results gener-
ated from packing method A can be used to select the configurations for the decoder-memory
banks to minimize the storage requirements.

Moreover, the UTDSP packing mechanism provides a solution to the memory bandwidth prob-
lems that the Veloci Tl packing method cannot solve. Specifically, the Veloci Tl packing method

requires that its instruction memory stay on-chip to maintain the original throughput. When the

33

Original Unpacked Format
(The Upper Bound)

kzzzxzzz) V. Storagerequirementis
[T TN T T | =35words

..... pemmmee-me-a-- UNi-Op Case
|_| | t:::::::::::::.'::::::::::::' (The Lower Bound)
_Ll Storage requirement is
W00 MMM«+ the number of valid Ops.
I DD =17 words
Instruction Memory UTDSP Packing Method A

Decoder Memory Storage requirement

ﬂ-%g = 5 words (Instruction memory) +
19 words (Decoder memor
4 wtt =24 words Y

Instruction Memory UTDSP Packing Method B

Cluster 1 Cluster 2 Storage requirement
7 /7] =5 words (Instruction memory) +
L 16 words (Cluster 1) +
I 9 words (Cluster 2)
=30 words

Figure 3.11: The storage requirements of different packing methods

size of long instructions exceeds the capacity of the on-chip instruction memory and the off-chip
instruction memory has to be used, fetching long instructions from the off-chip memory through a

32-bit bus will significantly degrade the expected throughput.

34

— Original Format I Method A I Method B 3 TiVelociTl

1.0

0.9 H B1: fft_1024

: B2: fft_256
B3: fir_256_64

0.8 H B4: fir_32_1
B5: iir_4_64

07 W ol b o] o] - |t B6: iir_1_1

’ B7: latnrm_32_64
B8: latnrm_8_1

0_6 f [N N O m— - o N - o s % [- wergens B9: |meiI'_ 2_64
B10: Imsfir_8_1

0.5 1 B { B BHE W wid BB R B B i B11: mult_10_10
B12: mult_4_4

0.3

0.2 |

0.1 H

0.0 U

Bf B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12
Figure 3.12: The storage requirements of the UTDSP kernel benchmarks for different packing methods

Packing Method Average Storage Requirement
Original unpacked format 1
UTDSP packing method B 0.61
Tl Veloci Tl packing 0.53
UTDSP packing method A 0.51

Table 3.3: Average storage requirements of the resultsin Figure 3.12

In contrast, the UTDSP solves these bandwidth problems and reduces to a minimum the impact
of insufficient on-chip memory on performance in the following two ways: First, by storing only
uni-op operations and multi-op pointers in the instruction memory, the instruction-memory band-
width is reduced to 32 bits, which enables the use of off-chip instruction memory without affect-
ing the performance. Second, since 90% of a program’s execution time is spent on 10% of its

code, only the kernel parts of DSP applications need to be stored on-chip when the on-chip mem-

35

ory is not large enough to accommodate all the long instructions. The remaining long instructions
can be serialized and stored in the off-chip instruction memory without severely degrading the
original performance.

Also, the UTDSP instruction fetching mechanism needs neither the cross bar nor the extra
decoding logic that is used in the TI VelociTl architecture to route the operations in a long
instruction to their corresponding functional units. Therefore, the UTDSP scales better than the T

Veloci Tl architecture when extra functional units are added for performance.
3.4.3 Impact of the Two-Cluster Packing and Fetching on Execution Performance

The major drawbacks that prevent VLIW architectures from being used in cost-sensitive sys-
tems are their high instruction bandwidth and storage requirements. However, with the two-clus-
ter packing and fetching mechanism, the UTDSP can achieve significant performance speedup
over a traditional architecture using its VLIW design, while maintaining the same instruction-
memory bandwidth and having a modest increase in storage requirement. Table 3.4 summarizes
the average execution performance and storage requirements of the two-cluster packing scheme
and the uni-op case. In the uni-op case (lower bound), all the operations in long instructions are
serialized and stored in the instruction memory as uni-op instructions; therefore, there is no fine-

grain parallelism to exploit in the uni-op case.

Average Storage Average Execution
Requirements Performance
Uni-op Case 1 1
Two-cluster Packing 127 2.6
Tl VelociTl Packing 1.30 N/A

Table 3.4: Trade-off between storage requirements and execution performance

The data shown in the table are normalized to the uni-op case. These results show that the area
overhead introduced by the two-cluster packing mechanism is 27% of the total storage areain the
uni-op case. However, the execution performance of the two-cluster scheme is 2.6 times faster
than that of the uni-op case. Moreover, both cases have the same instruction-memory bandwidth
(32 hits). Using the two-cluster mechanism not only significantly increases the UTDSP perfor-
mance but also reduces the area overhead to a minimum. For comparison purposes, the average

storage requirement of the TI VelociTI packing is aso shown in the table. The execution perfor-

36

mance of the VelociTI architecture is unknown because its architecture ssmulator is not available.
However, it can be expected that the UTDSP achieves an execution performance comparable to
the Veloci Tl because they have similar VLIW architectures, pipeline stages, and instruction exe-

cution methods.

3.5 Summary

This chapter described the packing and fetching mechanism used in the UTDSP. This long-
instruction packing scheme reduces the storage requirements while eliminating the memory band-
width problems that plague other VLIW architectures. The implementation of the long-instruction
packer incorporates a template design approach that dramatically reduces design efforts and com-
plexity. Benchmark results indicate that the UTDSP packing scheme achieves a packing rate com-
parable to its commercial counterpart and provides a solution to the storage problems that the

Veloci Tl cannot solve.

37

Chapter 4

Development Tools

This chapter describes the design and implementation of two important development tools for
the UTDSP system: an architecture simulator and a GUI-based assembly debugger. First, the
architecture simulator collects run-time data and helps to evaluate various design decisions such
as decoder-memory size, instruction-set modification, and register-file port sharing. Being written
in a high-level language, the architecture simulator, which also serves as a behavioural model of
the UTDSP, can be easily modified to experiment with design trade-offs. Once the experimenta-
tion isfinished, register transfer level (RTL) modelling can be constructed according to the opti-
mized hardware configurations. Second, the assembly debugger provides a true graphical
windowing system with interactive debugging features, such as single-step tracing, memory prob-
ing, and breakpoint debugging, to ease the development of assembly programs.

Section 4.1 describes a hardware modelling technique that is used to construct the architecture
simulator in a high-level language. This modelling technique, which is based on the object-ori-
ented (OO) method, eliminates the design gap between the behavioural and RTL models of the
UTDSP, so that the behavioural model can be easily converted into its corresponding RTL model.
Moreover, using this OO model, the GUI-based assembly debugger can be implemented by just
adding self-displaying and event-listening capabilities to the hardware objects in the architecture
simulator. Section 4.2 shows the design and implementation of the architecture simulator. Section
4.3 describes the implementation of the GUI-based assembly debugger. Section 4.4 summarizes
this chapter.

38

UTDSP Behavioural Model
(Architecture Simulator)

Behavioural Model
inC

Designh Gap is large

Design Gap is small

Inconsistent partitions
and interfaces
=> Design Gap is large

Same partition and
interfaces for blocks
=> Design Gap is small

RTL Model

GATE Level Model

Layout I

Figure 4.1: Design Gap between behavioural and RTL models

4.1 Behavioural Modelling Methods for the UTDSP

In the application-driven design methodology described in Chapter 2, the UTDSP needs to be
modified according to the target applications; therefore, it is highly desirable that the UTDSP pro-
vide amode in a high-level language to shorten the turnaround time for the design exploration.
Once the exploration is finished and the hardware configuration is decided, the model can be
trandated into an RTL model in Verilog or VHDL. This rewriting step is the so called design gap
[17][22], which is shown in Figure 4.1. Compared with the other design phases shown in the fig-
ure, which are automated by CAD tools, the rewriting step requires that designers manually create
two different versions of the design; therefore, the design gap duplicates design effort and
becomes a bottleneck in the design flow. To minimize the design gap, the architecture simulator
has to be constructed in alevel of abstraction that is high enough to allow a short turnaround, but
is able to ease the trandation to its corresponding RTL model.

Moreover, when the UTDSP is used in a core-based design and needs to be modified for system

integration, the architecture simulator will play an important role in providing a fast, easy-to-

39

modify simulation model. With the size and complexity of today’s hardware design, modular,
composable design based on a system-on-a-chip (SOC) methodology is the only approach that
works [15]. Under the SOC methodology, providing behavioural models with a high enough level
of productivity for system blocks early in the design cycleisamajor issue.

Conventionally, hardware designers tend to use procedural languages like C to construct the
behavioural model of their design and collect the statistics needed for performance optimization.
This method is particularly common for CPU development [17]. However, C models suffer from
the design gap problem most because C is unable to provide enough language constructs for digi-
tal hardware modelling. There is no real connection from C models to hardware design [17][22].

Therefore, the UTDSP architecture ssmulator should be built not only to perform the design
exploration but also to minimize the design gap to ease the devel opment of its corresponding RTL
model. Also, the architecture simulator must be easily converted into a GUI-based assembly
debugger with little or no extraeffort. This capability is especially important in a core-base design
because designers are ensured to have a GUI-based debugger that is functionally consistent with
their modified behavioural model.

