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Abstract—To capitalize on the growing abundance of multicore
hardware, FPGA vendors have begun to parallelize the most
compute intensive algorithms in their CAD software. However,
parallelization is a painstaking and hence expensive process that
limits the number of algorithms that can be cost-effectively
parallelized. Transactional Memory (TM) promises an easier-to-
use alternative to locks for critical sections in threaded code—
allowing programmers to avoid deadlocks and data races, and
also allowing critical sections to execute in parallel as long as
they dynamically access independent data. In this paper, we
present our work on using TM to parallelize simulated annealing-
based placement for FPGAs. In particular, we use a software TM
(TinySTM) to parallelize the placement phase of Versatile Place
and Route (VPR) 5.0.2 [1]. With TM we very quickly produced
a parallel and correct version of the software, allowing us to
focus on incrementally tuning performance. We describe our
experiences in tuning the TM system and CAD software, and
the interesting algorithmic trade-offs that exist. In the end, we
found that optimized transactional placement has the potential
for scalable performance: our non-deterministic implementation
achieves self-relative speedups over a single thread of 1.82x,
3.62x and 7.27x at 2, 4, and 8 threads respectively with little
quality degradation. However, hardware support for TM is
likely required to overcome the overheads of STM, as our
implementation’s single thread performance is 8x slower than
sequential VPR.

I. I NTRODUCTION

The microprocessor technology road-map predicts a future
with tens to hundreds of processors per chip and beyond, but
with limited clock frequency improvements and likely simpler
individual processors. Faced with the corresponding demise of
sequential program performance, the software industry is com-
pelled to parallelize existing software by introducing threads
and synchronization to target these multicore processors.This
challenge is especially significant for the FPGA companies
whose CAD software (i) must manipulate hardware designs
that are themselves growing with Moore’s law, but (ii) is
composed of a large number of sequential algorithms. The
challenge is that parallel programming is a time-consuming
and error-prone process. While progress has been made on
parallelizing the most crucial algorithms (at great expense),
future CAD parallelization efforts will require a more cost-
effective approach.

A. Conventional Parallelization

There has been considerable work on parallelizing CAD
algorithms using conventional methods, in particular for simu-
lated annealing-based placement—the algorithm that we focus
on in this paper. Unfortunately, most parallelized software
running on the parallel hardware of the time had difficulty
competing with the cost/performance of the corresponding
sequential software running on the latest uniprocessor system.
However, with multi-core processors becoming ubiquitous,
parallel CAD algorithms are now a necessity. As evidence,
the FPGA companies have begun to parallelize their CAD
software, and Altera has recently published their efforts on
parallelizing the simulated-annealing-based placement phase
of the Quartus CAD software [2]. Analytical placement has
also been parallelized by Chan and Schlag [3], targeting a
network-based computing environment.

The parallel software presented by the Altera authors is the
result of extensive development effort, and achieves speedups
of 1.7x for two threads and 2.2x for four threads. Their
approach has one thread that proposes and finalizes moves,
while the remaining threads evaluate moves concurrently.
All moves are tracked in an ordered buffer, and a software
structure called a “dependency checker” is used to monitor
memory accesses and detect any conflicts between moves that
are being evaluated in parallel. A key insight is that these
software constructions strongly resemble the services pro-
vided byTransactional Memory (TM), a parallel programming
paradigm that has become the focus of numerous computer
systems research groups and is poised to enter the mainstream.

B. TM Parallelization

Typical parallel software development is an all-or-nothing
process where the parallelized application is very unstable and
produces incorrect results until bugs such as data races and
deadlocks are found and fixed. Transactional memory aims to
offer a smoother development process without a long period of
unstable code, so that developers can focus on optimizations
and performance tuning. The goal is for parallel programming
with TM to be as easy as using a single global lock to protect



shared data, while providing the high performance of fine-
grained locking.

Transactional memory requires the programmer to specify
sections of code that run as “transactions”. The TM system
automatically monitors all accesses to shared memory during
a transaction, and detects any conflicts between concurrently
executing transactions. Conflicting transactions can be aborted,
rolled-back, and re-executed such that the system makes
correct forward progress.

