Parallelizing FPGA Placement Using
Transactional Memory

Steven Birk!, J. Gregory Steffart?, Jason H. Andersof?

Department of Computer Science, # Department of Electrical and Computer Engineering, University of Toronto
University of Toronto
10 King's College Road
Toronto, Canada
Lsbirk@ecg. t oront 0. edu

2steffan@ecg.
3j ander s@ecg.

toronto. edu
toront o. edu

Abstract—To capitalize on the growing abundance of multicore A. Conventional Parall€lization

hardware, FPGA vendors have begun to parallelize the most
compute intensive algorithms in their CAD software. Howeve
parallelization is a painstaking and hence expensive pross that
limits the number of algorithms that can be cost-effectivey
parallelized. Transactional Memory (TM) promises an easieto-
use alternative to locks for critical sections in threaded ode—
allowing programmers to avoid deadlocks and data races, and
also allowing critical sections to execute in parallel as log as
they dynamically access independent data. In this paper, we
present our work on using TM to parallelize simulated anneaing-
based placement for FPGASs. In particular, we use a software W
(TinySTM) to parallelize the placement phase of Versatile Rice
and Route (VPR) 5.0.2 [1]. With TM we very quickly produced
a parallel and correct version of the software, allowing us ¢
focus on incrementally tuning performance. We describe our
experiences in tuning the TM system and CAD software, and
the interesting algorithmic trade-offs that exist. In the end, we
found that optimized transactional placement has the potetial
for scalable performance: our non-deterministic implemenation
achieves self-relative speedups over a single thread of 28
3.62x and 7.27x at 2, 4, and 8 threads respectively with ligl
quality degradation. However, hardware support for TM is
likely required to overcome the overheads of STM, as our
implementation’s single thread performance is 8x slower tAn
sequential VPR.

I. INTRODUCTION

The microprocessor technology road-map predicts a future

with tens to hundreds of processors per chip and beyond,
with limited clock frequency improvements and likely sirapl
individual processors. Faced with the corresponding dewiis
sequential program performance, the software industrgris-c
pelled to parallelize existing software by introducingetads

and synchronization to target these multicore proces3auis.

challenge is especially significant for the FPGA compani

There has been considerable work on parallelizing CAD
algorithms using conventional methods, in particular forns
lated annealing-based placement—the algorithm that wesfoc
on in this paper. Unfortunately, most parallelized sofwvar
running on the parallel hardware of the time had difficulty
competing with the cost/performance of the corresponding
sequential software running on the latest uniprocessaesys
However, with multi-core processors becoming ubiquitous,
parallel CAD algorithms are now a necessity. As evidence,
the FPGA companies have begun to parallelize their CAD
software, and Altera has recently published their effors o
parallelizing the simulated-annealing-based placeméase
of the Quartus CAD software [2]. Analytical placement has
also been parallelized by Chan and Schlag [3], targeting a
network-based computing environment.

The parallel software presented by the Altera authors is the
result of extensive development effort, and achieves sgeed
of 1.7x for two threads and 2.2x for four threads. Their
approach has one thread that proposes and finalizes moves,
while the remaining threads evaluate moves concurrently.
All moves are tracked in an ordered buffer, and a software
structure called a “dependency checker” is used to monitor
memory accesses and detect any conflicts between moves that
lrj?‘w?eing evaluated in parallel. A key insight is that these
Software constructions strongly resemble the services pro
vided byTransactional Memory (TM), a parallel programming
paradigm that has become the focus of numerous computer
systems research groups and is poised to enter the mamstrea

gs TM Parallelization

whose CAD software (i) must manipulate hardware designsTypical parallel software development is an all-or-nothin
that are themselves growing with Moore’s law, but (ii) iprocess where the parallelized application is very unstabd
composed of a large number of sequential algorithms. Theoduces incorrect results until bugs such as data races and
challenge is that parallel programming is a time-consumintpadlocks are found and fixed. Transactional memory aims to
and error-prone process. While progress has been madeoffer a smoother development process without a long petfiod o

parallelizing the most crucial algorithms (at great exgdns

unstable code, so that developers can focus on optimization

future CAD parallelization efforts will require a more costand performance tuning. The goal is for parallel prograngmin

effective approach.

with TM to be as easy as using a single global lock to protect

shared data, while providing the high performance of fing¢i) we demonstrate that this method of parallelization -sup
grained locking. ports incremental performance optimization, where deyaie

Transactional memory requires the programmer to specifgn invest extra effort to improve performance rather than
sections of code that run as “transactions”. The TM systetiebugging a broken parallel implementation; (iii)) we dissu
automatically monitors all accesses to shared memory gluria method of using TM to provide serial equivalence; (iv) we
a transaction, and detects any conflicts between conclyremtemonstrate that an optimized transactional implememtati
executing transactions. Conflicting transactions can betet), is scalable, resulting in near linear speedup over the eing|
rolled-back, and re-executed such that the system malteseaded TVPR.
correct forward progress.