4.1.1 Choosing the Correct Modelling Language

Choosing a language model that best describes the characteristics of digital hardware is impor-
tant to fulfill the goal mentioned above. Current high-level programming languages can be cate-
gorized into four models: procedural model, logic model, functional model, and object model
[18]. First, in the procedural model, a program consists of a sequence of instructions that access
named memory locations; problems are solved by executing the instructions that change the val-
ues of the memory locations. Languages using the procedural model include Pascal, C, and For-
tran. Second, in the logic model, a program consists of a series of queries that are used to find
solutions, and a set of databases. When queried, the databases answer the question by inferring
new information using their existing knowledge and implication rules. Prolog is one of the lan-
guages using the logic model. Third, in the functional model, a program consists of a series of
functions that might be composed of other functions; problems are solved by applying the func-
tions to input data to generate output data. Lisp, APL, and Scheme are languages using the func-
tiona model. Finally, in the object model, problems are solved by creating objects that model

real-world entities and sending messages to them. The objects react to the messages according to

40

Sequence Recognizer Object

/Data Members: LED
Current State:
CurrentInput:

|I| Object
Receivers: E/

Class Methods: Message - input(one)

oclk(){ input(zero)
if Current State=B and

CurrentInput=0 then
Current State=C
Receiver.input(one)

Message - clk() }

nbut o § einput(inta) {
nput——» > =
pu 02 LED M Currentinput=a}
oo Message - input()
3-8 '\ Qreset(){CurrentState=A}’
[]
‘ & Message - reset()
Clk I (B)
Reset

(C)

Figure4.2: (A) An FSM that acceptsinput sequence “10". (B) The FSM’s equivalent object model. (C)
The resulting digital system blocks converted directly from the object model.

their own behavioural patterns. Languages that use the object model include Smalltalk, C++, and
Java.

4.1.2 Digital Systems Modelling Techniques for the UTDSP

We believe that the object model is most suitable for digital system modelling, and should be
chosen for implementing the UTDSP simulator and debugger. We established several digita
hardware modelling methods using the object model so that the implementation of the simulator
and debugger can follow these rules. First, an object itself can describe a complete finite state
machine (FSM) without using any auxiliary functions or data structures. In fact, an object can
model any class of automata in the Chomsky hierarchy [19] by using its data members as state
memory, and its member operations as state transitions. Figure 4.2 (A) shows asimple FSM that

recognizes the input sequence “10”. Figure 4.2 (B) shows its corresponding object representation.

41

The sequence recognizer object has three data members. CurrentState, Currentinput, and
Receiver. CurrentState stores the current state of the object itself; Currentinput stores the cur-
rent value of itsinput signal. Receiver stores the references of the objects to which the recognizer
sends its output signal. In this case, the recognizer sends its output signal to the LED object,
which will light up when it receives the input(one) message. The recognizer object responds to
three different messages: clk(), input(), and reset(). When receiving the input() message, the rec-
ognizer invokes its class method input() and updates Currentinput. When receiving the reset()
message, the recognizer invokes its class method reset() and initializes CurrentState to state A.
When receiving the clk() message, the recognizer determines its new state according to Current-
State and Currentlnput. Note that if the new state is the accepting state (state C), the recognizer
will send message input(one) to the LED object.

Second, the message sending mechanism used in the communication between objects is used to
model the signals sent between digital components. Figure 4.2 (C) shows the resulting digital sys-
tem that is constructed by directly translating the message interfaces and partition from its object
representation described in Figure 4.2 (B). Using this modelling method maintains an identical
system partition and block interfaces between a behavioural model and its digital hardware.

Third, the relationship between a class and its objects in the object model is exactly the same as
that between a component type and its instances in digital systems. Specifically, in digital sys-
tems, an arbitrary number of instances (objects) can be instantiated from a specific component
type (class). Each of the instances has the same behavioural pattern (class methods) defined in
their component type, but each one has its own current state (object’s own data members). For
example, in ashift register that consists of D flip-flops, each of the D flip-flops keepsits own cur-
rent state — the data latched — athough they have the same behaviour — the truth table of D
flip-flops.

4.2 Design and Implementation of the UTDSP Architecture Simulator

The UTDSP architecture simulator is designed with the following three goals: First, it should be
easily constructed and be able to collect statistics required for performance analysis. Second, it
should bridge the design gap so that the RTL model of the UTDSP can be constructed according
to the system partition and block interfaces of the UTDSP architecture simulator. Third, it must be

42

designed in away that an interactive GUI can be incorporated into the model, so that core-based
designers can always have a functionally equivalent GUI-based assembly debugger no matter
how they modify the behavioural model.

Java was chosen to implement the UTDSP architecture simulator because it fulfills the goals
mentioned above. Java helps the implementation of the simulator and debugger in the following
ways. First, Java is a pure OO language, which provides the object model needed for modelling
digital systems. Second, Java provides an abstract window toolkit (AWT) so that the GUI-based
assembly debugger can be implemented by adding window-displaying and event-listening capa-
bilities to the UTDSP architecture simulator. Third, unlike the window systems of the other pro-
gramming languages, Java AWT achieves a high degree of portability, which makes the GUI-
based assembly language debugger run on different computer systems without modifying its
source code. Finally, the speed disadvantages of Java versus C or C++ are becoming less of an

issue as Just-In-Time (JIT) and native-code compilers are becoming available [20].
4.2.1 Creating the Object Model of the UTDSP

Figure 4.3 shows the object model of the UTDSP and the message sending mechanism between
the objects. Each object represents a hardware component in the UTDSP; the messages that it
receives represent the input signals of the component, while the messages it sends represent the
output signals. The PC object generates addresses that are used to fetch uni-op operations or
multi-op pointers from the instruction memory object (Inst).

The PC object contains two Stack objects, which are used to handle the address operations for
branching and zero-overhead looping instructions. Upon receiving the fetch() message, the Inst
object will use the address embedded in the message to retrieve the corresponding instruction
from its data members and send the instruction to the two Cluster objects. After receiving the
fetch() message sent from Inst, the two Cluster objects retrieve the corresponding multi-op
operations and broadcast them with the exec() message to the associated functional unit objects
(EU 1 - EU 7), which handle the logical and arithmetic operations.

Similarly, when the EU objects need operands, they will send requests to the register file objects
(REG) and REGs will return the data requested. On the other hand, when EUs execute load or

store operations, they will send requests to the data memory objects (DataMem) and the Data-

LoadWrite()

fetch()
PC fetch()
ﬂ Cluster1

push{)/ push()
pop() { pop()

fetch()
[Stack] [Stack] j:ump()
isr() exec()

do_loop()

exec()

N [T

Datalem 10 Port
X ™| Input

)
m
7]
o

w;/

Cluster 2 EU6 ' ~ - ~
DataMem 10 Port
=
Control Y Output
EU7
———/

DMA _Transfer()

Figure 4.3: The object model of the UTDSP

Mems will perform the memory accesses requested. Finally, the Control object handles the
DMA requests that transfer data between the 10 objects and DataMems.

4.2.2 Simulating the UTDSP Object Model

Simulating the UTDSP object model is simple. Every object is responsible for keeping its own
properties (data structures) and remembering its own behaviour (algorithms); therefore, the top-
level smulator driver no longer needs the complex data structures and algorithms that are usually
seen in the simulators built using the procedural model. To simulate the object model of the
UTDSP, the objects must be connected according to their signal flow so that they know where to
send messages at run time. Consequently, each object has data members that are used to store the
object references of its message receivers.

When an object needs to broadcast messages to the receiver objects that are connected to one of

its output ports, it will fetch the references stored in the data member associated with that port and

Object PC —\

/Data Members: Ob]ect
currentPC 9 Stack
Object StackObj o >
Control InstObj Push(PC)
g

Class Methods:

ejump(int targetAddress)

{
0 StackObj.push(currentPC);
/ ecurrentPC = targetAddress;

Jump(targetAddress) 6InstObj.fetch(currentPC);

Object
Inst

Figure 4.4: Connecting and simulating the objects in the UTDSP model

send the messages to each of the references. Figure 4.4 shows an example of how the objects are
connected according to their signal flow and how the simulation is performed by message send-
ing.

In this example, the Control object will send the jump(targetAddress) message to the PC when
a jump instruction is executed. Upon receiving the jump() message, the PC invokes method
Jjump() and executes the following three steps. First, the PC sends the push(currentPC) message
to the Stack object where the current program counter (currentPC) is pushed onto its interna
stack. Second, the program counter is updated with targetAddress. Third, the PC sends the
fetch(currentPC) message to the Inst object where instruction fetching is performed.

This example shows that the hardware modelling methods we use not only reduce the complex-
ity of the software construction, but also provide a well-defined system partition and block inter-
faces that subsequent RTL modelling can adopt. Being constructed in the object model, the
UTDSP architecture simulator can easily collect run-time data for each hardware object and help
to evaluate various design decisions early in the design phase. This capability is extremely impor-
tant because it would otherwise be too expensive to wait until the design has been modeled at the
RTL level.

45

4.3 The GUI-Based Assembly Language Debugger

An assembly language debugger is a front-end program that provides the user interface and the
functionality of an instruction set smulator. The assembly language debugger provides program-
mers a tool to optimize DSP kernels. Because the major portion of the execution time for a DSP
application is usualy spent in its inner loop code, optimizing the inner-loop assembly code

directly increases the overall performance of the application.
4.3.1 The Features of the Assembly Language Debugger

The UTDSP assembly language debugger provides atrue graphical user interface with a set of
powerful debugging features. Figure 4.5 shows the UTDSP debugger. The features provided
include the following: First, the debugger can perform single-step or multi-step execution by
specifying the number of steps to execute. Second, the debugger can highlight the hardware
resources — instructions, memory locations, functiona units, and 1O ports — that are currently
accessed. This feature is especially useful when programmers debug their assembly programs —
they can use single-step execution to trace and observe the memory locations and hardware com-
ponents that are highlighted in different colorsto verify if there isany memory location or compo-
nent that is incorrectly accessed.

Third, the debugger allows programmers to set up breakpoints by simply clicking on the mem-
ory locations, register file entries, or instructions that are to be monitored. Simulation will halt

when a breakpoint is reached.
4.3.2 Adding Self-Displaying and Event-Listening Abilities

The debugger was implemented by adding a self-displaying and event-listening capabilities to
the hardware objects of the UTDSP architecture ssmulator. The inconsistency problem between
the debugger and the architecture simulator never exists because they use the same set of hard-
ware objects. In other words, the debugger need not be modified when there is a change made to
the architecture simulator. This capability is especialy useful for core-based designers because
they will have afunctionally equivalent debugger ready for use after having modified the UTDSP
simulator. Being implemented in Java, the self-displaying and event-listening features can be eas-
ily incorporated into the UTDSP objects using the Java Abstract Window Toolkit (AWT) [21].