In this paper, we examine TM as a means of parallelizing
FPGA CAD software. Specifically we use a case study of
parallelizing simulated annealing-based placement within the
Versatile Place and Route (VPR) CAD software, using the
TinySTM research software TM (STM) system [4]. We call
the resulting softwareTransactional VPR (TVPR), although
we have so far only transactionalized the placement phase.
We describe our implementation of TVPR, including opti-
mizations and algorithmic changes. As we will demonstrate,
TM shows potential for scalable parallelism, as the resulting
TVPR system exhibits near-linear scaling over its single thread
performance, with minimal impact on the overall quality of
placement.

C. Related Work

Simulated annealing-based placement involves choosing a
pair of blocks at random, swapping their positions, and eval-
uating the impact of this swap on a chosen cost function.
Depending on the impact, the swap will either be accepted
or rejected. This process continues until the cost function
converges to a satisfactory value. Previous work by Chandy,
Kim et al. [5] discusses four main methods for parallelizing
this general algorithm:Move Acceleration, Parallel Moves,
Multiple Markov Chains, andSpeculative Computation. TVPR
is an implementation ofParallel Moves—i.e., we evaluate
multiple swaps in parallel.

Some preliminary work has demonstrated the potential
to optimistically parallelize CAD algorithms. Watsonet al.
demonstrate the potential for using TM to parallelize Lee’s
routing algorithm through the use of a simulation of an
abstracted TM system, analyzing the available parallelismand
amount of work done [6]. They begin with a simple approach,
and then adapt their parallel implementation further to achieve
significantly more parallelism. In our work, we use a full
software TM system and measure its execution on a real
multicore system. Thread-Level Speculation (TLS) is a more
hardware-centric form of optimistic parallelism with many
similarities to TM. Prabhu and Olukotun [7] manually apply
TLS to the SPEC2000 benchmark suite, which includes an
earlier version of VPR. They also demonstrate that standard
parallel optimizations can further improve the performance of
parallel execution.

D. Contributions

In this paper, we make the following contributions: (i) we
present the first implementation and evaluation of transaction-
alized simulated annealing-based placement on a real system;

(ii) we demonstrate that this method of parallelization sup-
ports incremental performance optimization, where developers
can invest extra effort to improve performance rather than
debugging a broken parallel implementation; (iii) we discuss
a method of using TM to provide serial equivalence; (iv) we
demonstrate that an optimized transactional implementation
is scalable, resulting in near linear speedup over the single-
threaded TVPR.

II. U SING TRANSACTIONAL MEMORY

In this section we describe how our STM system was
chosen, how it functions, and its tunable parameters and
features.

A. Choosing a TM System

Transactional memory systems generally fall into two cat-
egories: those that are hardware-based [8], [9], and those
that are software-based [4], [10]–[12]. Hardware-based sys-
tems are presently in the conceptual stage, and can only be
studied through simulation. However, such systems have the
advantage that their overheads are much lower than those
that are software-based. Software-based systems usually incur
high overheads, but allow for the development of software
that can be evaluated on real systems. To compute a full
simulated annealing placement for a reasonably-sized circuit
on a simulated [hardware] TM system would take weeks or
months—hence for this work we opted to instead study a
software-based TM system.

There are currently many different software transactional
memory (STM) systems to choose from. The work of Drago-
jević et al. [10] compares the performance of many of the most
well known STMs and introduces their own implementation,
SwissTM, which they believe overcomes some of the limita-
tions of previous implementations. For our work we compared
the performance of SwissTM, TinySTM (a top performer in
the comparisons performed by Dragojević et al.), and TL2-
x86, which is a STAMP [13] group x86 port of SUN’s well-
known TL2 [11]. We used a preliminary implementation of
TVPR and compared the wall clock time required to complete
the placement process when using each of the above STMs
with a varying number of threads. In these experiments we
found that the performance of TinySTM was the best for
our particular application. However, it is important to note
that a “transactionalized” program can normally be ported to
different TM systems fairly easily.

B. TinySTM

TinySTM [4] is a research STM, the joint work of the
University of Neuchâtel (Switzerland) and the Dresden Uni-
versity of Technology (Germany). In our experiments we use
TinySTM version 0.9.7. TinySTM is aC software library
linked at compile time. The developer specifies transaction
boundaries and annotates shared reads and writes within their
source code using function macros. For example,START
and COMMIT macros mark the start and end of transactions
respectively.