In this paper, we examine TM as a means of parallelizing
FPGA CAD software. Specifically we use a case study of In this section we describe how our STM system was
parallelizing simulated annealing-based placement withe chosen, how it functions, and its tunable parameters and
Versatile Place and Route (VPR) CAD software, using tHeatures.

TinySTM research software TM (STM) system [4]. We call ,
the resulting softwardransactional VPR (TVPR), although A Choosing a TM System
we have so far only transactionalized the placement phaseTransactional memory systems generally fall into two cat-
We describe our implementation of TVPR, including optiegories: those that are hardware-based [8], [9], and those
mizations and algorithmic changes. As we will demonstratiat are software-based [4], [10]-[12]. Hardware-bases sy
TM shows potential for scalable parallelism, as the resglti tems are presently in the conceptual stage, and can only be
TVPR system exhibits near-linear scaling over its singteddd studied through simulation. However, such systems have the
performance, with minimal impact on the overall quality odvantage that their overheads are much lower than those
placement. that are software-based. Software-based systems usneilly i
high overheads, but allow for the development of software
C. Related Work that can be evaluated on real systems. To compute a full

Simulated annealing-based placement involves choosingimulated annealing placement for a reasonably-sizediitirc
pair of blocks at random, swapping their positions, and-evaln a simulated [hardware] TM system would take weeks or
uating the impact of this swap on a chosen cost functiomonths—hence for this work we opted to instead study a
Depending on the impact, the swap will either be acceptsdftware-based TM system.
or rejected. This process continues until the cost functionThere are currently many different software transactional
converges to a satisfactory value. Previous work by Chandyemory (STM) systems to choose from. The work of Drago-
Kim et al. [5] discusses four main methods for parallelizingevic et al. [10] compares the performance of many of thetmos
this general algorithmMove Acceleration, Parallel Moves, well known STMs and introduces their own implementation,
Multiple Markov Chains, andSpeculative Computation. TVPR SwissTM, which they believe overcomes some of the limita-
is an implementation ofParalld Moves—i.e., we evaluate tions of previous implementations. For our work we compared
multiple swaps in parallel. the performance of SwissTM, TinySTM (a top performer in

Some preliminary work has demonstrated the potentidle comparisons performed by Dragojevic et al.), and TL2-
to optimistically parallelize CAD algorithms. Watsaet al. x86, which is a STAMP [13] group x86 port of SUN’s well-
demonstrate the potential for using TM to parallelize Leelknown TL2 [11]. We used a preliminary implementation of
routing algorithm through the use of a simulation of afVPR and compared the wall clock time required to complete
abstracted TM system, analyzing the available paralletisch the placement process when using each of the above STMs
amount of work done [6]. They begin with a simple approachith a varying number of threads. In these experiments we
and then adapt their parallel implementation further tdexeh found that the performance of TinySTM was the best for
significantly more parallelism. In our work, we use a fulbur particular application. However, it is important to @ot
software TM system and measure its execution on a rehht a “transactionalized” program can normally be ported t
multicore system. Thread-Level Speculation (TLS) is a moifferent TM systems fairly easily.
hardware-centric form of optimistic parallelism with many
similarities to TM. Prabhu and Olukotun [7] manually apply> TMYSTM
TLS to the SPEC2000 benchmark suite, which includes anTinySTM [4] is a research STM, the joint work of the
earlier version of VPR. They also demonstrate that standdddiversity of Neuchatel (Switzerland) and the Dresden-Uni
parallel optimizations can further improve the performan€ versity of Technology (Germany). In our experiments we use
parallel execution. TinySTM version 0.9.7. TinySTM is & software library
linked at compile time. The developer specifies transaction
boundaries and annotates shared reads and writes within the

In this paper, we make the following contributions: (i) wesource code using function macros. For exam@&ART
present the first implementation and evaluation of tramsact and COMM T macros mark the start and end of transactions
alized simulated annealing-based placement on a realnsysteespectively.

Il. USING TRANSACTIONAL MEMORY

D. Contributions

Whenever an annotated write occurs during runtime, a eager acquisition (calledencounter-time by TinySTM),
call is instead made to the TinySTM library’s TM “write” locks are acquired immediately upon a memory access.
function. This function takes the memory address of theeert A contention manager is used to determine how a transac-
applies a shift, and uses the resulting value as an index iff¢h reacts after an abort. An example policy implemented by
a fixed-size hash table to find the associated TM “lock” fof contention manager is for the aborting transaction to -back
that address. If the lock is already owned (i.e. by anothgff for a pre-determined amount of time before re-executing
transaction) a conflict has occurred and the transactiort mytySTM offers a choice of several simple contention man-
abort. Otherwise, the thread takes ownership of the lock aggers [14].
|OgS both the address and value of the write into a trangactio T|nySTM also offers parameters to tune its |Ocking mech-
specific data structure within the library called the “wiS&”". gnism. Since memory locations are mapped to locks using
A similar TM “read” function is used whenever a shared reagl hash table, there is the possibility of false-sharing due t
is encountered. A successful read (i.e. a read to a locatightiguous areas of memory being mapped to the same lock.
whose lock is not held) is added to another transactionipecTinySTM offers two ways to trade-off between the complexity
data structure known as the “read set”. of the hash table and the probability of false-sharing. The