The problem of displaying objects demonstrates the extensibility and maintenance advantages of

46

FileTools Help about UTDSP

PC Panel

Change PC|
Prev Executed Current PC
I 10 I 1]
DOSTACK JSR STACK
[ommE |||
Zooml P.ddl Zooml F\ddl

movia 1T a3
meovia Il aZ
e i H LW
i o O

mavia B a
meovia BLYT a2

MmO W K = o

11 1 Q11 3 o)
12012131 ir
131 1100 0 oof

0
1
2
E

d.d {ady do
tod (a2) do

d.d faty d1
tod (a4) do

AUL

1 movia Hresull |2
2 movia #l¥1a |
2 movia BLY] 3

f

3 [T LE

HLY1 2

o J— E

trap #5
rts
do #3 LDO

1 movia #1 a3
2 movia #HLM1 a

Load

O movid #1 d4
1 movid #1 d4
2 movid #1 d4

| Save

Mector.in

ector.out

Figure 4.5: The UTDSP assembly language debugger

the Java object model. Java AWT has an OO solution (not surprisingly) to this problem: it

requires that every displayable object respond to the paint() message where the object describes

how to draw itself. Similarly, responding to the event-listening messages makes an object be able

to handle the mouse events. Figure 4.6 shows an example of how to equip a UTDSP object with

the self-displaying and event-listening abilities. This example shows the modifications made to

the Inst object so that it can display its memory contents and allow users to set up breakpoints by

clicking on the memory locations that are to be monitored.

a7

AWT classes:
Panel, ActionListener,
ItemListener

Object Inst

/Data Members:
Instrustion_memory

Debug_Button

Button Object
(Zoom)

Listener
Registered
"

il
.l

Inherits
{implements)

Object
Multi-Selection List

Zoom_Button

Listener ActionPerformed{event)

Registered | ¢15 55 Methods:

MOV a1 a2 a3
ADD d1 d2 d3
JMP §20

MULT d7 d8 d9

actionPerformed (evente)
{
If {e.source=List) {}
if (e.source=Debug) { }
if (e.source=Zoom){}

}

Button Object
(Debug)

Listenﬁl

Registered

”
<

‘\

ActionPerformed(event)

-

ActionPerformed(event)

Figure 4.6: The Inst object with self-displaying and event-listening abilities

The new Inst class inherits from (implements) three AWT classes. the Panel class, the
ActionListener class, and the ltemListener class. Inheriting from the Panel class entitles the
Inst class to override the paint() method in which the steps of how to draw the Inst object are
described. Moreover, being derived from the Panel class, the Inst object becomes a container
that can contain the objects instantiated from any AWT class, such as the Button class and the
multiple-selection List class. As shown in Figure 4.6, two Buttons and one multiple-selection
List are added into the Inst object. The multiple-selection List is used to store the instructions to
make them clickable, so that a breakpoint attribute can be added to a instruction when it is
clicked.

Similarly, Inheriting from the ActionListener class entitles the Inst object to override the
event-handling methods in which the events generated from the Buttons are handled. Clicking
on aButton will generate an event object that containsinformation about its source. The Button
then finds all the objects that are registered in its Listener and sends the actionPerformed(event)
message to those registered objects. In the case shown in Figure 4.6, the Inst object is registered
in the Listener of the Debug Button object; therefore, when clicked, the Debug button gener-

Simulation Result Plotter - RTL test bench

7|

FileTools Help about UTDSP

HQ Panel B

panel4 _ pisable DSP
- Enable DSP
DSP Simulation Status :

0.113

| Message from VHDISIML Panel D

Show Simulation Resultl

iNO Error msg from vhd
Shew Error Message |

Panel C

Figure 4.7: A simulation result plotter and atest bench for RTL model

ates an event and sends the actionPerformed(event) message to Inst. The Inst object then handles
the event using its corresponding methods.

Sometimes it is necessary to visualize the simulation output from the debugger or architecture
simulator. Using Java AWT eases the implementation of a simulation output plotter that can be
incorporated into the assembly debugger or architecture simulator. Figure 4.7 shows a simulation
output plotter that was constructed to visualize the output of a 3D graphics application. This plot-
ter, which consists of four replaceable module panels, serves not only as a ssmulation result dis-
player but also atest bench that automates the tedious steps in the functional verification phase.

In the testbench mode, users specify input test vectors from Panel A and the RTL simulation is
then launched using the Synopsys VSS simulator. Panel D shows the RTL simulation status and
error messages, if any, generated from the Synopsys simulator. The output vectors from the RTL
simulation will be sent to Panel B where the output vectors are plotted according to the algorithms
defined in the panel. Panel C displays the results calculated using a functionally equivalent, float-
ing-point Java program for the DSP application under test. Like commercialy available virtual

49

instrumentation products [23][16], this platform is flexible in that each module panel is indepen-
dent and can be replaced by other panels that are designed for different DSP applications.

4.4 Summary

This chapter describes the design and implementation of the UTDSP architecture simulator and
the GUI-based assembly language debugger. The Object-Oriented method used not only bridges
the design gap between the behaviour and RTL models of the UTDSP but also eases the devel op-
ment of the assembly debugger. Being implemented in Java, the assembly debugger can be easily
constructed by adding self-displaying and event-listening capabilities to the objects in the archi-
tecture ssimulator. The next chapter will focus on the VLS| implementation of the UTDSP. The
CAD methodology used and benchmark results will be also illustrated.

50

Chapter 5

System Design and VLSI Implementation of
the UTDSP

This chapter focuses on the hardware design and VLSI implementation of the UTDSP. There
are four magjor partsin this chapter: First, Sections 5.1 - 5.3 show the architecture of the UTDSP
by giving an overview of its hardware resources, instruction set, and pipeline architecture. Sec-
ond, Sections 5.4 - 5.6 discuss the hardware design of some important blocks in the UTDSP.
Third, Section 5.7 describes anovel CAD methodology and design flow that is used to realize the
chip. Fourth, Section 5.8 shows benchmark results and compares the UTDSP with two commer-

cialy available DSP processors that also use VLIW architectures.

5.1 The UTDSP Hardware Architecture

Figure 5.1 shows the hardware blocks of the UTDSP. The UTDSP has a RISC-like architecture
with five pipeline stages. They are: IF-1, Instruction fetch stage 1; IF-2, Instruction fetch stage 2;
ID, Instruction decode and register fetch; EX, Execution of the ALU and memory access instruc-
tions; and WB, Write the result into the destination registers.

The UTDSP hardware can be divided into six maor sections: the PC Unit, the Instruction Mem-
ory, the Decoder Memory, the Register Files, the Execute Units, and the Controller Unit. The PC
Unit generates instruction addresses, computes the destinations of branches, and handles the nec-
essary stack operations in loop instructions. During the | F-1 stage, the address generated from the
PC Unit is used to fetch the uni-op instructions or multi-op pointers stored in the Instruction
Memory. During the IF-2 stage, a multi-op pointer fetched in the IF-1 stage is used to fetch the
actual long instructions from the Decoder Memory, which consists of two clusters (Cluster A and
Cluster B). In contrast, uni-op instructions fetched in the IF-1 stage are directly passed to the

appropriate function units.

51

UTDSP Data Forwarding DM: DataMem

Decoder L [REG -
Memory ” | A DFL Ly 1I DM X Controller
PC _ Unit
Unit <
15
S
e <
= =
@) a
1SR
p B
\m :
: :
. E
JSR, =
DO E -
REP 2 L
75}
WRITE BACK BUS
Corresponding
pipeline stages IF 1 IF 2 1D EX WB

Figure 5.1: The UTDSP hardware blocks

In the ID stage, the operationsin along instruction are decoded in their corresponding execution
units. There are seven execution units (functional units) in the UTDSP: MU1 and MU2 execute
load and store instructions; AU1 and AU2 execute address instructions; DU1 and DU2 execute
integer ALU instructions; and PCU executes branch and control instructions. The required oper-
ands for an instruction are loaded into the ID/EX pipeline registers from the two register files
(REG A and REG D) during the ID stage. REG A has 16 registers used for address operations,
while REG D has 16 registers for integer calculations.

In the EX stage, AUs and DUs execute instructions in their ALUs, while MUs perform load and
store operations to data memory banks. There are two data memory banks (DataMem X and Data-
Mem Y) in the UTDSP, each of which has its own independent address and data buses. MU1 is
associated with DataMem X, while MU2 is associated with DataMem Y. The results obtained in

52

the EX stage will be written back to the Register Files during the WB stage. Finaly, DMA and
interrupt requests are handled by the Controller Unit, which can control the operations of the pipe-
lineregistersin the UTDSP.

5.2 Instruction Set

The UTDSP instruction set was originally proposed by Mazen Saghir [2] and was then modified
by the author to reduce the number of ports on the Register Files. Severa additional instructions
were introduced to ease fixed-point calculations and to improve machine performance. There are
69 instructions in total, which are shown in Appendix A. Each execution unit can execute only a
subset of the UTDSP instructions. The instructions can be categorized into four groups according

to their associated execution units;

* Memory instructions. The UTDSP is a load-store architecture, meaning the only memory
instructions are explicit loads and stores. Memory instructions can be executed only in memory
units MU1 and MU2. MUL1 is associated with DataMem X, while MUZ2 is associated with Data-
MemY.

* Addressing Instructions: The addressing instructions operate on address registers, and include
specia instructions that use modulo- and bit-reversed addressing. The addressing instructions
are executed in address units AU1 and AU2.

* Integer instructions: In addition to acommon set of arithmetic and logical instructions, the inte-
ger instructions include multiply-accumulate (MAC) instructions, which are heavily used in
DSP algorithms. Moreover, multiplication and MAC instructions that use the 1.15 fixed-point
format were also introduced to minimize the number of shift instructions required in fixed-point
calculations. The 1.15 fixed-point format will be described in Section 5.5.1, where datapaths are
discussed. All integer instructions operate on integer registers, and are executed in integer units
DU1 and DU2.