Whenever an annotated write occurs during runtime, a
call is instead made to the TinySTM library’s TM “write”
function. This function takes the memory address of the write,
applies a shift, and uses the resulting value as an index into
a fixed-size hash table to find the associated TM “lock” for
that address. If the lock is already owned (i.e. by another
transaction) a conflict has occurred and the transaction must
abort. Otherwise, the thread takes ownership of the lock and
logs both the address and value of the write into a transaction-
specific data structure within the library called the “writeset”.
A similar TM “read” function is used whenever a shared read
is encountered. A successful read (i.e. a read to a location
whose lock is not held) is added to another transaction-specific
data structure known as the “read set”.

At the end of a transaction (i.e. where theCOMMIT macro
occurs at runtime) a final function call is made that attempts
to “commit” the transaction. At this time, a TM “validate”
function iterates over the read set for the transaction to ensure
that all reads are still valid. If so, entries in the transaction’s
write set are written to main memory, and all held locks in
the hash table are released. If an entry in the read set is
no longer valid (i.e. was written by another transaction), the
transaction must abort. Whenever a transaction must abort,a
call to the library’s TM “abort” function is made which drops
all locks owned by the transaction and restarts the transaction
by jumping back to the beginning.

C. TinySTM Parameters

Most STM systems offer many tunable parameters to im-
prove performance, including TinySTM. The tunable parame-
ters available include those that determine whether the system
is optimistic or pessimistic, how the system reacts at the
time of an abort (referred to as the “contention manager”)
and others which are specific to the locking mechanism
used by TinySTM. Optimistic parameters are those that favor
low-contention environments (where aborts are rare) because
they reduce the time required to commit transactions at the
cost of making aborts slower. Pessimistic choices are more
appropriate for systems of modest contention, as they mean
aborts occur faster and are detected earlier. We consider the
following implementation options, which can each be either
optimistic or pessimistic:

• Versioning: This parameter controls when TinySTM
makes modifications to main memory. Withlazy ver-
sioning (called write-back by TinySTM), updates are
made to main memory at commit time, where they
are written from the TM system’s buffers. Witheager
versioning (called write-through by TinySTM), modi-
fications to main memory are done immediately upon
memory access, and an undo log is used in the case of a
transaction abort.

• Lock Acquisition: This parameter controls when the TM
system acquires locks for memory accesses. Withlazy
lock acquisition (calledcommit-time by TinySTM), the
TM system only checks for locks at commit time. With

eager acquisition (calledencounter-time by TinySTM),
locks are acquired immediately upon a memory access.

A contention manager is used to determine how a transac-
tion reacts after an abort. An example policy implemented by
a contention manager is for the aborting transaction to back-
off for a pre-determined amount of time before re-executing.
TinySTM offers a choice of several simple contention man-
agers [14].

TinySTM also offers parameters to tune its locking mech-
anism. Since memory locations are mapped to locks using
a hash table, there is the possibility of false-sharing due to
contiguous areas of memory being mapped to the same lock.
TinySTM offers two ways to trade-off between the complexity
of the hash table and the probability of false-sharing. The
first is to control the number of entries in the hash table (i.e.,
the total number of locks), and the second is to control the
memory address shift used to map an address to a lock—
which specifies the granularity of memory regions that map
to the same lock. We describe our tuning of these parameters
later in Section III-D.

III. PARALLELIZING VPR WITH TM

We separate the description of our parallel implementation
into three categories. We first describe the simulated annealing
algorithm, the high-level modifications made to support mul-
tiple cores, and how we set the TinySTM parameters. We then
describe the more specific modifications, which are classified
as either optimizations or algorithmic changes. Optimizations
include those that are standard to parallel programming, and
others that are more specific to CAD. Algorithmic changes
are simple modifications that we introduced to allow TVPR to
better interact with the TM system.