At the end of a transaction (i.e. where t8®VM T macro first is to control the number of entries in the hash table, (i.e
occurs at runtime) a final function call is made that attempfise total number of locks), and the second is to control the
to “commit” the transaction. At this time, a TM “validate” memory address shift used to map an address to a lock—
function iterates over the read set for the transaction suen which specifies the granularity of memory regions that map
that all reads are still valid. If so, entries in the trangats to the same lock. We describe our tuning of these parameters
write set are written to main memory, and all held locks imater in Section I11-D.
the hash table are released. If an entry in the read set is
no longer valid (i.e. was written by another transactioh} t IIl. PARALLELIZING VPRWITH TM
transaction must abort. Whenever a transaction must adort, We separate the description of our parallel implementation
call to the library’s TM “abort” function is made which dropsinto three categories. We first describe the simulated dimgea
all locks owned by the transaction and restarts the traigactalgorithm, the high-level modifications made to support-mul

by jumping back to the beginning. tiple cores, and how we set the TinySTM parameters. We then
describe the more specific modifications, which are classifie
C. TinySTM Parameters as either optimizations or algorithmic changes. Optinizes

. include those that are standard to parallel programmind, an
Most STM systems offer many tunable parameters to im- P prog d

oV formance. including TinvSTM. The tunabl ; mothers that are more specific to CAD. Algorithmic changes
prove periormance, including Tiny - 1€ tunable parameg simple modifications that we introduced to allow TVPR to
ters available include those that determine whether theesys better interact with the TM system

is optimistic or pessimistic, how the system reacts at the '

time of an abort (referred to as the “contention managerf). Smulated Annealing

and others which are specific to the locking mechanism-l-he algorithm used for placement in VPR is callgthu-
used by TinySTM. Optimistic parameters are those that favf%{ted annealing. The process begins with a random placement
low-contention environments (where aborts are rare) bm:a%f all the logic blocks to be placed and proceeds through
they reduce the time required to commit transactions at tgeSerieS of iterations of making randoawaps of blocks

cost of _making aborts slower. Pessimistic .choices are m(ur.%_ switching their positions), and evaluating st of the
agproprlate f(;r system;; of ":deESt gontept|on, as theyémetﬁ%nge using a chosen cost function. If the change is aatepte
aborts occur faster and are detected earlier. We consider Egither because it results in a benefit to the cost function, o

following implementation options, which can each be e'th‘?{robabilistically for swaps that negatively impact cost)s

optimistic or pessimistic: maintained in the placement, otherwise the blocks are tever

« \Versioning: This parameter controls when TinySTMto their original positions. The number of iterations thiag t
makes modifications to main memory. Withzy ver- algorithm performs is governed by a conceptt@fiperature.
sioning (called write-back by TinySTM), updates are Iterations can be thought of as temperatsieps where during
made to main memory at commit time, where thegach step a fixed number of swaps are performed. At the end
are written from the TM system’s buffers. Witteger of each step, the temperature value is reduced based on the
versioning (called write-through by TinySTM), modi- success rate of the swaps performed, and a new step begins.
fications to main memory are done immediately upo@nce the temperature reaches a particular stopping vdlae, t
memory access, and an undo log is used in the case afreangement of logic blocks at that time is reported as tta fin
transaction abort. placement.

o Lock Acquisition: This parameter controls when the TM _
system acquires locks for memory accesses. Wiy B- Parallel Moves with TM
lock acquisition (calleccommit-time by TinySTM), the Our parallel implementation falls into thiéarallel Moves
TM system only checks for locks at commit time. Withcategory. This approach requires very few changes to the

(- T3 —\‘ To include TM, we were required to insert the appropriate
A\ 4 N\ transaction boundaries and annotate read and write ascesse
A >\B — C D T2 to shared data. Currently, TinySTM provides compiler tools
v ‘ that can perform read/write annotation automatically with
J the need of the programmer; however, at the time of writing,
E F G H these tools were in a very early development stage and so we
k opted not to use them.
N The function within VPR that performs the swap evaluation
| J K $\ is try_swap. In our implementation, the entirety of the
‘ ‘ try_swap function is a transaction—hence the size of our
T1 transactions can vary significantly depending on the coxaple
M N — O P ity of the swap being performed (i.e. the number of nets
\ } _J connected to the blocks) and on the size of the circuit being
T4 placed.