 Control instructions: In addition to a set of instructions that change control flow, control instruc-
tions include zero-overhead looping instructions that cause a single instruction or a block of

operations to be repeatedly executed for a specified number of iterations with no branch penal-

53

ties. Moreover, the UTDSP hardware is designed to be able to handle nested looping instruc-
tions with up to five levels. Control instructions are also responsible for moving data between
the integer register file and the address register file. DMA operations are also included in the

control instructions.

5.3 The Pipeline Architecture

Asshown in Figure 5.1, the UTDSP has a five-stage pipeline architecture, which is dlightly dif-
ferent from that of the standard RISC processor described by Patterson & Hennessey [24]. The
UTDSP eliminates the MEM stage used in the RISC architecture. Instead, memory accesses are
performed in the two memory units (MU1 and MU2) during the EX stage. To not increase the
pipeline latency, MUs support only the register-indirect addressing mode for load and store
instructions. In other words, MUs can initiate amemory access from the very beginning of the EX
stage without having to calculate the target address in the EX stage. Figure 5.2 shows the differ-
ence between atypical RISC and the UTDSP pipelines.

RISC IF ID EX MEM | WB

UTDSP IF 1 IF 2 ID EX WB

Figure 5.2: The pipeline architectures of RISC and the UTDSP

There are three type of hazards that can occur as aresult of pipelining: structural hazards, data
hazards, and control hazards. Structural hazards occur when there are resource conflicts. Data
hazards occur when there is a data dependence between instructions. Control hazards occur as a
result of branch instructions. The UTDSP eliminates the data hazards by using bypassing hard-

ware and minimizes the control hazards by introducing zero-overhead |ooping instructions.
5.3.1 Data Hazards and Bypassing

The data hazards that can occur in the UTDSP pipeline are the read after write (RAW) data haz-

ards. Consider the instruction sequence shown in Figure 5.3. The load instruction will not update

54

register D1 until the WB stage in cycle 5, while the add instruction reads register D1 during the ID
stage in cycle 4. As a result, the add instruction will read an incorrect operand value from D1,
causing a RAW hazard. To solve this problem without stalling the pipeline, a bypassing path is
added to forward the correct result for D1 from pipeline register EX/WB to the EX stage. Figure
5.3 also shows the bypassing path.

Cycle 1 2 3 4 5 6
EX/WB

Ld.d (A2) IF1 | IF2 | 1D | EX [} WB

¥
Ad@m,m\ IF1 | IF2 | 1 |YEX | WB

RAW Hazards
Figure 5.3: RAW hazards and bypassing path

InaVLIW processor with » functional units, bypassing becomes a costly function to implement

because the area complexity of the comparators and bypassing buses required is O(dnz), where d
is the number of pipeline stages between ID and WB [25]. The UTDSP pipeline eliminates the
MEM stage by using register indirect mode as the only addressing mode for load and store
instructions. This pipeline design provides several advantages in VLIW architectures. First, the
frequency of RAW hazards will decrease and al RAW hazards can be solved by using the
bypassing technique. Second, the number of comparators and bypassing buses required is reduced
by 50%. The trade-off is that the UTDSP compiler will have to schedule an extra add operation
before |oad/store operations if the displacement addressing mode is required; however, the effect
on execution timeis very small because this extrainstruction can be usually scheduled as part of a

previous long instruction.
5.3.2 Control Hazards and Zero-Overhead Looping Instructions

The UTDSP pipeline has a branch penalty of two cycles. In abranch instruction, the result of its
comparison is not known until the end of the ID stage. By this time, two instructions have been
fetched before the result of the branch can take effect. The UTDSP statically predicts that the
branch will not be taken. If the branch is taken, the two instructions in the IF 1 and IF 2 stages

55

‘Target—Instruction 1

Instruction 2
Instruction 3
Instruction 4

Scheduling

If R1=0then branch to[Target|

—| Delay slot 1
Delay slot 2

v

Instruction 5
Instruction 6

* Branch outcome is known

Untaken branch | 1r1 | 1F2 ID EX | ws

Instruction 1 IF1 | 1F2 1D EX | WB D
Squash

Instruction 2 IF1 IF 2 ID EX WB bbb bbbl

Instruction 5 IF 1 IF 2 ID EX WB

The instructions in the delay slots (Inst 1 and Inst2) are executed
only if the branch is taken and are otherwise squashed.

Figure 5.4: The UTDSP instruction pipeline when predict-taken schemeis used

(two branch-delay dlots) are sguashed or cancelled. An aternative scheme is to predict every
branch as taken. In this scheme, the UTDSP compiler has to schedule the two branch-delay slots
from the target of the branch. If the branch is not taken, the two instructions in the delay sots are
squashed. Figure 5.4 shows the predict-taken scheduling scheme and the behaviour of an untaken
branch in the pipeline. Although statistics show that 67% of the conditional branches are taken on
average [38], the UTDSP uses the predict-untaken scheme because the current UTDSP compiler
is unable to schedule the delay dlots.

DSP agorithms usually consist of loop-intensive kernels such as FIR, IR, FFT, and matrix
multiplication. Using jump and branch instructions for the looping control will impose a great
branch penalty and thus significantly degrade performance. The UTDSP provides two types of
zero-overhead hardware loops that solve this problem: single-instruction loops and multi-instruc-

tion loops. The loops can be nested up to five levels. Figure 5.5 shows an example of the UTDSP

56

DO X, 1000
ADDR1,R2,R3} UTDSP assembly program

X: ADD R3,R4,R5

DO X, 1000 IF1 IF 2 ID EX WB

4.
ADD R1,R2,R3 IF 1 IF 2 ID EX WB . .
Istiteration
ADD R3,R4,R5 IF1 IF 2 ID EX WB «
ADDR1.R2.R3 IF 1 IF 2 1D EX WB
T 2nd iteration
ADD R3,R4,R5 IF1 IF 2 1D EX WB «

UTDSP hardware loops can be nested up to five levels with ZERO overhead.
Interrupt, branch, jsr instructions are allowed in the inner loop.

Figure 5.5: The UTDSP zero-overhead hardware loop

hardware loops and its corresponding instruction sequences in the pipeline. Observe that in this
example there is no branch overhead between the first and second loop iterations. Handling inter-
rupts, branch, and jump to subroutine (JSR) instructions in nested loops presents a challenge in
the design of the PC unit. The details will be described in Section 5.4, where the PC unit is dis-
cussed.

5.3.3 Interrupt Effects

The UTDSP provides three user-defined interrupt vectors. When an interrupt occurs, the
UTDSP alows instructionsin the pipeline to finish executing. The processor then begins fetching
from the interrupt vector associated with the interrupt. Each interrupt vector may start with a JSR
instruction that transfersthe control flow to itsinterrupt service routine provided by programmers.
Figure 5.6 shows the effect of an interrupt on the pipeline operations.

When an interrupt occurs in cycle three, the UTDSP will fetch the first instruction (JSR V1) in
the corresponding interrupt vector in cycle 4. The first instruction of the interrupt service routine
(V1) associated with the interrupt will be fetched in cycle 7. This mechanism resultsin a loss of
two instruction cycles. The instruction that semantically follows instruction I3 will be fetched on
return from the interrupt service routine. The UTDSP aso provides afast interrupt if the size of a

user-defined interrupt service routine is small enough to be fitted into an interrupt vector (10 long

57

instruction words). In the fast interrupt mode, programmers replace instruction JSR V1 with
instruction V1 — the first instruction in the interrupt service routine. This method eliminates the

two cycles of overhead.

Interrupt
Cycle: 1 2 3} 4 5 ¢ 7 8 9 10 1

11 IF1 |1F2 | 1D | EX | wB

12 1IF1 | 1F2 | 1D | EX | WB

13 IFL |1F2 | ID | EX | WB

JSRV1 1F1 |1F2 | 0 | EX | wB

— IF1 | IF2 | ID | EX | WB

IF1 IF2 D EX WB

V1 1F1 |1F2 | © | EX | wB

Figure 5.6: The UTDSP instruction pipeline when handling an interrupt

5.4 The PC Unit

The PC Unit handles the addressing of instructions and saving instruction addresses so that the
machine can be restarted after an interrupt. The PC Unit presents one of the major challengesin
the UTDSP design because it not only handles the traditional tasks that are usually seen in RISC
processors but also provides the zero-overhead hardware loops that are completely nestable and
interruptable. Figure 5.7 shows the block diagram of the PC Unit. For ssimplicity, the diagram
shows only some important signals.

There are six mgjor blocks in the PC Unit: Incrementer, PC Register, PC Controller, DO Stack,
JSR Stack, and Counter. The Incrementer computes the value of the PC bus incremented by one.
The PC Register stores the current PC and can flush or stall the PC bus according to the flush/stall
signals. The DO Stack stores the loop beginning and end addresses and repetition count. The JSR
Stack stores the return addresses for JSR instructions. The PC Controller receives the decoding
results of the instructions in the ID stage, determines the next PC value, and controls the opera-

tions of the two stacks. The Counter keeps track of the current iteration count for hardware loops.

58

The PC Unit
1 —
PCPlus] NEXT_PC NEXT_PC
DoLoop
JsriJmpT. t
DoNumber | 1y SC-mparge PC_Bus
DoBegin | Qtack TopBegin é
DoEnd TopNumber E
TopReturnAddr
DoNumberLeft
JSR
F)
ReturnAddr | JSR Lf'-a’ ID_NEXT_PC
Stack = PC Controller —
e | ©
&) »
=
o| & sl & i 8| 5
Qs 5| F| %[a T From ID Stage

IF1/IF2 IF2/ID ID/EX

IF 1 IF 2 ID oe o
The PC

Unit

NEXT_PC

ID_NEXT_PC _‘ ID NEXT PC stores the address of the instruction
JMP/JSR/DO/REP... that semantically follows the instruction in the ID stage.