A. Simulated Annealing

The algorithm used for placement in VPR is calledsimu-
lated annealing. The process begins with a random placement
of all the logic blocks to be placed and proceeds through
a series of iterations of making randomswaps of blocks
(i.e. switching their positions), and evaluating thecost of the
change using a chosen cost function. If the change is accepted
(either because it results in a benefit to the cost function, or
probabilistically for swaps that negatively impact cost) it is
maintained in the placement, otherwise the blocks are reverted
to their original positions. The number of iterations that the
algorithm performs is governed by a concept oftemperature.
Iterations can be thought of as temperaturesteps where during
each step a fixed number of swaps are performed. At the end
of each step, the temperature value is reduced based on the
success rate of the swaps performed, and a new step begins.
Once the temperature reaches a particular stopping value, the
arrangement of logic blocks at that time is reported as the final
placement.

B. Parallel Moves with TM

Our parallel implementation falls into theParallel Moves
category. This approach requires very few changes to the



Fig. 1. A representation ofparallel moves using TM. Thread T2 and Thread
T3 will conflict accessing block C.

underlying algorithm already used in VPR. We implement
each swap attempt as a transaction. Therefore, as long as
no two swaps access the same data structures, there are no
conflicts and they execute in parallel. This idea is illustrated
in Figure 1, which shows both blocks and a few very basic
nets connecting them. We label threads as T1-T4; thread T2
and T3 will conflict as they both require access to block C.
Aborts, however, are not limited to conflicts on block-related
structures: for example, if block O and P in the figure were
connected to the same net then threads T1 and T4 would also
conflict. It is worth reinforcing that combinational timingpaths
through a circuit are not a source of conflicts: While it is
true that altering the placement of a block on a timing path
may affect the timing slack of other blocks on the same path,
timing analysis and slack updates are not made after individual
block moves; rather, such updates occur only at the end of an
annealing iteration.

Since both swaps and transactions are speculative (meaning
that they each may succeed or fail), we use different termi-
nology to refer to the success and failure of each of them:

• Transactions either commit successfully, or must abort
and re-execute.

• Swaps are either accepted and maintained in the overall
placement, or else they are rejected and reverted back to
their original positions.

Getting started with TM was a very quick process. Including
time to familiarize with the VPR source code and TinySTM,
producing the first version of TVPR running on multiple cores
took approximately 1 month for a single developer.

Integrating TinySTM into VPR involved parallelizing the
main annealingfor loop that executes for each simulated
annealing temperature step. We use the GNUC compiler
implementation of the OpenMP [15] API to create a pool of
worker threads (typically 2, 4, or 8 threads) and we evenly split
loop iterations (i.e. swap attempts) among the threads in the
pool. For example, with four threads, each thread is performing
one quarter of the swap attempts for each temperature step.

To include TM, we were required to insert the appropriate
transaction boundaries and annotate read and write accesses
to shared data. Currently, TinySTM provides compiler tools
that can perform read/write annotation automatically without
the need of the programmer; however, at the time of writing,
these tools were in a very early development stage and so we
opted not to use them.

The function within VPR that performs the swap evaluation
is try_swap. In our implementation, the entirety of the
try_swap function is a transaction—hence the size of our
transactions can vary significantly depending on the complex-
ity of the swap being performed (i.e. the number of nets
connected to the blocks) and on the size of the circuit being
placed.

C. Random Number Generation

For random numbers, VPR uses a simple linear congruential
generator, where each number is a function of the previous
one. Such a generator is inappropriate in an environment
with multiple threads where we do not know how many
random numbers each thread will need. Rather than introduce
contention on the generator by using TM to access new
random numbers, we opted to implement a generator more
suited to a multi-threaded environment.

In the interest of keeping the generator simple, we use a
basic extension of VPR’s generator. We introduce amaster
stream of seeds, where the VPR generator initially creates a
number of random seeds equal to the number of threads being
used. Each of these seeds is then used by a modified version
of the VPR generator to create a stream of random numbers
for each thread, known aschild streams. Each thread then calls
upon its child stream whenever it requires a random number.