Fig. 1. A representation gfarallel moves using TM. Thread T2 and Thread C. Random Number Generation
T3 will conflict accessing block C. For random numbers, VPR uses a simple linear congruential
generator, where each number is a function of the previous

derlvi lqorith read din VPR. We impl one. Such a generator is inappropriate in an environment
underlying algorithm aiready used in - We implemeng;, multiple threads where we do not know how many

each swap attempt as a transaction. Therefore, as Iongrfnc‘dom numbers each thread will need. Rather than introduce

no tV.VO swaps access the same data str.uc_tures_, there areditention on the generator by using TM to access new
conflicts and they execute in parallel. This idea is illusida random numbers, we opted to implement a generator more
in Figure 1, which shows both blocks and a few very basig iaq to a multi-threaded environment

nets connecting them. We label threads as T1-T4; thread T%n the interest of keeping the generator simple, we use a

and T3 will conflict as they both require access to block %‘asic extension of VPR's generator. We introducenster

Aborts, however, are not limited to conflicts on block-retat stream of seeds, where the VPR generator initially creates a

structures: for example, if block O and P in the figure WeTSumber of random seeds equal to the number of threads being

con;;_ecttlad_ to thehsam? net thin threaS; Tl. antlj T4 Wowd | 2d. Each of these seeds is then used by a modified version
conflict. Itis worth reinforcing that combinational timimgths .of the VPR generator to create a stream of random numbers

through a circuit are not a source of conflicts: While it For each thread, known ahild streams. Each thread then calls

true that altermg t.he placement of a block on a timing paﬁ}lj;bon its child stream whenever it requires a random number.
may affect the timing slack of other blocks on the same pat 'An important property of our system is that new random

E:nlnkg analys.ls aﬂd slackhupdgtes are not ma}de af:]er Irl“ﬁy'dfnumbers are generated on transaction abort. This means that
ock moves; rather, such updates occur only at the end ofgRo, 5 transaction must abort and re-execute, it is in eesenc

anggalmg |t$]rat|on. d . lati attempting an entirely new swap. This leads to a behavior
ince both swaps and transactions are speculative (mea we callswap favoritism, where the simulated annealing

that they each may succeed or fa|I),_we use different temﬂffocess is preferring a particular type of object swap over
nology to refer to the success and failure of each of them: others. We describe our first encounter with this behavior in
» Transactions either commit successfully, or must aborkection Iv-B, where swap favoritism had a significant impact
and re-execute. on performance. However, even after correcting the fagonmit
« Swaps are either accepted and maintained in the overglle still observe a more minor form of swap favoritism in
placement, or else they are rejected and reverted backyl@ current implementation. Specifically, our system tends
their original positions. to favor transactions performing 'simpler swaps, meaning
Getting started with TM was a very quick process. Includingwaps that involve blocks connecting to fewer and/or smalle
time to familiarize with the VPR source code and TinySTMnpets. This is because such swaps have a lower probability
producing the first version of TVPR running on multiple coresf conflict, and take less time to evaluate (resulting indast
took approximately 1 month for a single developer. transactions), and therefore are more likely to commit. The
Integrating TinySTM into VPR involved parallelizing theresult of this favoritism is an increased speedup of anngali
main annealingf or loop that executes for each simulateénd can be observed in the slightly super-linear speedup of
annealing temperature step. We use the GRWompiler some benchmarks in our results shown in Section VI.
implementation of the OpenMP [15] API to create a pool of)
worker threads (typically 2, 4, or 8 threads) and we evenliy spP- Tuning the STM for VPR
loop iterations (i.e. swap attempts) among the threadsen th Throughout development, we experimented with the tunable
pool. For example, with four threads, each thread is periftgm parameters available within TinySTM to improve performanc
one quarter of the swap attempts for each temperature stefurther, as follows:

Lock Acquisition We found that this parameter had the « Code Scheduling: Code that does not need to execute
most significant impact on performance. Depending on which transactionally was hoisted out of the transaction when-
blocks are chosen for a swap (and therefore which nets) the ever possible. For example, we hoisted several calls to
number of memory accesses (and thus transaction size) can mal | oc that were being made for every swap attempt
grow quite large. When commit-time locking is used, if all and creating a lot of unnecessary transaction aborts.
threads are performing large transactions (which areylikel The effect of these simple standard techniques was quite
conflict with each Other) they will run to Completion befonet Significant, improving both performance and Sca|abi|ity by

conflict is detected. As a result, all the time spent by thseagbducing the number of aborts and the serialization atsifac
whose transactions are aborted is wasted. Therefore we gg&/pR.

encounter-time locking to avoid this situation as conflate o
detected immediately upon memory access. B. Privatization
The optimization that had the most significant impact on the

Versioning This parameter had relatively little impact onperformance of our parallel implementation was privatirat
performance. However, we did find that write-back versigninThis is another standard parallel programming optimizatio
performed slightly better, most likely because our systefhat involves creating private (per-thread) copies of diestfly
exhibits a reasonable amount of contention. Write-back venodified variables, which also leads to fewer transaction
sioning allows aborts to occur faster, since updates to majports.
memory do not need to be rolled back. In our case there was one particular variable significantly

impacting our runtime behavior, an integer array called
Contention Management We found that with our current x | ookup. This array is used locally by each swap attempt
non-deterministic implementation, the most simple cotiéen to find the second block that will be used in the swap. It acts
manager that immediately re-executes an aborted transaclis a cache of possible columns to choose from, and is only
worked best—back-off or priority-based contention mamageysed if the initial block chosen is not an I/O-type block.
were unnecessary, due to the fact that we generate new randofyring initial experiments, we discovered that when this
numbers for transactions that abort and retry (as describggiable was shared, it was causing over 80% of all trans-
above in Section I1I-C). actional aborts. Every transaction attempting a non-l/@il