Figure 5.7: The block diagram of the PC Unit

The PC Controller plays an important role in handling the nestable, zero-overhead hardware
loops. Table 5.1 describes the logic in the PC Controller that determines the NEXT_PC value for
instruction fetching in the next cycle.

Asshown in Table 5.1, if the instruction in the ID stage is IMP or JSR, the NEXT_PC will be
set to its branch destination address (Jmp/JsrTarget). If the instruction is a subroutine return call
(RTS), the top entry in the JSR Stack (TopReturnAddr) is assigned to the NEXT_PC. Similarly,
when the single-instruction loop (REP) is encountered, the NEXT_PC will be changed to the
address of the instruction that semantically follows that loop instruction (ID_NEXT_PC). The

59

nestable, zero-overhead DO loops are handled by popping the top entry (TopBegin) in the DO
Stack and assigning that entry to the NEXT_PC when the end address (TopEnd) of the current
loop body is encountered. Finally, when an interrupt occurs, the NEXT_PC will be assigned to its

corresponding interrupt vector.

Conditions NEXT_PC
(IMP="T)or (JSR="1) Jmp/JsrTarget
RTS="1 TopReturnAddr
REP="1 ID_NEXT_PC
NeedToRepeat PC
(DO =1") and (PC = DoEnd) ID_NEXT_PC
(PC = TopEnd) and (DoNumberL eft <> 0) and (DoStack is | TopBegin
NOT empty)
INT =1 Interrupt_Vector
None of aboveistrue PCPlusl

Table 5.1: The value of NEXT_PC and its associated conditions

5.5 The Register Files

Like other VLIW architectures, the UTDSP suffers from the large number of ports on its regis-
ter files. The original instruction set of the UTDSP as specified in [2] requires 11 read and 5 write
ports on the address register file (REG A), while requiring 9 read and 5 write ports on the integer
register file (REG D). We proposed a method to implement these multi-ported register files using
dual-ported SRAM macros. This method incorporates the ideas used in two VLIW processors:
CYDRA-5[40] and LIFE [39].

In the CYDRA-5 processor, multiple identical register files are used to reduce the number of
read portson its register file. In contrast, the LIFE processor reduces the number of write ports on
itsregister file by using time-multiplexing, allowing only one functional unit to write into the reg-
ister file at a given time. By combining these two methods, we proposed an architecture that uses
dual-ported SRAM macros to construct the multi-ported register files because the dual-ported

macros are usually available in memory compilers. Figure 5.8 shows the proposed architecture.

60

A register file with 6 read ports (RP) and 4 write ports (WP)
WP1 WP 2 WP 3 WP4

A 4 4 A 4

| Multiplexer I

! i +

W1 W2 W1 W2 W1 W2

Dual-Ported
SRAM Macro

Dual-Ported
SRAM Macro

Dual-Ported
SRAM Macro

R1

R2 R1 R2 R1 R2

RP1 RP2 RP3 RP4 RP5 RP6
Figure 5.8: Constructing aregister file with 6 read and 4 write ports using dual-ported SRAM macros

However, this architecture requires that the number of read and write ports be a multiple of two.
To fulfill this requirement, we used the UTDSP architecture simulator to evaluate various modifi-
cation decisions to reduce the impact on performance. Finally, several modifications were made
to reduce the number of ports and fulfill the requirement, while imposing a zero penalty on the
performance of the UTDSP kernel benchmarks.

First, being seldom used, the memory instructions that load to or store from REG A were
removed from the UTDSP instruction set, reducing the number of read ports on REG A by two (2
address functional units). Table 5.2 lists the removed instructions. Second, the format of the mod-
ulo address instructions was changed, reducing the number of read ports on REG D by two. More
details about the modulo addressing mode will be discussed in Section 5.6.2. Third, let the PCU
share its read and write ports with MU 2, reducing one read and one write port on both REG A
and REG D. This port sharing method was used because of the following two reasons:

61

Instructions Syntax Functional Description
L oad address register Id.a(a), g g = Memory[ai]
Store address register st.a(ai), g Memory[ai] = g

Table 5.2: The two instructions that are removed from the original UTDSP instruction set

First, most of the loop structures in the UTDSP kernel benchmarks take advantage of the zero-
overhead do loop instructions with known loop iterations at compile time, eliminating the neces-
sity of reading the loop iterations from the register files. Second, even in some of the benchmarks
(like FFT) where the number of inner loop iterations has to be changed at run time, occupying a
read port by the do instruction will affect neither the existing scheduling nor the execution time of
the inner loop code because the do instruction is not part of its following inner loop body that isto
be repeated.

Asaresult, REG A now has only 6 read and 4 write ports, while REG D has 8 read and 4 write
ports. Moreover, the reduction in the number of ports on REG A and REG D will not affect the

performance of the UTDSP kernel benchmarks.

5.6 The Datapath Components

The UTDSP adopts a synthesis-based design methodology where all datapath components are
described in VHDL and thus are fully parameterizable. The current implementation has a 16-hit,
fixed-point datapath. There are two integer functional units (DU1 and DU2) in the UTDSP, each
of which has an integer ALU and an accumulator. Each integer ALU has a 16-bit multiplier, a
shifter, and an adder/subtractor. Similarly, the two address functional units have their own address
ALUs and each address ALU has a shifter and a modulo address generator. Section 5.6.1 will
briefly describe the fixed-point formats that are used in the multipliers. Section 5.6.2 shows the
modulo address generator used in the UTDSP.

5.6.1 The 1.15 Fixed-Point Format

The UTDSP provides two types of multiplication and multiply-accumulate instructions. the
integer type and the 1.15 fixed-point type. Figure 5.9 distinguishes the differences between these

two types. When multiplying two fractional values in the 1.15 format, the result needs to be

62

Integer Format The 1.15 Fixed-Point Format

16bits | | 16bits | [s] 1sbits | [s] 15bits

7

32 bits | [s]s] 30 bits |
Truncate Left Shift ' Shiftin 0
16bits | s 31 bits 0 o
: Truncate
s| 15bits
Instructions in Integer Format: Instructions in the 1.15 Format:
MULT, MADD, MSUB, MADD2Dx MULTF, MADDF, MSUBF, MADD2Fx

Figure 5.9: The data formats that are used in the UTDSP instructions

upshifted one bit to obtain the normalized data, which means that one extra shift operation will be
needed for every multiplication instruction. To solve this problem, the UTDSP provides a set of
instructions that are optimized for the 1.15 format, eliminating the need for extra shift instruc-

tions. Figure 5.9 also lists the instructions of the two formats.
5.6.2 The Modulo Address Generator

Many DSPs have a modulo addressing mode, which eliminates the need for checking the array
pointer in a buffer to seeif it has reached the boundary of the buffer and automatically circulates
the pointer back to its valid starting position when it is out of bounds. Typically there are two
methods for implementing the modulo addressing mode. In the first method, the modulo address
generator uses a modifier register that contains only the length of the buffer and calculates the
starting address of the circular buffer using hardware. However, this implementation method has
to restrict the starting address and the size of the buffer [26][27].

In the second method, the modulo address generator uses start and end registersto hold the start
and end addresses for each circular buffer. This method enables a true modulo addressing by

allowing arbitrary buffer sizes and displacements. Research shows that this method is desirable

63

for next-generation DSPs [28]. Processors using the approach include the Lucent DSP16xx [29]
and the TI TMS320C5x [30]. The UTDSP adopts the second method for two reasons. First, the
second method simplifies the hardware design and significantly reduces the resulting area. Sec-
ond, this method enables a modulo instruction that uses fewer read ports of the address register
file, which is an important concern in VLIW architectures. Figure 5.10 shows the resulting
instruction formats for the two different methods. Each address functional unit has a circular
buffer whose start and end registers can be changed using the set instruction as shown in Figure
5.10.

® The moduloinstruction format that uses the modifier register:
incmod a1,a2,a3,a4 /I a4 =(a1+ a2) mod a3

The number of register read ports used: 3

® The UTDSP modulo instructions:

set a5, a6 /I Start Register = a5
/I End Register = a6
incmod a1, a2, a3 // a3 =(a1+ a2) mod the circular buffer size

The number of register read ports used: 2

Figure 5.10: The UTDSP modulo instruction format vs. the typical format

5.7 VLSI Implementation Issues

The VLSI implementation of the UTDSP presents a major challenge in both design capture and
CAD methodology. It needs not only great effortsin VHDL modelling but also a state-of-the-art
CAD methodology that can provide the required features for back-end flow. Research has shown
that the interconnect delays in deep-sub-micron (DSM) designs will actually decrease at the
50,000-gate module level as feature sizes shrink [31]. However, partitioning a huge chip into

50,000-gate blocksis not atrivial task. To solve this new partitioning problem, aflexible, hierar-

64

UTDSP CAD Flow

Design Capture

SRAM Macros

RTL-level Simulation
Synthesis

Gate-level Simulation
L] Timing

Logic Grouping/Merging

Block

Synthesis

(Synopsys)

Floorplanning

Top-level

(Cadence PDP floorplan ¥ floorplan
Physical Design Geometry
Planner 3.4C) information

Global Pin Optimizati
S aon,
LEF/DEF - LEF/DEF blocks

Subblock Top-level
Routing Routing
EF L D
DRC, LVS
Dracula

Figure 5.11: The UTDSP CAD methodology

Area-based Routing

(Silicon Ensemble)

Physical Verification
(Cadence 1999a)

chical CAD flow was defined that not only creates the blocks of the desired size but also signifi-
cantly reduces the delay and area of the resulting UTDSP chip. Figure 5.11 shows this

hierarchical design flow. The following sections will discuss each phase of this flow.