An important property of our system is that new random
numbers are generated on transaction abort. This means that
when a transaction must abort and re-execute, it is in essence
attempting an entirely new swap. This leads to a behavior
that we callswap favoritism, where the simulated annealing
process is preferring a particular type of object swap over
others. We describe our first encounter with this behavior in
Section IV-B, where swap favoritism had a significant impact
on performance. However, even after correcting the favoritism,
we still observe a more minor form of swap favoritism in
our current implementation. Specifically, our system tends
to favor transactions performing ’simpler’ swaps, meaning
swaps that involve blocks connecting to fewer and/or smaller
nets. This is because such swaps have a lower probability
of conflict, and take less time to evaluate (resulting in faster
transactions), and therefore are more likely to commit. The
result of this favoritism is an increased speedup of annealing,
and can be observed in the slightly super-linear speedup of
some benchmarks in our results shown in Section VI.

D. Tuning the STM for VPR

Throughout development, we experimented with the tunable
parameters available within TinySTM to improve performance
further, as follows:



Lock Acquisition We found that this parameter had the
most significant impact on performance. Depending on which
blocks are chosen for a swap (and therefore which nets) the
number of memory accesses (and thus transaction size) can
grow quite large. When commit-time locking is used, if all
threads are performing large transactions (which are likely to
conflict with each other) they will run to completion before the
conflict is detected. As a result, all the time spent by threads
whose transactions are aborted is wasted. Therefore we use
encounter-time locking to avoid this situation as conflictsare
detected immediately upon memory access.

Versioning This parameter had relatively little impact on
performance. However, we did find that write-back versioning
performed slightly better, most likely because our system
exhibits a reasonable amount of contention. Write-back ver-
sioning allows aborts to occur faster, since updates to main
memory do not need to be rolled back.

Contention Management We found that with our current
non-deterministic implementation, the most simple contention
manager that immediately re-executes an aborted transaction
worked best—back-off or priority-based contention managers
were unnecessary, due to the fact that we generate new random
numbers for transactions that abort and retry (as described
above in Section III-C).

TinySTM’s Locking Mechanism One distinct problem with
TinySTM’s locking mechanism is that the optimal size of the
hash table varies with the size of the circuits being placed.
With a larger circuit, more memory accesses are made, and
thus a larger hash table is needed to prevent false-sharing.
This suggests compelling potential future work to explore
dynamically tuning the hash table. To minimize false-sharing,
we associate the smallest possible memory region with each
lock. We perform the smallest shift possible to acquire the
hash table index, and also increase the hash table size (by a
factor of 16 from the TinySTM default).

IV. OPTIMIZATION

Since we were able to develop a correct initial version
of TVPR fairly quickly, we were able to spend the bulk of
development time optimizing performance, as we describe in
this section.

A. Standard Optimizations

The first two optimizations that we performed on the
transactional code are standard to parallel programming in
general:

• Reductions: Since the summation variables within the
main swapping loop are updated at the end of every swap
attempt, they were a significant cause of contention as
all threads were trying to access them. By allowing each
thread to modify local copies which are reduced at the
end of the loop, we avoid this unnecessary contention.

• Code Scheduling: Code that does not need to execute
transactionally was hoisted out of the transaction when-
ever possible. For example, we hoisted several calls to
malloc that were being made for every swap attempt
and creating a lot of unnecessary transaction aborts.

The effect of these simple standard techniques was quite
significant, improving both performance and scalability by
reducing the number of aborts and the serialization artifacts
of VPR.

B. Privatization

The optimization that had the most significant impact on the
performance of our parallel implementation was privatization.
This is another standard parallel programming optimization
that involves creating private (per-thread) copies of frequently
modified variables, which also leads to fewer transaction
aborts.

In our case there was one particular variable significantly
impacting our runtime behavior, an integer array called
x_lookup. This array is used locally by each swap attempt
to find the second block that will be used in the swap. It acts
as a cache of possible columns to choose from, and is only
used if the initial block chosen is not an I/O-type block.

During initial experiments, we discovered that when this
variable was shared, it was causing over 80% of all trans-
actional aborts. Every transaction attempting a non-I/O block
swap uses this data structure. Since we use encounter-time
locking, once a transaction had acquired the appropriate lock
for the first entry in the array, no other transactions could do
the same—so subsequent transactions would repeatedly abort
trying to acquire the lock. In other words, only one non-I/O
swap could be in-flight at a time. However, swaps of I/O
blocks were unaffected. Consequently, the transactions that
committed most often were I/O swaps, resulting in I/O-type
swap favoritism. By performing mainly I/O-type swaps (which
are much easier to compute than non-I/O swaps), our system
was exhibiting inflated speedup but with a severe degradation
in quality-of-result.