swap uses this data structure. Since we use encounter-time
TinySTM's Locking Mechanism One distinct problem with |ocking, once a transaction had acquired the appropriate lo
TinySTM’s locking mechanism is that the optimal size of theyy the first entry in the array, no other transactions cowd d
hash table varies with the size of the circuits being placeghe same—so subsequent transactions would repeatediy abor
With a larger circuit, more memory accesses are made, affing to acquire the lock. In other words, only one non-1/O
thus a larger hash table is needed to prevent false-shariggap could be in-flight at a time. However, swaps of 1/O
This suggests compelling potential future work to explongiocks were unaffected. Consequently, the transactioas th
dynamically tuning the hash table. To minimize false-ah@li committed most often were /O swaps, resulting in 1/0-type
we associate the smallest possible memory region with eagqﬁap favoritism. By performing mainly I/O-type swaps (wHic
lock. We perform the smallest shift possible to acquire thge much easier to compute than non-1/O swaps), our system
hash table index, and also increase the hash table size (Qy& exhibiting inflated speedup but with a severe degradatio

factor of 16 from the TinySTM default). in quality-of-result.
By creating a local copy of this variable for each thread,
IV. OPTIMIZATION non-1/0 swaps were able to execute properly in parallel,

of TVPR fairly quickly, we were able to spend the bulk ofate .significantly, and significgntly reduced our impact be t
development time optimizing performance, as we describe Gyality-of-result for the resulting placement.

this section. C. Leveraging TinySTM’s Store Buffers

To simplify the evaluation of a swap, VPR makes the
. o appropriate changes directly to the data structures imeblv
The first two optimizations that we performed on thehis means that upon rejection, a swap must be reverted
transactional code are standard to parallel programming {ithin the data structures. Since within our TM system all
general: changes to main memory are buffered (when using write-back
o Reductions: Since the summation variables within theversioning), a swap is performed within the STM'’s buffersj a
main swapping loop are updated at the end of every swapon rejection is reverted within them as well. At commit-
attempt, they were a significant cause of contention fime, we are wastefully overwriting memory with the same
all threads were trying to access them. By allowing eaclkalues that are already there. We improve on this by rewgrtin
thread to modify local copies which are reduced at thtbe swap in the TM buffers, and notifying the STM that it
end of the loop, we avoid this unnecessary contentiondoes not need to write its values back to main memory. This

A. Sandard Optimizations

TABLE |

100 QUALITY-OF-RESULT IMPACT OF IGNORING HIGHL¥CONNECTED NETS A
g I I I I + INDICATES A DEGRADATION, A - INDICATES AN IMPROVEMENT.
S 80]
f_i Wire-length Crit. Path Delay
c 60 1 Thresh. | Avg. | Max. Avg. | Max.
> 20% -0.4% | +3.2% || +1.5% | +18.1%
£ 40 _ pro—— 1 10% -0.2% | +3.5% || +1.8% | +18.1%
o] Block Related 5% -0.3% | +4.5% || +4.5% | +34.7%
5 20] 2% +5.3% | +71.3% || +7.4% | +40.7%
g - Net Related
A R
s Q | £ [T . . .
JLELO GG T EEL'E2578895955 To alleviate this problem, we altered the VPR algorithm
s85°RE8aE 32288523 : : : :
58 g oo °off 33 to ignore highly-connected nets during swap evaluation. We
oG © g B5g v accomplish this by doing some pre-processing of the netlist
v & <
5 o

to determine the size of each net in terms of the percentage
of total blocks that it connects. We call this value thet
coverage. Nets having a net coverage above a fixed threshold
are ignored during swap evaluation.

100M T TTTTITTTTTT ot e TITTTTTTITITITIT One of the major concerns of this change was the adverse
3rd Largest effect it may have on the quality-of-result. To examine this
2nd Largest I 1 we performed experiments using sequential VPR. Our experi-
Largest Net ments involved running sequential VPR with this modificatio

60 bl 1 varying the threshold and the initial seed used. We used 4
| thresholds and ran sequential VPR with 5 different inited ds

40 { at each threshold. We then averaged the resulting estimated
placed wire-length and critical path delay over all seeds fo
each threshold, for each benchmark. Table I lists both the
average and worst-case relative change in quality-ofiresu

a 100% threshold (no nets ignored), across all benchmarks.
Although there appears to be an improvement in the average
placed wire-length for some thresholds, this is likely dae t
noise in placement (which is heuristic).

We found that a threshold of 10% had an acceptable
trade-off between the amount of aborts it removed and the
degradation of quality-of-result incurred. Note that inrou
Fig. 3. Contribution of three largest nets to total nettedlaaborts, for all results presented in Section VI, both the sequential arallphr
benchmarks. version of VPR are using this “ignoring nets” featured, to
avoid skewing the run-time results in favor of our approach—
since by ignoring some of the largest nets we are reducing the
n(agmount of work VPR must do to evaluate a particular swap.

Fig. 2. Abort breakdown by VPR data structures, for all benatks.