5.7.1 Design Capture and Synthesis

The technology used for the UTDSP is a 0.35 um CMOS with three metal layers from TSMC
[41]. The library cells were aso from TSMC. The single-ported SRAM macros that were devel-
oped by CMC [32] were used to implement the memory blocks in the UTDSP. The Instruction
Memory block consists of one wsramsp256x32 macro — an SRAM macro that has 256 words

65

with 32 bits per word. Each Decoder Memory bank also consists of one wsramsp256x32 macro.
There are two Data Memory blocksin the UTDSP, each of which consists of four wsramsp256x8
macros— 1 Kbytein each Data Memory Bank.

The remaining parts of the UTDSP are described using register-transfer-level (RTL) VHDL
code. Because CMC was unable to release the dual-ported SRAM macros or an SRAM compiler
with a multi-port capability, the register files in the UTDSP were synthesized, increasing their
areas significantly. The area penalty of using synthesized register fileswill be discussed later. The
multiplier and adder/subtractor were implemented using the DesignWare library provided by
Synopsys [33]. The total VHDL code including testbench has 10,100 lines. RTL simulation was
performed to verify the functional correctness of the RTL model.

In the logic synthesis phase, the RTL model was trandated into a functionally-equivalent gate-
level netlist under user-specified constraints such as timing and area. The critical path compo-
nents, such as ALUs, were synthesized using strict timing constraints to reduce the critical path
delay. In contrast, the other components of the UTDSP were synthesized using area constraints to
reduce their areas. The final synthesis results show that the critical path has a 15.8 ns delay,
enabling a maximum clock rate of 63 MHz under best-case operating conditions without taking
interconnect delay into account.

Table 5.3 summarizes the delay of the first three critical path groups and the components that
account for the major delay in each group. Observe that the multiply-accumulate (MAC) unit
accounts for 11 ns of the critical path delay in the ALU and bypassing path group. Due to the lim-
itations of our current Synopsys licenses, the fastest implementations for the synthesized multipli-
ers and adders are CSA (Carry Save Array) and CLA (Carry Look-Ahead), respectively.
Therefore, if afaster MAC unit with a delay less than or equal to 8.5 ns can be obtained, the criti-
cal path delay can be reduced to 13.3 ns, enabling a maximum clock rate of 75 MHz. Further
reduction of the critical path delay can be achieved by using faster on-chip memory macros. The
delays of worst-case operating conditions are also summarized in Table 5.3. Under the worst-case
conditions, the UTDSP can achieve a maximum clock rate of 29 MHz. However, it is our under-
standing that a significant yield is achievable at the best case timing [44].

The gate-level model was then verified using the same testbench used for the RTL simulation.

Sometimes the gate-level simulation fails because of setup and hold violations. In these cases,

66

redoing the synthesis with more accurate timing constraints will fix the problems. To avoid setup
and hold violations downstream in the post-layout phase, the clock source was defined with a
dlightly larger clock skew tolerance. After passing the gate-level simulation, the netlist is ready
for the back-end hierarchical flow.

Critical Path Group Maximum delay in the Major component and its delay
group
Best Worst Component Best Worst
Case Case Case Case
ALU and bypassing paths 15.8ns 34.7ns |MAC Unit 11ns 25ns

Data Memory and bypassing 13.3ns 20 ns On-chip Data Memory 9ns 11ns
paths

Decoder Memory paths 9.3ns 11.7ns | On-chip Decoder Mem- 9ns 11ns
ory

Table 5.3: The delay of the first three critical path groups

Table 5.4 summarizes the gate counts and actual areas of the major components in the UTDSP.
The areas are measured from the routed layout of each component. The areas shown contain about
40% routing area on average. This utilization rate could be improved if more metal layers were
available for routing. Observe that a very large portion of the core area is occupied by the two
synthesized register files. To estimate the area of the chip if the synthesized register files can be
replaced by ones made using full-custom design methods, we use the area model of on-chip multi-
port memory proposed by Michael Flynn et al. [34] to estimate the area of the register files. Table

5.4 shows that using register files made with full-custom design methods will reduce the core area

of the UTDSP from 12 mm? to 8.48 mm?.

Component Gate Count Areaafter routing | If multi-port SRAM
(mm?) compiler is used
PC Unit 6078 1.13
Memory Units (x2) 1961 0.40
Address Units (x2) 7843 121
Integer Units (x2) 17647 2.81
PCU 3333 0.62

Table 5.4: Gate counts and areas of the components in the UTDSP

67

Component Gate Count Areaafter routing | If multi-port SRAM
(mm?) compiler is used
Controller (DMA + Interrupt) 4118 0.61
Gluelogic 7843 1.34
Register Files (x2) 23725 3.88 0.36
UTDSP Core (Sum of above) 72548 12 8.48
Instruction and Decoder Mem- 57843 6.05
ory Blocks (2Kx32 hits)
Data Memory Blocks (2Kx8) 11765 2.75
Top-level routing channels 0 2.2
UTDSP Core + On-chip Mem- 142156 23 19.48
ory blocks (no pads)
The UTDSP chip (with pads) 33 29.48

Table 5.4: Gate counts and areas of the components in the UTDSP

Recall from the previous chapters that the UTDSP is designed to meet the increasing demand
for high performance, low-cost processors for use in cost-sensitive embedded systems. The
UTDSP provides a unique feature that makes itself an ideal application-specific programmable
processor. Being designed using the application-driven design methodology described in Chapter
2, the UTDSP has a flexible architecture and instruction set that can be easily modified to meet
the performance and cost requirements of target applications.

We argue that the synthesis-based implementation method is the most suitable for the UTDSP
because being implemented in VHDL, the ALUs and instruction set of the UTDSP can be easily
modified, enabling the application-driven design methodology and a short time-to-market. If a
higher operating speed is required, the MAC unit can be implemented using a full-custom design
method to reduce the critical path delay with little impact on the flexibility of the UTDSP archi-

tecture.
5.7.2 Floorplanning

In conventional back-end flows, floorplanning tools usually perform two tasks: The placement
of blocks and the placement of logic cells in the blocks. The floorplan tools take a gate-level
netlist and create corresponding blocks according to the logical hierarchy in the netlist. Therefore,

conventional floorplanning only tries to minimize area or interconnect delay by arranging the

68

locations and aspect ratios of these blocks. However, the logical hierarchy in the original design
does not necessarily mean a good partition for minimizing the interconnect delay and area of a
chip.

As mentioned before, research has shown that the interconnect delays in deep-sub-micron
(DSM) designs will actually decrease at the 50,000-gate module level as feature sizes shrink [31],
Therefore, partitioning a chip into 50,000-gate blocks becomes a new floorplanning task that
needs to be solved in this design phase. The UTDSP CAD flow takes advantage of the intercon-
nect analysis tool and logic merging features provided in the Cadence Physical Design Planner
(PDP 3.4C). The interconnect analysis tool can choose the blocks to be merged to minimize the
number of external nets — the nets that connect blocks, while the logic merging features can
merge selected blocks into anew block. However, it is difficult to perform merging and floorplan-
ning without the information about the physical layout of underlying blocks. Therefore, some of
the blocks will be pre-routed and their geometry information can be fed back to the floorplan tool.
When the final version of floorplan is decided, global-pin-optimization will be performed to opti-
mize the pin locations of these blocks so that the top-level interconnection can be reduced to a
minimum.

Figure 5.12 shows the physical groups before and after logic merging. The 16 physical groups
in the original design were merged into five groups to minimize the number of external nets
between the blocks, while keeping the size of each block in the range where its interconnect delay
can be reduced. Figure 5.13 shows the block interconnection analysis and the final floorplan for
the UTDSP. Observe that the space between blocks was kept very small so that the area of the
chip can be reduced. However, to successfully route the top-level wiresin such a small area, the
locations of the pinsin the blocks have to be arranged in away where most of the wires can travel
in their shortest distances. This step is called global-pin-optimization [36]. After the pin locations
of these blocks are optimized, the placement and routing in each block can be performed accord-
ing to its pin locations. Figure 5.14 and Figure 5.15 show that the global-pin-optimization signifi-
cantly reduces the interconnect between blocks. Sometimes the placement and routing in blocks
fail because the areas of these blocks are insufficient. Reshaping the sizes of these blocks and

redoing the floorplanning and global-pin-optimization are needed to solve this situation.

69

Although this floorplanning method is iterative and very time consuming, the final layout of the
UTDSP shows atremendous reduction in both area and interconnect delay. Figure 5.16 showsthe
result of the final top-level routing and Figure 5.17 shows one previous version of the UTDSP,
where logic merging and floorplanning were performed in a different configuration. This poor
floorplanning resulted in an area of 7.2 mm by 7.2 mm, which is much larger than the current size
(5.5 mm by 6 mm). Therefore, applying this hierarchical floorplanning technique resulted in an
areareduction of 36% in this case.

To obtain the postlayout timing information of the UTDSP, a full-chip R/C extraction was per-
formed after routing to calculate the interconnect delay. The results show that the maximum inter-
connect delay in the first critical path group is 92 ps, resulting in a total delay of 16 nsin the
critical path. The maximum interconnect delay in the second critical path group is only 45 ps.
Therefore, the UTDSP can achieve a maximum clock rate about 63 MHz. This result showsthat a

good floorplan reduces not only the area of the chip but also its interconnect delay.

5.8 Kernel Benchmarks

The UTDSP not only has an architecture that is an easy target for HLL compilers but also pro-
vides nestable, zero-overhead hardware loops that are ideal for loop-intensive DSP kernels. Table
5.5 summarizes the loop performance of the UTDSP kernel benchmarks, which were created by

compiling their functionally-equivalent C code using the UTDSP compiler.