By creating a local copy of this variable for each thread,
non-I/O swaps were able to execute properly in parallel,
eliminating the I/O favoritism. This in turn reduced our abort
rate significantly, and significantly reduced our impact on the
quality-of-result for the resulting placement.

C. Leveraging TinySTM’s Store Buffers

To simplify the evaluation of a swap, VPR makes the
appropriate changes directly to the data structures involved.
This means that upon rejection, a swap must be reverted
within the data structures. Since within our TM system all
changes to main memory are buffered (when using write-back
versioning), a swap is performed within the STM’s buffers, and
upon rejection is reverted within them as well. At commit-
time, we are wastefully overwriting memory with the same
values that are already there. We improve on this by reverting
the swap in the TM buffers, and notifying the STM that it
does not need to write its values back to main memory. This
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change is an example of how TM and the algorithm being
accelerated can work more synergistically.

D. Algorithmic Changes

Through further contention analysis, we discovered that the
vast majority of remaining aborts were occurring on the most
commonly accessed net-related data structure. Figure 2 dis-
plays a breakdown of total aborts by data structure. As shown,
for some benchmarks, net-related data structures account for
up to 90% of aborts, prompting us to examine methods of
reducing the contribution of aborts caused by such structures.
Further experiments revealed that for some benchmarks there
were a very small number of their nets contributing to a large
proportion of aborts. Figure 3 illustrates the contribution to
net-related aborts seen by each benchmark by the 3 largest
nets within that benchmark. Thedes_perf benchmark, for
example, has one net contributing to over 80% of all its net-
related aborts.

TABLE I
QUALITY -OF-RESULT IMPACT OF IGNORING HIGHLY-CONNECTED NETS. A

+ INDICATES A DEGRADATION, A - INDICATES AN IMPROVEMENT.

Wire-length Crit. Path Delay
Thresh. Avg. Max. Avg. Max.
20% -0.4% +3.2% +1.5% +18.1%
10% -0.2% +3.5% +1.8% +18.1%
5% -0.3% +4.5% +4.5% +34.7%
2% +5.3% +71.3% +7.4% +40.7%

To alleviate this problem, we altered the VPR algorithm
to ignore highly-connected nets during swap evaluation. We
accomplish this by doing some pre-processing of the netlist
to determine the size of each net in terms of the percentage
of total blocks that it connects. We call this value thenet
coverage. Nets having a net coverage above a fixed threshold
are ignored during swap evaluation.

One of the major concerns of this change was the adverse
effect it may have on the quality-of-result. To examine this,
we performed experiments using sequential VPR. Our experi-
ments involved running sequential VPR with this modification,
varying the threshold and the initial seed used. We used 4
thresholds and ran sequential VPR with 5 different initial seeds
at each threshold. We then averaged the resulting estimated
placed wire-length and critical path delay over all seeds for
each threshold, for each benchmark. Table I lists both the
average and worst-case relative change in quality-of-result vs.
a 100% threshold (no nets ignored), across all benchmarks.
Although there appears to be an improvement in the average
placed wire-length for some thresholds, this is likely due to
noise in placement (which is heuristic).

We found that a threshold of 10% had an acceptable
trade-off between the amount of aborts it removed and the
degradation of quality-of-result incurred. Note that in our
results presented in Section VI, both the sequential and parallel
version of VPR are using this “ignoring nets” featured, to
avoid skewing the run-time results in favor of our approach—
since by ignoring some of the largest nets we are reducing the
amount of work VPR must do to evaluate a particular swap.

V. EXPERIMENTAL SETUP

In this section, we will describe the hardware and software
we used in our experiments, as well as the methodology used
to acquire our results.