80

1000

20

Percentage of Net Related Aborts

p2F

o
I
I
I
T
'p3F I

iirl

nr

mac2
oc54_cpu
paj_boundtop
rs decoder:Z
pl

macl
paj_framebuftop

cf. cordiE_:/_8
cf_fir_24

cf _fir_3
CRC33_D264
fir_scu

des__perf

de; area
diffeq_f_systemC

diffeq_paj

paj_top

rs_decoder_1
sv_chi
sv_chi
sv_chi

paj_raygentop

cf_cordic_v_18

accelerated can work more synergistically.
V. EXPERIMENTAL SETUP

In this section, we will describe the hardware and software

Through further contention analysis, we discovered that thye used in our experiments, as well as the methodology used
vast majority of remaining aborts were occurring on the mog§ acquire our results.

commonly accessed net-related data structure. Figure-2 dis

plays a breakdown of total aborts by data structure. As showh Versatile Place and Route

for some benchmarks, net-related data structures account f VPR [1] is a research placement and routing tool for FPGAs
up to 90% of aborts, prompting us to examine methods déveloped at the University of Toronto. In this work, we use
reducing the contribution of aborts caused by such strasturthe most up-to-date version 5.0.2, which improves on the
Further experiments revealed that for some benchmarke theersion included as a SpecINT2000 benchmark with support
were a very small number of their nets contributing to a larger heterogeneous block types and single-driver routing. W
proportion of aborts. Figure 3 illustrates the contribotim use the benchmark circuits provided with the VPR distrituti
net-related aborts seen by each benchmark by the 3 largesshown in Table I, and the CAD flow described in Figure 4.
nets within that benchmark. Thies_perf benchmark, for We use an FPGA architecture of 4-LUT logic blocks with a
example, has one net contributing to over 80% of all its netluster size of ten. We run VPR with the default placement
related aborts. options.

D. Algorithmic Changes

Verilog HDL Circuit

1.6 —
I 1 thread
l o 1.47 [2threads |
. E=] [4 threads
‘ Front-end Synthesis (ODIN) ‘ § 1.2r B s threads ||
g10-F-----4---F----
Logic Optimization (ABC) b 0.8l
Technology Map to 4-LUTs (ABC) g
20.6f
°
‘ Pack BLEs into ‘ © 0.4}
Logic Clusters (T-VPack) Q
¥ 0.2}
VPR O e a9 53855888, y58¢8
R EES 225588555
Eiistiiaas
Fig. 4. CAD Flow. Sg g = g8 oy
9] £ T a
TABLE Il °
BENCHMARKS.
Circuit 7 Blocks | # Nets Fig. 5. Speedup vs. Sequential-IBN.
paj_top_hierarchy no_mem 6423 45151
sv_chip2_hierarchy ho_mem 5082 34532))
mac?2 1384 6234 We chose a simple approach of comparing the total wall-
0c54 cpu 443 1989 clock time required to complete the sections of code that
de%perfd X 2‘112 ‘I%g we have parallelized, both in sequential VPR and our im-
rs_decoder.
of cordic v 18 18 18 716 3723 plementapon_. We do th|§ to ay0|d_ including the_ extr_a time
sv_chip_hierarchy no_mem 2060 | 12462 involved in timing-analysis, which is not parallelized imro
macl 493 1837 implementation and is an important research challenge in
diffeq_f_systemC 377 1713 itself. We average the results over three trials, and both th
rs decoderl 190 986 sequential and parallel algorithms are given the sameainiti
fir_scu_rtl_restructuredfor_cmm_exp 124 667 seed
paj_boundtop hierarchy no_mem 842 2489) . i .
cf cordicv 8 8 8 162 685 To determine the impact on quality-of-result, we compare
des area 347 1026 both (i) the placed wire-length and (ii) the critical pathale
paj_framebuftop hierarchy no_mem 214 626 of the resulting placement. In order to determine the value
Cf—.f'rr—24—%]?—1ﬁ. ey o mem gg% gg?? of these metrics we use the router in VPR to search for the
ﬁ?“ aygentophierarchy no_me 04 521 minimum necessary tracks-per-channel in an initial setjalen
iirl 138 511 baseline run. After this value was determined, we increétsed
diffeq_paj_convert 347 825 by 30% and fix all future sequential and parallel runs to use th
sv_chip3_hierarchy no_mem 68 199 fixed width. Interconnect is therefore invariant for eaafeuwit,
cf_fir 388 90 296 ; ; it
i across all our experiments. We use the final critical pathydel
CRC33 D264 350 367 P patayd

and placed wire-length values of the resulting routed dirtcu
make our quality-of-result comparison. These reportedesl
are averaged over three trials.