UTDSP Kernels Cycles
N-tap FIR with M points M(N+4) +2
N cascaded Biquad I IR with M points M(5N+3)
N-section Normalized Lattice filter with M points M(6N+3)
N-tap LMS adaptive filter with M pointers M (4N+6)
N radix-2 FFT butterfly 4N
NxN matrix multiplication N(N2+3N+1)

Table 5.5: UTDSP benchmark results for compiler-generated kernel code

70

JLJUUUUHUUUHUUHHHHHHHUUUHUUUUL

_Un.tm(Lﬂ
Uo.r gG 4df,
- =

LJUUHHHHHUHUUHHHHHHHHHHHHH

TR R AT

AR nnnanmmmacr

I ¥ Mo

SRR AR

A AR AN AR AAC

L AL EERE AR]

Figure 5.12: Before and after logic merging

Figure 5.13: Group connectivity analysis and the final floorplan

71

P W A S S A A ——

(2=

7 M -

-

Figure 5.14: Block interconnect without using global -pin-optimization

Figure 5.15: Block interconnect after global-pin-optimization

72

dsaln

4 0

Figure 5.16: Thefinal top-level routing (5.5 mm x 6.0 mm)

Figure 5.17: One of the previous top-level routing with a poor floorplan (7.2 mm x 7.2 mm)

73

To compare the UTDSP with the Philips R.E.A.L DSP [3] and the TI TMS320C62xx [26],
which have similar VLIW architectures, an FIR benchmark used in the publications [3][37] of
both processors was hand-tranglated into the UTDSP assembly program. To make afair compari-
son, the assembly code was hand-optimized by the author because the assembly code for the other
two processors were also hand-crafted by their best assembly programmers. Table 5.6 summa-
rizes the features of these processors and the benchmark results. It shows that the UTDSP can
achieve a higher performance in terms of the cycle count in this FIR benchmark.

This benchmark result demonstrates how the application-driven design methodology works
with the flexible architecture of the UTDSP. To take advantage of the dual multiplier structurein
the FIR computation, we used a block processing method, which is also used in the FIR bench-
mark [3] of the R.E.A.L DSP. In the block processing method, two output samples have to be cal-
culated concurrently to reduce the cycle count by half; therefore, in each cycle two consecutive
input samples and one coefficient must be loaded from the data memory. However, in each cycle
the UTDSP can load only two new operands— one input sample and one coefficient, making the

dual data-memory banks a bottleneck in the FIR benchmark.

UTDSP PhilipsR.E.A.L TI
DSP TMS320C6201

Design Methodology Synthesis-based | Synthesis-based | Full-custom
Deliverable Form 1. 108-pin PGA | Synthesizeable |352-pin BGA

2. Synthesizable |core

core
Process technology 0.35 um CMOS |0.25 pum CMOS |0.25 pm CMOS
Max. Clock Frequency |63 MHz 85 MHz 167- 200 MHz
Number of Functional 7 10 8
Units
Number of Multipliers |2 2 2
Cycle Count for FIR M(N+6)/2 + 7 M(N+9)/2+8 |[M(N+8)/2 +6
with M outputs and N
taps.

Table 5.6: Comparison between UTDSP and two VLIW DSPs

To solve this problem, we introduced a new MAC instruction that not only performs the multi-

ply-accumulate operation but also moves the operands. Table 5.7 shows this instruction and its

corresponding operations. Note that this instruction does not need an extrawrite port on the regis-

74

ter file because the original multiply-accumulate operation stores its result to the accumulator
(Acc), making its write port available during the WB stage for the shuffling operation. By using
this MAC instruction, the inner loop body, which calculates two output samples simultaneously,
can be scheduled into one long instruction. Figure 5.18 shows the inner loop code of the FIR
benchmark. Observe that the inner loop contains only one long instruction (INST 2), which con-
sists of six parallel operations. Without this MAC instruction, one extralong instruction hasto be

scheduled into the inner loop body, doubling the current cycle count.

Instruction Syntax Operations
Multiply-accumulate madd2m di, dj, dk Acc=Acc+ (di * dj)
(for block processing) dk = di

Table5.7: The MAC instruction for block processing

INST 1: repN /I repeat the following instruction N times. N = number of coefficients
INST 2: Id.d (al), d1 //'1oad next input sample

Id.d (a2), d2 I 1oad next coefficient

inc al, al5, al I/ increment input sample array pointer al

inc a2, al5, a2 Il increment coefficient array pointer a2

madd2m dl, d2, d3 // calculate the term and move the input sample d1 to d3 for subsequent output
madd2m d3, d2, null // calculate the term for subsequent output sample

Figure 5.18: The UTDSP assembly code for the inner loop of FIR benchmark

5.9 Summary

The chapter discusses the hardware design of the UTDSP and various VLSI implementation
issues. The design of the nestable, zero-overhead hardware loops is highlighted. A novel hierar-
chica CAD flow was used to minimize both the interconnect delay and chip area of the UTDSP.
Applying the hierarchical CAD flow resulted in an excellent floorplan that could reduce the area
by 36% in one of the examples shown. Finally, the kernel benchmark results are shown and a

comparison with two other VLIW processorsis provided.

75

Chapter 6

Conclusions and Future Work

6.1 Conclusion

This thesis discusses the design and implementation of the UTDSP system, which consists of
three parts: the long-instruction packing scheme, the devel opment software, and the VLS| imple-
mentation of the UTDSP processor. Each part contributes to the UTDSP system in its own way
and makes the UTDSP a complete system that is comparable to commercially-available DSP
products.

First, the UTDSP packing scheme reduces storage requirements, while eliminating the memory
bandwidth problems that plague other VLIW architectures. The UTDSP packing algorithm incor-
porates a two-cluster packing and slot sharing methods to minimize storage requirements. Bench-
mark results indicate that the UTDSP packing scheme achieves a performance comparable to its
commercia counterpart.

Second, the development software, consisting of an architecture ssmulator and an assembly
debugger, not only enables an application-driven design methodol ogy but also provides program-
mers an interactive GUI-based debugging tool. The architecture simulator was designed in a
novel method where the design gap between the behavioural and RTL models of the UTDSP can
be minimized. The GUI-based assembly debugger was implemented by adding a self-displaying
and event-listening capabilities to the architecture simulator. This means that designers will
aways have a functionally equivalent debugger ready for use after having modified the architec-
ture simulator. This capability is especially useful in a core-based design.

Third, designed with a goal to provide high performance and low cost, the UTDSP not only has

aflexible architecture that is an easy target for HLL compilers, but also provides features such as

76

zero-overhead hardware loops to optimize the performance in loop-intensive computations. The
VLSl implementation of the UTDSP adopts a synthesis-based design methodology and a novel
hierarchical floorplanning technique that can significantly reduce the resulting area and intercon-
nect delay of the UTDSP.

6.2 Future Work

Following are some suggestions for future work that can be used to improve the UTDSP sys-
tem.

* Building the register files of the UTDSP using SRAM compilers with multi-port capabilities.
Due to the unavailability of SRAM compilers with multi-port capabilities, the register files in
the UTDSP were synthesized directly from VHDL code, which significantly increased the area
of the UTDSP. It would be desirable if the register files could be generated using SRAM com-

pilers.

 Implementing the UTDSP in a CMOS technology with more metal layers.
The UTDSP was implemented in a 0.35 um CMOS technology with only three metal layers.
The layout of library cells uses the first metal layer exclusively, leaving only two metal layers
for routing. Therefore, congestion situations often occurred and failed the routing of blocks. The
size of the blocks had to be increased to successfully route the design, resulting in alow utiliza-
tion rate. The area of the UTDSP can be further reduced if more metal layers are available for

routing.

* Further minimizing the design gap
Although the behavioural modelling method described in Chapter 4 can bridge the design gap
between the behavioural and RTL model of the UTDSP, it still requires that designers manually
create the RTL model. We have already started investigating the possibility of describing digital
hardware using a set of specialized Java classes and constructing a compiler that converts the

Java-based hardware description into synthesizable RTL code, completely eliminating the
design gap.

77

Appendix A

UTDSP Instruction Set

Operation Syntax Functional Description
Load integer register [d.d (a), dj di = Memorylai]
Store integer register st.d (a), dj Memory[ai] = dj

Table A.1: Memory Instructions

Operation Syntax Functional Description
Address decrement decai, g, ak ak=a-qg
Modulo address decrement decmod ai, gj, ak ak = (ai - g)) mod Buffer Size
Bit-reversed address decrement | decfft al, g, ak ak = ai - g (bit-reversed)
Address increment inc, a, g, ak ak=a + g
Modulo address increment incmod ai, g, ak ak = (a + @) mod Buffer Size
Bit-reversed address increment |incfft ai, g, ak ak = a + g (bit-reversed)
Bit-wise AND and.aai, g, ak ak=a & g
Arithmetic shift left ad.aal, g, ak ak = ai << g (arithmetic)
Arithmetic shift right asr.aai, g, ak ak = ai >> g (arithmetic)
Bit-wise inclusive OR ior.aai, g, ak ak=a|g
Logical shift left Id.aai, g, ak ak = ai << gj (logical)
Logical shift right lsr.aai, g, ak ak = a >> gj (logical)
Bit-wise exclusive OR Xor.aai, g, ak ak=a " g
Set equal seg.aai, g, ak ak = (a == q))
Bit-wise NOT not.aai, ak ak=~a
Move register mov.aai, ak ak =ai

Table A.2: Addressing Instructions

78

Operation Syntax Functional Description
Set up thefirst circular buffer | setl ai, g begin register = ai
end register = g
Set up the second circular buffer | set2 ai, g begin register = ai
end register = g
Move immediate movi.a#X, ak ak = #X