A. Versatile Place and Route

VPR [1] is a research placement and routing tool for FPGAs
developed at the University of Toronto. In this work, we use
the most up-to-date version 5.0.2, which improves on the
version included as a SpecINT2000 benchmark with support
for heterogeneous block types and single-driver routing. We
use the benchmark circuits provided with the VPR distribution,
as shown in Table II, and the CAD flow described in Figure 4.
We use an FPGA architecture of 4-LUT logic blocks with a
cluster size of ten. We run VPR with the default placement
options.



Fig. 4. CAD Flow.

TABLE II
BENCHMARKS.

Circuit # Blocks # Nets
paj top hierarchy no mem 6423 45151
sv chip2 hierarchy no mem 5082 34532
mac2 1384 6234
oc54 cpu 443 1989
des perf 845 4626
rs decoder2 315 1792
cf cordic v 18 18 18 716 3723
sv chip1 hierarchy no mem 2060 12462
mac1 493 1837
diffeq f systemC 377 1713
rs decoder1 190 986
fir scu rtl restructuredfor cmm exp 124 667
paj boundtophierarchy no mem 842 2489
cf cordic v 8 8 8 162 685
des area 347 1026
paj framebuftophierarchy no mem 214 626
cf fir 24 16 16 871 4335
paj raygentophierarchy no mem 952 2617
iir 94 521
iir1 138 511
diffeq paj convert 347 825
sv chip3 hierarchy no mem 68 199
cf fir 3 8 8 90 296
CRC33 D264 350 367

B. Measuring Performance

We perform our experiments on a real machine, with two
Quad-Core Intel Xeon E5345 processors running at 2.33 GHz,
4 GB of main memory, and running the Linux Kernel version
2.6.18.

The implementation we report results for in this paper
is not serially equivalent [2], and consequently, comparing
the performance against the sequential version must be done
carefully. VPR’s simulated annealing schedule is dynamic1,
therefore our implementation, since it is not deterministic, can
follow a different path to convergence each time it is run,
even when given the same initial random seed. This is similar
to what occurs with the original sequential algorithm when
different seeds are used.

1Meaning that temperature adjustments are made based on costchange
statistics.
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Fig. 5. Speedup vs. Sequential-IBN.

We chose a simple approach of comparing the total wall-
clock time required to complete the sections of code that
we have parallelized, both in sequential VPR and our im-
plementation. We do this to avoid including the extra time
involved in timing-analysis, which is not parallelized in our
implementation and is an important research challenge in
itself. We average the results over three trials, and both the
sequential and parallel algorithms are given the same initial
seed.

To determine the impact on quality-of-result, we compare
both (i) the placed wire-length and (ii) the critical path delay
of the resulting placement. In order to determine the value
of these metrics we use the router in VPR to search for the
minimum necessary tracks-per-channel in an initial sequential
baseline run. After this value was determined, we increasedit
by 30% and fix all future sequential and parallel runs to use the
fixed width. Interconnect is therefore invariant for each circuit,
across all our experiments. We use the final critical path delay
and placed wire-length values of the resulting routed circuit to
make our quality-of-result comparison. These reported values
are averaged over three trials.

VI. RESULTS

In this section, we present the performance and quality-of-
result impact of our implementation of TVPR. Figure 5 illus-
trates the performance of TVPR against the original sequential
VPR (without any STM overheads), including the “ignoring
big nets” (IBN) optimization, across all benchmark circuits
for 1, 2, 4 and 8 threads. Only a few benchmarks perform
better than sequential VPR, and the ones that do accomplish
this at 8 threads. This poor speedup is due to the overheads of
STM: in our experiments, we found that TVPR using 1 thread
was approximately8x slower on average than sequential
VPR. This can be seen in the figure by looking at TVPR’s
performance for a single thread. This extensive slowdown
is due to the large amount of overhead in instrumenting all
shared reads and writes inherent with any STM (as described
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Fig. 6. Abort Rates for 2, 4, and 8 threads (shown respectively as three
adjacent bars per benchmark). Benchmark circuits are sorted smallest to
largest (left to right) based on total number of nets.

in Section II-B). The slight super-linear speedup demonstrated
by some benchmarks (e.g.diffeq_f_systemC, mac1) is
the result of the favoritism described in Section III-C.