B. Measuring Performance

We perform our experiments on a real machine, with two VI. RESULTS
Quad-Core Intel Xeon E5345 processors running at 2.33 GHzy, this section, we present the performance and quality-of-

4 GB of main memory, and running the Linux Kernel versiofagyit impact of our implementation of TVPR. Figure 5 illus-
2.6.18. . .]] trates the performance of TVPR against the original sedgient
~ The implementation we report results for in this pap&jpRr (without any STM overheads), including the “ignoring
is not serially equivalent [2], and consequently, comparingyig nets” (IBN) optimization, across all benchmark cirsuit
the performance against the sequential version must be d%\el, 2, 4 and 8 threads. Only a few benchmarks perform
carefully. VPR's simulated annealing schedule is dynamigetter than sequential VPR, and the ones that do accomplish
therefore our implementation, since it is not determinjstan ihis at 8 threads. This poor speedup is due to the overheads of
follow a different path to convergence each time it is rurgT\: in our experiments, we found that TVPR using 1 thread
even when given the same initial random seed. This is similggg approximatelyx slower on average than sequential
tq what occurs with the original sequential algorithm whe()pr This can be seen in the figure by looking at TVPR’s
different seeds are used. performance for a single thread. This extensive slowdown
IMeaning that temperature adjustments are made based orclsge 1S due to the large amount of overhead in instrumenting all
statistics. shared reads and writes inherent with any STM (as described

%]
c
S
S [J Successes 12
o [Aborts
S 100% m N
@
= I | 1
=
B 80w | I | =
g o
] © 8
g 60% o 7.27
3 =
S 40%f e
g 2
o 0 a
& 20%r 3 4 3.62
= (9]
c (9]
3 0% S o ; : Y o : =3 \
5 P Qemdo=g20E. 0L, 0328360288 © ool 182]
e ELNETE R >38858895E Ve EE = T
oI:=ICI| gLIulgg mlzggggg’ole wIE UIQI.E
b3 =5 O (8] [}
5°8 £ E5E°A8 $88vwsS @s° 0 . : :
g o (I =28
5 D < gl 4 8§85 Number of Threads
g £ s
©
Circuit Fig. 7. Self-relative scaling on a dual-socket quad-corerX@.e., up to 8

threads relative to 1 thread with STM overhead). Plot inetuchin/max error

Fig. 6. Abort Rates for 2, 4, and 8 threads (shown respegtiasl three bars.

adjacent bars per benchmark). Benchmark circuits are cs@teallest to
largest (left to right) based on total number of nets.

and writes as well as detecting conflicts, can be optimized

in hardware.
in Section 1I-B). The slight super-linear speedup demanstt \while hardware support for TM (HTM) is not yet com-
by some benchmarks (e.di ffeq_f_systenC, macl) is mercially available, primitive support was announced as pa
the result of the favoritism described in Section III-C. of the specification for SUN's Rock processor [16] and both

Figure 6 illustrates the abort rate statistics of TVPR fo4.2, |BM and Intel have several research groups studying TM.

and 8 threads for all benchmarks. The value of the abort ra&$gnylated studies of LogTM [8], an academic HTM, show
is the percentage of total attempted transactions thatteesuthat it can provide up to 30x greater throughput than SUN'’s
in an abort. We did not observe a direct correlation betwegT\ called TL2. A compelling design is a hybrid TM—a mix
the relative values of properties of the circuits themseli®. of hardware and software that can be thought of as hardware-
number of nets, number of blocks, average per-block net fagecelerated STM. Recent work by Lewal. [17] explores (via
out) and their relative abort rates. For example, a circititt W simylation) a hybrid TM system called Phased Transactional
a larger average per-block net fan-out than another cididit pmemory (PhTM) that performs much better than pure STM
not necessarily exhibit a higher abort rate. The figure algp_2 [11]) and quite close to pure HTM. Although we found
illustrates no clear correlation between the abort ratesta@ TinySTM performs better than TL2, we believe this analysis i

total number of nets in a circuit. However, we did find thajjystrative of the potential improvement when using a igfbr
the largest three benchmark circuits that we used exhibitgglfy|| hardware TM system.

reasonable abort rates at 8 threads. As shown in the figure,

these circuitsgv_chi p1 , paj _t op andsv_chi p2) had VIl. SUPPORTINGSERIAL EQUIVALENCE

abort rates at 8 threads of 24.04%, 21.39% and 22.29%))
respectively. Larger circuits exhibit less contentiordieg to A major concern of CAD tool developers and users is
smaller abort rates. determinism. The result of placement should be the sama give

The overall impact on the quality-of-result is a maximurf'€ same initial seed, and regardless of the number threads.
degradation of 5% on the post-routed wire-length, and 10941 constraint has been given the naseeial equivalence
on the critical path delay, both at eight threads. On averad®y Previous work [2]. While our implementation is currently
the impact is 1% on the post-routed wire-length, and 1% &9t ser_lally equwalent., this section d_|scusses modificesito
critical path delay. TVPR in order to achieve serial equivalence.

Despite the run-time relative to sequential, it is evidéyattt ~ The modifications involve making a change in how the
TVPR scales quite well (almost linearly) with the numbef@ndom number generator's master and child streams are
of threads used. Figure 7 illustrates the speedup of difgnerated, and requires using a TM system that supports
implementation relative to its own single thread perforoegn ordered transactions [18]. In particular, threads will perform
averaged over all benchmark circuits. This plot may also §&/aps in a deterministic round-robin manner and threads wil

interpreted as the projected speedup, if there were no emdrh a0 use a deterministic random number sequence. Ordered
transactions imply a fixed commit order within the TM system.