Table A.2: Addressing Instructions

Operation Syntax Functional Description
Absolute value abs.d. di, dk dk =|di|
Bit-wise NOT not.d di, dk dk =~di
Move register mov.d di, dk dk = di
Add add.d di, dj, dk dk = di + dij
Bit-wise AND and.d di, dj, dk dk =di & dj
Arithmetic shift left ad.d di, dj, dk dk = di << dj (arithmetic)
Arithmetic shift right asr.ddi, dj, dk dk = di >> dj (arithmetic)
Bit-wise inclusive OR ior.ddi, dj, dk dk = di | dj
Logical shift left Idl.d di, dj, dk dk = di << dj (logical)
Logical shift right lsr.d di, dj, dk dk = di >> dj (logical)
Subtract sub.d di, dj, dk dk =di - dj
Bit-wise exclusive OR xor.d di, dj, dk dk =di " d
Set equal seq.d di, dj, dk dk = (di ==dj)
Set not equal sneddi, dj, dk dk = (di '=dj)
Set greater than sgt.d di, dj, dk dk = (di >dj)
Set less than dt.ddi, dj, dk dk = (di < dj)
Multiply (1.15 format) multf.d di, dj, dk dk =di * dj
Multiply mult.d di, dj, dk dk =di * dj
Move immediate movi.d #X, dk dk = #X
Multiply-accumulate madd.d di, dj, dk, dl dl =dk + (di * dj)
Multiply-accumulate (1.15) maddf.d di, dj, dk, di dl =dk + (di * dj)
Multiply-subtract msub.d di, dj, dk, dI dl =dk + (di * dj)
Multiply-subtract (1.15) msubf.d di, dj, dk, dlI d =dk + (di * dj)
Setup Accumulator 0 (Acc0) setaccO di AccO = di
Setup Accumulator 0 (Accl) setaccl di Accl =di
Multiply-accumulate (AccQ) madd2do di, dj, dk dk = AccO + (di * dj)

Table A.3: Integer Instructions

79

Operation

Syntax

Functional Description

Multiply-accumulate (Accl)

madd2dl di, dj, dk

dk = Accl + (di * d)

Multiply-accumulate
(Acc0:1.15format)

madd2fO di, dj, dk

dk = AccO + (di * dj)

Multiply-accumulate
(Accl: 1.15 format)

madd2f1 di, dj, dk

dk = Accl + (di * d)

Multiply-accumulate
(for block processing)

madd2m di, dj, dk

Acc=Acc+ (di * dj)
dk =di

Multiply-accumulate (1.15)
(for block processing)

madd2fm di, dj, dk

Acc=Acc+ (di * dj)
dk = di

Table A.3: Integer Instructions

Operation Syntax Functional Description

Address to integer mova2d ai, dk dk =a

Integer to address movd2adi, ak ak =di

Single-instruction repeat rep #X Repeat following instruction #X
times

Instruction block repeat do #X, label Repeat instruction block #X times

Instruction block repeat do.aai, label Repeat instruction block (ai)
times

Instruction block repeat do.d di, label Repeat instruction block (di)
times

Branch if addressregister equal | begz.aai, label if (@ ==0) PC = label

to zero

Branch if integer register equal | beqgz.d di, label if (di == 0) PC = labdl

to zero

Branch if addressregister not | bnez.aai, label if (ai !'=0) PC = label

equal to zero

Branch if integer register not bnez.d di, |abel if (di '=0) PC = label

equal to zero

Jump indirect jmp.a(a) PC = (a)

Jump direct jmp label PC = label

Jump subroutine jsr label Push current PC
PC = label

Return from subroutine rts Restore PC from the stack

Trap trap #6/60 DMA read from 10 to X/Y bank

trap #5/50 DMA writeto 10 from X/Y bank
Wait until interrupt wait Processor go to idle status
Halt halt System halt

Table A.4: Control Instructions

80

Bibliography

[1]

[2]

[3]

[4]

[3]
[6]

[7]

[8]

[9]

Mazen A.R. Saghir, Paul Chow, and Corinna G. Lee, “Application-Driven Design of DSP
Architectures and Compilers’ Proceedings of the International Conference on Acoustics,
Speech, and Signal Processing, pp. 11-437-440, |EEE, 1994.

Mazen A.R. Saghir, Application-Specific I nstruction-Set Architectures for Embedded DSP
Applications, Ph.D. Thesis, University of Toronto, 1998.

C.M. Moerman, R. Woudsma, P. Kievits, Philips Semiconductors ASIC Service Group,
“Embedded DSP Technologies in Consumer Applications: REAL DSP,” Class Notes,
DSP World Workshops, Toronto, September, 1998.

E. Horst, W. Kloosterhuis, J. Heyden, “A C Compiler for the Embedded R.E.A.L. DSP
Architecture,” The International Conference on Signal Processing Applications & Tech-
nology, Toronto, 1998.

Motorola, DSP56002 Digital Signal Processor User's Manual, 1990.

E.W. Reigdl, U. Faber, and D.A. Fisher, “The Interpreter — A Microprogrammable Build-
ing Block System,” Proceedings of the AFIPS Spring Joint Computer Conference, Vol.
40, pp. 705-723, 1972.

Robert F. Rosin, Gideon Frieder, and Richard H. Eckhouse, Jr., “An Environment for
Research in Microprogramming and Emulation,” Communications of the ACM, Vol 15,
No. 8, pp. 748-760, ACM, 1972.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Compilers: Principles, Techniques, and
Tools, Addison-Wesley Publishing Company, 1986.

VijayaK. Singh, An Optimizing C Compiler for a General Purpose DSP Architecture,
M.A.Sc. Thesis, University of Toronto, 1992.

81

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Mark G. Stoodley, Scheduling Loops with Conditional Statements, M.A.Sc. Thesis, Uni-
versity of Toronto, 1995.

Robert P. Wilson, et al., “SUIF: An Infrastructure for Research on Parallelizing and Opti-
mizing Compilers’, http://suif.stanford.edusuif/suif1/suif-overview/suif.html, 1994.
Sanjay M. Pujare, Machine-Independent Compiler Optimizations for the U of T DSP
Architecture, M.Eng. Thesis, University of Toronto, 1995.

David Landskov, Scott Davidson, Bruce Shriver, and Patrick W. Mallett, “Local Micro-
code Compaction Techniques’, ACM Computing Surveys, Vol. 12, No. 3, pp. 216-294,
ACM, September, 1980.

Dillon, T. J. Jr, The Veloci Tl Architecture of the TM S320C6x, ICSPAT, 1997.

John Hennessy, “ The Future of Systems Research,” pp.31, IEEE Computer, August,
1999.

Evan Cone, Heather Edwards, Developing an OPC Client Application Using Visual
Basic, Application Note 139, National Instruments.

Prem Jain, “ Analyzing and optimizing embedded system-on-a-chip performance,” Com-
puter Design, pp.42, October, 1998.

Bruce J. MacL ennan, Principles of Programming Languages. Design, Evaluation, and
Implementation, Second Edition, HOLT, RINEHART AND WINSTON, 1987.

Peter Linz, An Introduction to Formal Languages and Automata, Second Edition, D. C.
Heath and Company, 1996.

Sun Microsystems, http://www.java.sun.com/

H. M. Deitel, Java: How to program, Second Edition, Prentice Hall, 1998.

CynApps Technology, Inc., Bridging the Design Gap, http://www.CynApps.com/, 1998.
Rahman Jamal, Herbert Pichlik, LabVIEW Applications and Solutions, Prentice Hall,
1999.

John Hennessy, David Patterson, Computer Organization and Design: The Hardware/
Software Interface, Second Edition, Morgan kaufmann Publishers, Inc. 1998.

Arthur Abnous, Nader Bagherzadeh, “Pipelining and Bypassing in aVLIW Processor,”
|EEE Transactions on Parallel and Distributed Systems, Vol. 5, No. 6, pp. 658-663, June,
1994.

82

[26]
[27]
[28]
[29]
[30]
[31]

[32]

[33]
[34]

[35]
[36]
[37]
[38]
[39]

[40]

[41]

[42]

[43]

[44]

Texas Instruments, TM S320C62xx Reference Guide, 1997.

Motorola, DSP56302 User's Manual, 1997.

R. J. Higgins, “Digital Signal Processing in VLSI,” pp.341, Prentice-Hall, 1990.

Lucent Technologies, DSP16xx Programmer’s Reference Guide, 1998.

Texas Instruments, TM S320C5x Reference Guide, 1998.

Dennis Sylvester, Kurt Keutzer, “Getting to the Bottom of Deep Submicron,” Interna
tional Conference on Computer-Aided Design (ICCAD-98), 1998.

Canadian Microel ectronics Corporation, http://www.cmc.ca/.

Synopsys Inc, http://www.synopsys.com/.

Johannes M. Mulder, Nhon T. Quach, Michael J. Flynn, “An AreaModel for On-Chip
Memories and its Application,” IEEE Journal of Solid-State Circuits, Vol. 26, No. 2, Feb-
ruary 1991.

Motorola FastSRAM Products, http://www.motorola.com/SPS/FastSRAM/.

Cadence, Cadence Design Planner Training Manual, Version 3.4A, March, 1998.

Texas Instruments, http://www.ti.com/sc/docs/products/dsp/c6000/62bench.htmifilters
John Hennessy, David Patterson, Computer Architecture: A Quantitative Approach, Sec-
ond Edition, Morgan kaufmann Publishers, Inc. 1998.

J. Labrousse, G. A. Slavenburg, “A 50 MHz Microprocessor with aVery Long Instruction
Word Architecture,” 1SSCC'90, February, 1990.

R.B.Rau,D. W. Yen, W. Yen, R.A. Towle, “The Cydra5 Departmental Supercomputer:
Design Philosophies, Decisions and Trade-offs,” IEEE Computer, pp. 12-35, January,
1989.

TSMC — Taiwan Semiconductor Manufacturing Co., Ltd, http://www.tsmc.com.tw/e-
html/index-e.htm.

Mazen Saghir, Paul Chow, Corinna Lee, “Exploiting Dual Memory Banksin Digital Sig-
nal Processors,” SIGARCH Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOSV 1), pp. 234-243, Boston, MA, October, 1996.
Mazen A. R. Saghir, Architectural and Compiler Support for DSP Applications, M.A.Sc.
Thesis, University of Toronto, 1993.

Macron Cheng, System Design Manager, Syntek Semiconductor Co., LTD, Taiwan, Pri-

83

vate Communication, 1999.
[45] P. Kievits, E. Lambers, C. Moerman, R. Woudsm, “R.E.A.L. DSP Technology for Tele-
com Baseband Processing,” The International Conference on Signal Processing Applica

tions & Technology, Toronto, 1998.

84