Figure 6 illustrates the abort rate statistics of TVPR for 2,4,
and 8 threads for all benchmarks. The value of the abort rate
is the percentage of total attempted transactions that resulted
in an abort. We did not observe a direct correlation between
the relative values of properties of the circuits themselves (i.e.
number of nets, number of blocks, average per-block net fan-
out) and their relative abort rates. For example, a circuit with
a larger average per-block net fan-out than another circuitdid
not necessarily exhibit a higher abort rate. The figure also
illustrates no clear correlation between the abort rates and the
total number of nets in a circuit. However, we did find that
the largest three benchmark circuits that we used exhibited
reasonable abort rates at 8 threads. As shown in the figure,
these circuits (sv_chip1 , paj_top andsv_chip2) had
abort rates at 8 threads of 24.04%, 21.39% and 22.29%
respectively. Larger circuits exhibit less contention leading to
smaller abort rates.

The overall impact on the quality-of-result is a maximum
degradation of 5% on the post-routed wire-length, and 10%
on the critical path delay, both at eight threads. On average,
the impact is 1% on the post-routed wire-length, and 1% on
critical path delay.

Despite the run-time relative to sequential, it is evident that
TVPR scales quite well (almost linearly) with the number
of threads used. Figure 7 illustrates the speedup of our
implementation relative to its own single thread performance,
averaged over all benchmark circuits. This plot may also be
interpreted as the projected speedup, if there were no overhead.

A. Potential for Hardware TM

Hardware support has the potential to drastically improve
the performance of TM. This is because operations which
are expensive in software, such as instrumenting all reads
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bars.

and writes as well as detecting conflicts, can be optimized
in hardware.

While hardware support for TM (HTM) is not yet com-
mercially available, primitive support was announced as part
of the specification for SUN’s Rock processor [16] and both
IBM and Intel have several research groups studying TM.
Simulated studies of LogTM [8], an academic HTM, show
that it can provide up to 30x greater throughput than SUN’s
STM called TL2. A compelling design is a hybrid TM—a mix
of hardware and software that can be thought of as hardware-
accelerated STM. Recent work by Levet al. [17] explores (via
simulation) a hybrid TM system called Phased Transactional
Memory (PhTM) that performs much better than pure STM
(TL2 [11]) and quite close to pure HTM. Although we found
TinySTM performs better than TL2, we believe this analysis is
illustrative of the potential improvement when using a hybrid
or full hardware TM system.

VII. SUPPORTINGSERIAL EQUIVALENCE

A major concern of CAD tool developers and users is
determinism. The result of placement should be the same given
the same initial seed, and regardless of the number threads.
This constraint has been given the nameserial equivalence
by previous work [2]. While our implementation is currently
not serially equivalent, this section discusses modifications to
TVPR in order to achieve serial equivalence.

The modifications involve making a change in how the
random number generator’s master and child streams are
generated, and requires using a TM system that supports
ordered transactions [18]. In particular, threads will perform
swaps in a deterministic round-robin manner and threads will
also use a deterministic random number sequence. Ordered
transactions imply a fixed commit order within the TM system.
An example of this is a token system, in which a thread must
wait until it holds the token before it commits its transaction.
The token is passed round-robin among the threads. With
these changes, along with the re-use of random numbers on



transaction re-execution, we can achieve both determinismand
serial equivalence for any number of threads.

We expect that attempting to serialize transactions using a
token within a software-based transactional memory system
would result in significant slow-downs due to the extra over-
head involved. However, we also expect that hardware-based
systems may be able to provide this functionality without such
a drastic cost to performance [18].

VIII. C ONCLUSIONS

Transactional memory (TM) is a new paradigm in parallel
computing that is gaining traction in industry and the re-
search community, primarily due to its ease-of-use relative to
threads, locks and condition variables. We presented the first
simulated annealing-based placer (TVPR) parallelized through
TM. Our approach is based on modeling placement swaps
as transactions that execute concurrently, and incorporates
algorithmic optimizations that reduce transaction abort rates.
We found that the scalability of our algorithm is promising.In
particular, near-linear speedups versus single-threadedTVPR
were observed as parallelism was increased, with minimal
deleterious effect on placement quality. However, resultsalso
show that TM support in hardware is likely necessary if
significant speedups are to be achieved over conventional
sequential VPR.
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