A. Potential for Hardware TM An example of this is a token system, in which a thread must
Hardware support has the potential to drastically improweait until it holds the token before it commits its transaati

the performance of TM. This is because operations whidthe token is passed round-robin among the threads. With

are expensive in software, such as instrumenting all reatiese changes, along with the re-use of random numbers on

transaction re-execution, we can achieve both determiarsin
serial equivalence for any number of threads.

We expect that attempting to serialize transactions using i
token within a software-based transactional memory system
would result in significant slow-downs due to the extra over-
head involved. However, we also expect that hardware-bas
systems may be able to provide this functionality withowthsu
a drastic cost to performance [18].

[4] P. Felber, C. Fetzer, and T. Riegel, “Dynamic perforneanening of
word-based software transactional memory,3ymposium on Principles
and Practice of Parallel Programming, 2008.

J. Chandy, S. Kim, B. Ramkumar, S. Parkes, and P. Baneffae
evaluation of parallel simulated annealing strategie$ &jtplication to
standard cell placementEEE Trans. on Comp. Aid. Design of Int. Cir.
and Sys, vol. 16, pp. 398-410, 1997.

?éjj I. Watson, C. Kirkham, and M. Lujan, “A Study of a Transacal
Parallel Routing Algorithm,” inlnternational Conference on Parallel
Architecture and Compilation Techniques, 2007.

M. K. Prabhu and K. Olukotun, “Exposing Speculative TémePar-
allelism in SPEC2000,” inSymposium on Principles and Practice of
Parallel Programming, 2005.

K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. \b,
“LogTM: Log-Based Transactional Memory,” iitntl. Conference on

[71
VIIl. CONCLUSIONS

Transactional memory (TM) is a new paradigm in parallel8]
computing that is gaining traction in industry and thg re- High-Per formance Computer Architecture, 2006,
search community, pr|m§1r_|ly due_ to its ease-of-use redatin/ [9] A. McDonald, J. Chung, H. Chafi, C. Cao Minh, B. D. Carlstro
threads, locks and condition variables. We presented the fir L. Hammond, C. Kozyrakis, and K. Olukotun, “Characteriaatiof

; A izeol t@l TCC on Chip-Multiprocessors,” iRroceedings of the 14th International
simulated anneallng .based placer (TVPR) parallellz n Conference on Parallel Architectures and Compilation Techniques, Sept
TM. Our approach is based on modeling placement swaps »qos.
as transactions that execute concurrently, and incom®rat0] A. Dragojevic, R. Guerraoui, and M. Kapalka, “Stretuy transactional
algorithmic optimizations that reduce transaction abates. memon, |r21cc):c())gference on Programming Language Design and Imple-
We found that th_e scalability of our algorlthm iS promisify. [11] D. Dice, O. Shalev, and N. Shavit, “Transactional Laxkil,” in In Proc.
particular, near-linear speedups versus single-threatR of the 20th Intl. Symp. on Distributed Computing, 2006. [Online]. Avail-
were observed as parallelism was increased, with minin"tﬂ] able: http://citeseerx.ist.psu.edu/viewdoc/summani2).1.1.90.811
deleterious effect on placement quality. However, resaie
show that TM support in hardware is likely necessary if

V. J. Marathe, W. N. Scherer Ill, and M. L. Scott, “Adagi Software
Transactional Memory,” irProc. of the 19th Intl. Symp. on Distributed

significant speedups are to be achieved over conventio

sequential VPR. [14]

Computing, 2005.
“Stanford Transactional Applications for Multi-Pregsing,”
http://stamp.stanford.edu/, Stanford University.
“TinySTM,” http://tinystm.org, TinySTM.
[15] “OpenMP,” http://openmp.org/wp/, OpenMP.
[16] M. Moir, K. Moore, and D. Nussbaum, “The Adaptive Traosanal
Memory Test Platform: A tool for experimenting with transanal code
for Rock,” in TRANSACT, April 2008.

REFERENCES

[1] “Versatile Place and Route,” http://www.eecg.toraetiu/vpr/, Univer-

sity of Toronto. [17]

[2] A.Ludwin, V. Betz, and K. Padalia, “High-quality, detamistic parallel
placement for fpgas on commodity hardware,”Symposium on Field
Programmable Gate Arrays, 2008.

[3]
Gate Arrays,” inInternational Symposium on Field Programmable Gate
Arrays, 2003.

P. Chan and M. Schlag, “Parallel Placement for FieldgPammable

[18

]

Y. Lev, M. Moir, and D. Nussbaum, “PhTM: Phased
Transactional Memory,” iINTRANSACT, 2007. [Online]. Available:
http://www.cs.rochester.edu/meetings/ TRANSACTO07/

L. Hammond, V. Wong, M. Chen, B. Hertzberg, B. CarlstrainDavis,
M. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun, “Traoganal
Memory Coherence and Consistency, Hroceedings of the 31st Annual
International Symposium on Computer Architecture, June 2004.

